1. Field of the Invention
This invention relates to a method and related device for processing video fields, more particularly, a method and related fields similarity detection device for processing video fields according to the similarity of a plurality of odd and even fields.
2. Description of the Prior Art
The continuous and dynamic video of a movie or television provided to viewers is in reality generated from a combination of gradually changing static images. In reference to television display, there are two types of television systems. The first one is the national television standard committee (NTSC) system. In this system each video field includes 525 rows of data (i.e., 525 lines) and 60 fields are updated per second, which means the frame rate is 60 Hz. The second system for the display of television images is called the phase alternating line (PAL). In this system each video field includes 625 rows of data and 50 field s are updated each second, which means the frame rate is 50 Hz. The traditional television technology to broadcast 50/60 frames per second having 625/525 rows of data is extremely expensive and difficult. To overcome this problem interlaced scanning technology was developed. Interlaced scanning controls the electron-beam of the television to scan the screen but at the time of first scanning only even lines are scanned instead. Later, in the next scan, the odd lines are scanned. Hence, the field rate of 60 Hz or 50 Hz results in only 30 frames or 25 frames written per second. However, the flow of dynamic images is still acceptable to the human eye. Each frame in the interlaced scanning technology is divided into two parts: odd sequence data known as odd field and even sequence data known as even field.
Other video technology may operate at frame rates different from the television system. For example, movie technology utilizes the general standard is 24 frames scanned per second providing the viewer with a frame rate of 24 Hz. Therefore, in NTSC system, when it is desirable to broadcast a movie onto the television, the movie must be converted from its normal frequency of 24 Hz to 60 Hz. This frequency update is necessary to conform to the standard of television broadcasting.
The film frame rate is 24 Hz and the field rate of the NTSC system that utilizes interlaced scanning technology is 60 Hz. The prior art helps solve this discrepancy by utilizing two movie frames to form five television fields. In other words, a single movie frame is converted into two or three television fields at each interval. In order to generate interlaced fields,
As the television image technology has developed, progressive scan technology is becoming more popular. For example, liquid crystal display (LCD) and plasma television broadcast image data utilizing the progressive scan technology. Progressive scan television displays video image sequences without interlace. Therefore, when the progressive scan television displays traditional odd and even fields, de-interlace is required. When the interlaced fields are de-interlaced, progressive fields can be generated by simply merging adjacent odd fields and the even fields. The step is repeated twice to meet the field rate requirement. Unfortunately, for the movie as shown in
The main objective of the claimed invention is to provide a method and related field similarity detection for processing video fields to determine the similarity of a plurality of odd and even fields; and also to determine the format of the image signal source according to the similarity of the plurality of fields and to generate image data of another format accurately according to the interlacing fields to overcome the above mentioned problem.
The claimed invention discloses a method of processing an video field, the method comprising: detecting a special pattern of each couple among a plurality of couples of adjacent fields distributed respectively to determine a similarity of said each couple of adjacent fields; and generating a progressive scan television image signal according to a predetermined rule (for example, to generate a frame with each similar couple of fields) when a predetermined pattern is detected (for example, in every alternate couple of fields there will be a similar couple of fields) from said similarities of said adjacent fields; the special pattern, for example, can be a zigzag pattern.
The claimed invention discloses another method of detecting similarity between a couple of adjacent fields, the method comprising the following steps: comparing gray levels between a target pixel of a first field and a plurality of adjacent pixels of a second field to determine if a special pattern exists in the target pixel (for example a zigzag pattern); and accumulating the special pattern to determine if the first field is similar to the second field. The adjacent pixels comprise a first adjacent pixel and a second adjacent pixel, when the gray level of the target pixel is greater than the gray level of the first adjacent pixel surpassing above a second predetermined value, and the gray level of the target pixel is greater than the gray level of the second adjacent pixel surpassing above a third predetermined value, then it is determined that a zigzag exists in the target pixel.
The claimed invention discloses a device for detecting similarity between couples of fields, the device comprising: a pixel comparator for comparing gray levels between a first target pixel of a first field and a plurality of adjacent pixels of a second field to detect if a special pattern exists in the target pixel, for example a zigzag, and the first field and the second field are adjacent fields; an accumulation unit, coupled to the pixel comparator, for accumulating the special pattern of the first field to generate an accumulation result; and a similarity decision unit, coupled to the accumulation unit, for determining whether the first field is similar to the second field according to the accumulation result.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
The present invention utilizes field similarity information between couples of adjacent fields to determine the data format of field source in order to properly generating frames of progressive scan. An odd field and an even field originated from the same frame is similar to each other, but an odd field and an even field originated from two different frames are not similar when motion occurs between the two different frames. Relatively, when degree of similarity between the adjacent odd field and even field is greater than the predetermined value, it can be determined that the two adjacent odd field and even field originate from the same frame. For example, as shown in
For example, in two continuous groups of five successive couples of television fields, the first couple of adjacent fields, the second couple of adjacent fields and the fourth of couple of adjacent fields are similar to each other, then the television fields can be determined as originated from a film.
