Method of processing seismic data acquired by means of multi-component sensors

Information

  • Patent Grant
  • 7889597
  • Patent Number
    7,889,597
  • Date Filed
    Friday, October 22, 2004
    20 years ago
  • Date Issued
    Tuesday, February 15, 2011
    13 years ago
Abstract
The invention relates to a method of processing seismic data acquired by means of a sensor having at least three geophone components, characterized in that estimators are determined which are combinations of these components making it possible to isolate the various data depending on whether they correspond to propagation with reflection or with conversion. The estimators find application in particular for determining a sensor reconstruction according to which the operators to be applied to the various components of the sensor are determined in such a way as to minimize the deviation between reference data and data obtained by applying the estimators to the sensor reconstruction, the operators thus determined being applied to the data acquired.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This national phase application is based on PCT/IB2004/003703 filed on Oct. 22, 2004 which claims priority to French Application No. 0312432 filed Oct. 23, 2003 entitled “Method of Processing Seismic Data Acquired by Means of Multicomponent Sensors”.


GENERAL FIELD

The invention relates to techniques for processing seismic data acquired by means of multicomponent sensors.


This invention is in particular applicable to acquisition by means of cables disposed on the bottom of the sea (so-called “OBC” or “Ocean Bottom Cable” techniques).


Multicomponent geophones capable of working in any position whatsoever, in particular at the bottom of the sea, have recently been proposed. This “omnitilt” probe technology has allowed new simplified cables (mechanical joints are no longer necessary) and allows acquisitions with a better seismic bandwidth.


However, the acquisition step does not make it possible to provide the true orientation of the geophones of the cable, although this information is indispensable for making it possible to process the data.


The invention proposes a processing which is intended to be implemented on raw data and which allows reorientation and calibration (intended to convert the measurements of various geophones into a common phase and amplitude response).


STATE OF THE ART

Techniques consisting in isolating from the signal the data which correspond to the first arrival at the sensor and in determining on the basis of these data a filter intended to be applied to the raw data so as to correct them and to thus obtain the components of the signal on the expected axes have already been proposed.


A proposal to this effect has been described in the article:


“Horizontal vector infidelity correction by general linear transformation”—Joe Dellinger et al.—SEG—9-14, September, 2001.


However, this technique is not necessarily optimal since the coupling mechanism which intervenes at the geophone level is not the same for the waves which correspond to a first arrival at the sensor and for the waves reflected or converted by the seismic horizons.


PRESENTATION OF THE INVENTION

The invention proposes another approach which employs the true data window for numerically reconstructing geophones oriented along the desired axes.


Implicitly, this approach compensates for the errors which are not related to the geophones themselves, but which are due to the fact that the coupling between the geophone and the waves to be recorded is different depending on whether it is necessary to make a vertical vibration movement rather than a horizontal movement (on account of gravity).


In the case of a cable, the coupling is furthermore different depending on whether the vibration movement is in the direction of the cable or transverse.


Moreover, since deeper windows are subject to a lower S/N (signal-to-noise) ratio, processing which implements trace stacks is moreover used.


The invention thus proposes, according to a first aspect, a method of processing seismic data acquired by means of a sensor having at least three geophone components, characterized in that estimators are determined which are combinations of these components making it possible to isolate the various data depending on whether they correspond to propagation with reflection or with conversion and in that, to determine a sensor reconstruction, the operators to be applied to the various components of the sensor are determined in such a way as to minimize the deviation between reference data and data obtained by applying the estimators to the sensor reconstruction, the operators thus determined being applied to the data acquired.


It is specified here that, in the remainder of the present text, the term geophone is understood to mean any velocity sensor and the term hydrophone any pressure sensor.


Preferred, but non limiting aspects of the method according to the first aspect of the invention are the following:

    • the sensor furthermore including a hydrophone, the reference data for reconstructing a vertical geophone are derived from the data acquired by the hydrophone;
    • the reference data for reconstructing a vertical geophone without hydrophone or for reconstructing horizontal geophones are derived from the application of the estimators to one of the geophones of the sensor;
    • the orientation in the horizontal plane of a geophone component is obtained by minimizing the estimator of the transverse reflection;
    • the estimators are determined as a function of a model of isotropic propagation or including the azimuthal anisotropy.


According to another more general aspect, the invention proposes a method of processing seismic data acquired by means of a sensor having at least three geophone components, characterized in that estimators are determined which are combinations of these components making it possible to isolate the various data depending on whether they correspond to propagation with reflection or with conversion. The estimators thus determined may find applications other than that forming the subject of the method according to the first aspect of the invention.





