1. Field of the Invention
The invention relates to a method of producing a circular saw blade having cooling channels. Moreover, the invention relates to a circular saw blade having cooling channels.
2. The Prior Art
Circular saw blades having two steel discs extending parallel to one another, between which a cooling medium can be introduced in operation of the circular saw, are already known.
For example, a device for clamping a saw blade is known from Germany Utility Model 80 02 739 U1. The middle part of this saw blade consists of two mutually spaced apart steel cores between which a cavity is formed. A cooling liquid can be introduced into this cavity. For this purpose, the two steel cores are clamped in place between two flanged bodies, of which one is at the same time formed as an inlet channel for the cooling liquid.
A saw blade is known from the further German Utility Model DE 80 02 782 U1, which similarly has two mutually spaced apart steel cores between which a cavity is formed. A cooling liquid can be introduced into this cavity and issues again at the outer circumference of the saw blade. Provided between the steel cores are individual spacers which are, for example, rubber-elastic or plastics-material-elastic spacers. These are firmly connected with the steel cores and in operation of the saw blade contribute to noise attenuation.
A circular saw blade is known from DE 37 08 360 A1, which has a stem blade with cutting elements arranged to be distributed at the outer circumference and a central opening for passage of a drive shaft. The stem blade consists of two mutually parallel discs which are spaced apart by way of spacers and between which flow paths for a coolant with at least one inflow opening as well as outlet openings opening at the outer circumference of the stem blade between the cutting elements are formed. The spacers are formed by elongate spoke elements which are arranged substantially radially as well as distributed over the circumference of the stem blade and between which the flow paths are formed. The spoke elements are integrally connected on their side facing the central opening with an inner disc ring enclosing the central opening. As inflow openings for the coolant at least one of the two discs of the stem blade has, in its region lying radially outside the inner disc ring, passage openings opening into the flow paths. During production of a stem blade of that kind the two discs and the intermediately provided spacer disc have to be connected together, for example by glueing or by spot-welding. The spacer disc itself can be prefabricated by punching out or laser cutting.
An object of the invention consists in providing a method of producing a circular saw blade which has cooling channels and by means of which cooling channels of a predetermined cross-section can be produced in simple manner.
This object is achieved by a method with the features of the invention. Advantageous embodiments and developments of the invention are also evident. There are advantageous embodiments and developments of a circular saw blade with the features according to the invention.
The advantages of the invention consist in that by means of the claimed method it is possible to produce unitary circular saw blades having cooling channels. Glueing, welding or screw-connecting of several different solid starting materials is not necessary. Moreover, circular saw blades having cooling channels can be produced from hard metal or ceramic by means of the method according to the invention. The material of these circular saw blades is already hard in such a manner that it is possible to dispense with an additional application of cutting edges, for example of diamond, with these circular saw blades.
Further advantages of the invention consist in that it is possible by means of the claimed method to produce circular saw blades which have cooling channels and in which the cooling channels have the same cross-sectional area over the entire length thereof. This allows a focused introduction of the cooling liquid into the cutting region of the saw blade. The issue points of the cooling liquid are, in advantageous manner, placed in the foot region or middle region of the cutting teeth formed in the circular saw blade.
The circular saw blades produced by means of the method according to the invention can in simple manner be given cooling channels of a desired shape and also cooling channels of a cross-sectional area of desired size. A desired shape of cooling channels, for example a round, oval or polygonal shape of the cooling channels, can be predetermined in that the thread-shaped bodies have a round, oval or polygonal cross-section. After the later removal of these thread-shaped bodies from the compressed disc pair, cooling channels with a round, oval or polygonal cross-sectional area remain in the compressed disc pair. In order to produce cooling channels with a cross-sectional area of a desired size, the cross-sectional area of the employed thread-shaped bodies is selected in desired manner. After the later removal of these thread-shaped bodies from the compressed disc pair cooling channels with the desired cross-sectional area remain in the compressed disc pair.
A further advantage of the invention consists in that by means of the claimed method it is possible to produce circular saw blades which have cooling channels and the cooling channels of which have a very small diameter. This diameter is preferably smaller than or equal to 3 millimetres. This has the advantage that the thickness of the circular saw blade can also be selected to be small overall. Known circular saw blades with integrated cooling channels have, by contrast thereto, a substantially greater thickness.
An advantageous development consists in also providing cooling channels in circumferential direction, by which two or more of the cooling channels running in radial direction are connected together. This has the advantage that in the case of a blockage of a cooling channel arising in operation of the circular saw blade, cooling liquid is nevertheless introduced into the blocked cooling channel by way of a cooling channel running in circumferential direction and can be transported to the desired issue point. In that case the blocked point of the cooling channel is bypassed.