The NTSC system defines the field rate as 60 Hz, therefore the progressive television frame P1 is duplicated into progressive television frames P2 and P3 and the progressive television frame A′ is displayed three times. The progressive television frame P4 is duplicated into a progressive television frame P5 and the progressive television frame B′ is displayed twice. Similarly, the progressive television frames P6 and P9 are duplicated to be displayed.
In this embodiment, the determine rule is preferably applicable to the succession of television fields, when a predetermined similarity pattern is detected in a succession of predetermined number of times. For example, a predetermined pattern appears in the similarity of two continuous groups of five couples of adjacent fields. Thereafter, the interlaced fields are deinterlaced into progressive fields. While displaying the progressive fields, the predetermined pattern of similarity is being examined repetitively. When the pattern disappears, the associated data processing should stop. Alternatively, the similarity pattern is being examined periodically.
Every two adjacent fields inevitably have to be an odd field and an even field. However, there are no exactly corresponding pixels of the same coordinates in the two adjacent fields. The present invention discloses a method and a related device for determining similarity between two adjacent fields by detecting zigzags.
Sign(Mj−Uj)XORSign(Dj−Mj)=1 eq.(1)
Abs(Mj−Uj)>K1 eq.(2)
Abs(Dj−Mj)>K2 eq.(3)
K1 and K2 are two pre-determined values, and can be the same or different.
When two adjacent fields are not similar due to the motion, in three vertical adjacent data rows of the two fields, in the gray level of three pixels on the same horizontal coordinate, the gray level of the pixels can either be maximum or minimum gray of value (satisfy equation (1)) of the three pixels, and differences between gray level of the target pixel and gray level of the two vertical adjacent pixels are greater than the pre-determined value (satisfy equation (2) and equation (3)), then a non-smooth change is determined between the pixel Mj of the pixels and the two vertical adjacent pixels Uj, Dj. When the quantity of the non-smooth change pixels between a target field and its adjacent field is greater than a predetermined value, the two fields are not similar. The two fields are not originated from the same frame. If the quantity of the non-smooth change pixels is less than the predetermined value, the two adjacent fields can be determined as similar. In other words, the two adjacent fields are originated from the same frame.
Step 400: Set N value as 0;
Step 410: If each pixel of the first field is being checked, execute step 415; If not, then execute step 420;
Step 415: Determine the first field and the second field are similar, execute step 470;
Step 420: Target pixel is a pixel of the first field that is not being checked, two rows of adjacent data above and below the target pixel in the second field, and a second pixel on the same horizontal coordinate as the target pixel are known as a first adjacent pixel and a second adjacent pixel respectively;
Step 430: When gray level Uj of the first adjacent pixel is greater than gray level Mj of the target pixel above a first predetermined value K1, and when gray level Dj of the second adjacent pixel is greater than the gray level Mj of the target pixel above a second predetermined value K2; or when the gray level Uj of the first adjacent pixel is smaller than the gray level Mj above the predetermined value K1, and when the gray level Dj of the second adjacent pixel is smaller than the gray level Mj of the target pixel above the predetermined value K2, execute step 440; if not, execute step 410;
Step 440: Increase N value by 1;
Step 450: If the N value is greater than a third predetermined value K3, execute step 460; if the N value is smaller than the third predetermined value K3, return to step 410;
Step 460: Determine the first field and the second field are not similar;
Step 470: End.
To realize the present invention's method of detecting the similarity between the odd field and the even field as shown in
The present invention is capable of determining the similarity pattern of interlaced fields transformed from the movie or from the computer animation source, in order to properly generate progressive fields.
The present invention discloses a method of processing video field for determining format of the source data of the interlacing television fields according to the similar pattern of odd field and even field of each couple of adjacent fields in the interlacing television field sequence, also by combining the interlacing television fields to generate data of progressive field. As long as the format of the interlacing television field source data is recognized, when the source data is converted into the interlacing television field, a similar pattern will be displayed in between each field, the present invention will then convert the interlacing television field generated by the source data into the progressive television field data. The present invention further provides a method of detecting zigzag similarity in between the odd field the even field, and also the comparison of the odd field and the even field sequentially, the duplicate group comprises gray levels of three pixels on the same horizontal coordinates of three rows of adjacent data.
The present invention also reveals a device for detecting similar fields, the device comprising a pixel comparator for comparing gray level change of a first target pixel of a first field and a plurality of adjacent pixels of a second field, to detect whether a special pattern exists in the target pixel, for example a zigzag, and the first field and the second field are adjacent fields; an accumulation unit, coupled to pixel comparator, for accumulating the special pattern of the first field to generate an accumulation result; and a similarity decision unit, coupled to the accumulation unit, for determining whether the first field is similar to the second field according to the accumulation result.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/558,569, filed Apr. 2, 2004, and included herein by reference.
| Number | Date | Country | |
|---|---|---|---|
| 60558569 | Apr 2004 | US |