DESCRIPTION OF THE FIGURES


FIG. 1 is a diagrammatic representation giving the angular conventions used;



FIGS. 2 and 3 are flow charts giving the various steps of the processing respectively in one and the other of the two exemplary implementations described.





DESCRIPTION OF ONE OR MORE MODES OF IMPLEMENTATION OF THE INVENTION

First Exemplary Implementation: Case of an Isotropic Propagation Model


Under the assumption of a locally 1 D (one dimensional) geology in proximity to the receivers, and assuming isotropic propagation of the earth, a given geophone, with an orientation φψ, measures:

mk=Rpp cos(ψ)δppk+(Rps cos(θk−φ)+Rtrsv sin(θk−φ))sin(ψ)δpsk

    • With:
    • k: index for the shotpoint (from 1 to N)
    • θk: azimuth of the shotpoint with respect to the abscissa axis
    • −Rpp: reflectivity PP
    • δpp: dynamic correction PP (“normal moveout” or NMO)
    • Rps: isotropic radial reflectivity PS
    • Rtrsv: isotropic transverse reflectivity PS
    • δPs: dynamic correction PS (“normal moveout” or NMO)


This model allows the evaluation of the reflectivity parameters from the set of traces trk through simple processing of least squares comparison (ignoring ψ to begin with) in the Fourier domain, leading to the following equations:








(




N
_




wc


(
φ
)





ws


(
φ
)








wc


(
φ
)


_




Sc





2


(
φ
)





Scs


(
φ
)







ws


(
φ
)





Scs


(
φ
)





Ss





2


(
φ
)





)

·

(



Rpp




Rps




Rtrsv



)


=

(



Svx





Shcx


(
φ
)







Shsx


(
φ
)





)





Scalar Quantities:

Sc(φ)=Σk cos(θk−φ) Ss(φ)=Σk sin(θk−φ)
Sc2(φ)=Σk cos2k−φ) Ss2(φ)=Σk sin2k−φ)
Scs(φ)=Σk cos(θk−φ)sin(θk−φ)
N=Sc2+Ss2


Wavelet Quantities:

wc(φ)=Σk cos(θk−φ)δpsk δppk−1
ws(φ)=Σk sin(θk−φ)δpsk δppk−1


Trace Stack Quantities for Geophone x:

Svx=Σk xk δppk−1
Shcx(φ)=Σk cos(θk−φ) xk δpsk−1
Shsx(φ)=Σk sin(θk−φ) xk δpsk−1


The solution of this linear system gives:

Δiso Rpp cos(ψ)=W Svx+(Scs ws−Ss2 wc)Shcx+(Scs wc−Sc2 ws)Shsx
Δiso Rps sin(ψ)=Kis cos(φ)−Kic sin(φ)
Δiso Rtrsv sin(ψ)=Kis cos(φ)−Kic sin(φ)
With:
W=Sc2 Ss2−Scs2
Δiso=WN+wc(Scs ws−Ss2wc)+ws(Scs wc−Sc2ws)
Kic=(Scs ws−Ss2wc)Svx+(NSs2−ws ws)Shcx+(−NScs+ws wc)Shsx
Kis=(Scs wc−Sc2ws)Svx+(−NScs+wc ws)Shcx+(NSc2−wc wc)Shsx


This modelling allows evaluations taking account of the following properties:

  • a. Rpp does not depend on φ,
  • b. |Rps|2+|Rtrsv|2 does not of course depend on φ either,
  • c. Δiso is in practice rapidly steady over time and can be ignored for the calibration/orientation procedure, since it is common to all the geophones of one and the same receiver.


Evaluations of Dense Shots


Most of the OBC acquisitions are gleaned using a dense and regular grid of sources, which allows considerable simplification:

Sc=Ss=0, wc=ws=0 (symmetry of the sources with respect to the receivers)
Scs=0 Sc2=Ss2=N/2 (isotropic source distribution)


Next, the exact solution can be obtained through the approximation:

N Rpp cos(ψ)=Svx
N Rps sin(ψ)=2 Shcx(φ)
Rtrsv sin(ψ)=2 Shsx(φ)


This approximation leads to very simple calculations, not involving any wavelets, and can be applied immediately.


Orientation of the Geophones


Since Rtrsv does not exist physically, the minimization of the energy of Rtrsv leads to a trigonometric equation which gives the true orientation φgeo(+k π):







tan


(

2






ϕ
geo


)


=

2



(



t




Kic
t







Kis
t



)

/

(




t



Kic
t
2


-



t



Kis
t
2



)








((Emax−Emin)/(Emax+Emin))1/2 gives a check on the quality of the reorientation.


Moreover, if one wishes to find the orientation according to the first arrivals, it is possible to correct the said first arrivals so as to set them to one and the same arrival time, then to simplify kic and kis by replacing the wavelets wc and ws by the scalars sc and ss, by considering that the waves recorded horizontally are in fact the projection of the radial wave P, present on all the geophones since it is oblique.


Geophone Vertical Composite Calibration:


With the geophones g1, g2, g3, we construct a vertical composite geophone v, v=op1*g1+op2*g2+op3*g3 (or comprising additional similar terms in the case where extra geophones are present in the receiver) where op1, op2, op3 are the filters of finite length and opu*gu represents the convolution of geophone gu with filter opu.


such that:

E1=|XH−XV|2=|Kic(v)|2+|Kis(v)|2


The energy of the difference between XH (hydrophone after application of the geophone phantom, or cross-ghost hydrophone) and XV (the vertical composite geophone after application of the hydrophone phantom or cross-ghost geophone), (see for example in this regard the Applicant's Patent Application FR 2 743 896).

E2=|Rps(v)|2+|Rtrsv(v)|2

horizontal energy of the vertical composite,


E=λE1+(1−λ)E2 is a quadratic form in the coefficients of the filters and can be reduced to the minimum, thus giving a linear system to be solved. (λ is a matching parameter, 0<=λ<=1, which favours either a greater adjustment to the reference hydrophone or a greater minimization of the shear energy).


In the case of terrestrial data, that is to say if there is no hydrophone available, it is possible to choose one of the geophones as reference and to replace the hydrophone by Rpp(gref).


Calibration in a Horizontal Arbitrary Direction


With g=op1*g1+op2*g2+op3*g3 and φg an arbitrary direction,


We define:

E1=|Rps(g, φg)−Rps(ref, φref)|2,

as being the energy of the difference between the evaluation of Rps of the arbitrary composite geophone and the evaluation of Rps of a reference geophone (in general the geophone oriented in the direction of the cable).

E2=|Rpp(g)|2+|Rtrsv(g, φg)|2 (the nonradial energy)


E=λE1+(1−λ)E2 allows the derivation of a composite horizontal geophone in the desired direction, having the same frequency response as the reference geophone, and with a minimum PP contamination.


Considering the cases φref=0 and φref=π/2, it is possible by simple trigonometric combination to generate the radial and transverse projections.


Second Exemplary Implementation: Case of Anisotropic Azimuthal Propagation Modelling


Let α be the direction of the natural fast propagation axis. The modelling of the measurement of the geophone becomes (using one or other of Rps1 and Rps2 the two images along the natural directions, or Rps and δRps defined by Rps1=Rps+δRps, Rps2=Rps−δRps):

mk=Rpp cos(ψ)δppk+(Rps1 cos(φ−α)cos(θk−α)+Rps2 sin(φ−α)sin(θk−α))sin(ψ)δpsk
mk=Rpp cos(ψ)δppk+(Rps cos(θk−φ)+δRps cos(θk+φ−2α))sin(ψ)δpsk

giving the normal equations









M
=





(



N



wc


(
φ
)





wc


(


2

α

-
φ

)








wc


(
φ
)


_




Sc





2


(
φ
)






Sc





2


(
α
)


-

N







sin
2



(

α
-
φ

)










ws


(


2

α

-
φ

)


_





Sc





2


(
α
)


-

N







sin
2



(

α
-
φ

)







Sc





2


(


2





α

-
φ

)





)








M
·

(



Rpp




Rps





δ





Rps




)


=

(



Svx





Shcx


(
φ
)







Shcx


(


2

α

-
φ

)





)








The solution of this linear system gives:

Δiso Rpp cos(ψ)=unchanged
Δaniso Rps sin(ψ)=(Kac cos(2α−φ)+Kas sin(2α−φ))sin(2α−φ))
Δaniso Rtrsv sin(ψ)=(−Kac cos(φ)−Kas sin(ψ))sin(2(α−φ))

With:

Δaniso=sin2(2(α−φ))Δiso
Kac=(Sc2ws−Scs wc)Svx+(N Scs−wc ws)Shcx−(N Sc2−wc wc)Shsx
Kas=(−Ss2wc+Scs ws)Svx+(N Ss2−ws ws)Shcx−(N Scs−ws wc)Shsx


Vertical Calibration of Composite Geophone:


The isotropic process remains applicable with the change

E2=|Kac(g)|2+|Kas(g)|2


Horizontal Arbitrary Calibration or Rows/Columns of Composite Geophones


The observation of δRps over the data field makes it possible to diagnose the presence (or otherwise) of significant azimuthal anisotropy. (the quantity sin2(2(α−φ)) δRps does not require a knowledge of α for its calculation).


The isotropic process remains applicable with the changes

E2=|δRps(v)|2 and E=λ(E1+E2)+(1−λ)E3.


When α is not generally known, a scan over a range of π/2 is implemented, using the value of α which minimizes Emini/E0.

Claims
  • 1. A method of processing seismic data corresponding to first arrival waves and to waves reflected or converted by the seismic horizons, the seismic data being acquired by an omnitilt sensor having at least three geophone components with an angular orientation φψ, wherein estimators are determined which are combinations of these components, wherein various data are isolated, through the estimators, depending on whether they correspond to propagation with reflection or with conversion by the seismic horizons, and wherein operators to be applied to the various components of the sensor are determined for determining a sensor reconstruction, the operators being those that minimize a deviation between reference data and data obtained by applying the estimators to the sensor reconstruction, the operators thus determined being applied to the data acquired, said operators used to reconstruct the orientation of at least one geophone of the omnitilt sensor along at least one desired axis.
  • 2. A method according to claim 1, in which, the sensor furthermore including a hydrophone, the reference data for reconstructing a vertical geophone are derived from the data acquired by the hydrophone.
  • 3. A method according to claim 1, in which the reference data for reconstructing a vertical geophone without hydrophone or for reconstructing horizontal geophones are derived from the application of the estimators to one of the geophones of the sensor.
  • 4. A method according to claim 1, wherein the orientation in the horizontal plane of geophone component is obtained by minimizing the estimator of the transverse reflection.
  • 5. A method according to claim 1, wherein the estimators are determined as a function of a model of isotropic propagation or including the azimuthal anisotropy.
  • 6. A method of processing seismic data acquired by means of a sensor having at least three geophone components, determining estimators, wherein said estimators are determined which are combinations of these components, wherein various data are isolated, through the estimators, depending on whether they correspond to propagation with reflection or with conversion, said estimators used to reconstruct the orientation of at least one geophone along at least one desired axis.
  • 7. A method of processing seismic data, at least a portion of said data comprises first arrival waves and waves reflected or converted by the seismic horizons, the seismic data acquired by an omnitilt sensor having at least three geophone components, each geophone component has an angular orientation φψ, said method comprises the steps of: determining estimators, wherein said estimators comprises combinations of said geophone components;isolating at least a segment of said data using said estimators, said isolation depends on whether said portion of said segment corresponds to propagation with reflection or with conversion by the seismic horizons;determining operators for obtaining a sensor reconstruction, wherein said operators are determined to minimize the deviation between reference data and data obtained by applying the estimators to the sensor reconstruction; andapplying said determined operators to the acquired seismic data, said application used to reconstruct the orientation of at least one geophone along at least one desired axis.
  • 8. A method according to claim 7, wherein the sensor further comprises a hydrophone, said method further comprises the step of: deriving the reference data for sensor reconstruction of a vertical geophone from the data acquired by the hydrophone.
  • 9. A method according to claim 7 further comprises the step of: deriving the reference data for reconstructing a vertical geophone without a hydrophone or for reconstructing horizontal geophones by applying the estimators to one of the geophones of the sensor.
  • 10. A method according to claim 7 further comprises the step of: obtaining the orientation in the horizontal plane of geophone component by minimizing the estimator of the transverse reflection.
  • 11. A method according to claim 7, wherein the estimators are determined as a function of a model of isotropic propagation or including the azimuthal anisotropy.
Priority Claims (1)
Number Date Country Kind
03 12432 Oct 2003 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2004/003703 10/22/2004 WO 00 4/24/2006
Publishing Document Publishing Date Country Kind
WO2005/040857 5/6/2005 WO A
US Referenced Citations (7)
Number Name Date Kind
5724306 Barr Mar 1998 A
6021090 Gaiser et al. Feb 2000 A
6026057 Byun et al. Feb 2000 A
6205403 Gaiser et al. Mar 2001 B1
6292754 Thomsen Sep 2001 B1
6430105 Stephen Aug 2002 B1
20030109989 Bagaini et al. Jun 2003 A1
Foreign Referenced Citations (2)
Number Date Country
2 379 505 Mar 2003 GB
WO0151955 Jul 2001 WO
Related Publications (1)
Number Date Country
20070140056 A1 Jun 2007 US