The cross-sectional area of the cooling channels running in circumferential direction is preferably greater than the cross-sectional area of the cooling channels running in radial direction, so that even in the case of unfavourable working conditions all cooling liquid issue points of the circular saw blade can be supplied with sufficient cooling liquid.
In advantageous manner a circular saw blade according to the invention has in its radially inner region, i.e. in the region of the circular saw blade adjoining the central bore, a groove which extends in circumferential direction and by which the cooling channels running in radial direction are connected together. This has the advantage that cooling liquid feed openings of the shaft, which is inserted into the central bore, of the circular saw do not have to run precisely in radial prolongation of the radially extending cooling channels of the circular saw blade. It is quite sufficient if through the cooling liquid outlet openings of the shaft a sufficient quantity of cooling liquid is introduced into the said groove of the circular saw blade.
The afore-described effect is also achieved if the said groove running in circumferential direction is formed not in the circular saw blade, but in the outer circumference of the shaft. An improvement to this effect can be produced in that the circular saw blade and the outer circumference of the shaft are each provided with a respective encircling groove of that kind.
The invention is explained by way of example in the following with reference to the figures, in which:
For performance of this method a first circular disc 1, as illustrated in
The dimensions of the discs 1 and 2 correspond. The discs 1 and 2 consist of one and the same plastic material. This plastic material is a hard metal powder provided with a plasticiser or ceramic powder provided with a plasticiser or steel powder provided with a plasticiser. The consistency of this plastic material is such that the discs can readily deform by exertion of areal pressure.
The thread-shaped bodies 3, the length of which respectively corresponds with the radius of the discs 1 and 2 or is respectively somewhat greater than the radius of the discs 1 and 2, are either bodies of a material which volatilises on application of a high temperature or bodies of a material which liquefies on application of a high temperature. For example, the thread-shaped bodies are paraffin-saturated threads. The cross-sectional area of these thread-shaped bodies 3 is preferably round, but can—insofar as this is desired—also be oval or polygonal. The diameter and the cross-sectional area of all thread-shaped bodies 3 correspond. The diameter is, for example, in the range between 0.05 millimetres and 3 millimetres.
In a first step the thread-shaped bodies 3 are placed on the first circular disc 1 in such a manner that each of the thread-shaped bodies is oriented in radial direction. This is illustrated in
In a succeeding step the second circular disc 2 is placed on the first circular disc 1 and the thread-shaped bodies 3 resting thereon. This is illustrated in
In the next step of the method, pressure P, which is oriented in the direction of the first disc 1, is exerted on the second disc 2. This is illustrated in
In the step of the method following thereon the thread-shaped bodies 3 are removed from the compressed disc pair 1, 2.
If the thread-shaped bodies 3 are bodies consisting of a material which volatiles on application of a high temperature, then for removal of the thread-shaped bodies 3 the disc pair is exposed to the said high temperature, which lies at, for example, 200° C. This has the consequence that the thread-shaped bodies 3 vaporise so that continuous cooling channels 5, the cross-sectional area of which corresponds with the cross-sectional area of the thread-shaped bodies 3, are created in the compressed disc air. This is illustrated in
If, thereagainst, the thread-shaped bodies 3 are bodies consisting of a material which liquefies on application of a high temperature, then for removal of the thread-shaped bodies 3 the disc pair is exposed to the said high temperature. This has the consequence that the thread-shaped bodies 3 liquefy. This formed liquid flows outwardly out of the compressed discs so that continuous cooling channels 5, the cross-sectional area of which corresponds with the cross-sectional area of the thread-shaped bodies 3, remain in the compressed disc pair. This is illustrated in
According to a further form of embodiment of the invention the thread-shaped bodies can also consist of a solid material and removal of the thread-shaped bodies from the compressed disc pair can be carried out by pulling, which is carried out outwardly in radial direction, of the thread-shaped bodies 3 from the compressed disc pair. In this further form of embodiment the length of the thread-shaped bodies 3 is so selected that it is greater than the radius of the discs 1 and 2 so as to make it possible to grip the thread-shaped bodies for the purpose of withdrawal thereof. In this form of embodiment it is necessary to ensure that on withdrawal of the thread-shaped bodies 3 from the disc pair 1, 2 there is no deformation of the formed cooling channels.
In the next method step sintering of the disc pair 1, 2 is carried out in order to obtain a circular saw blade 7 having cooling channels 5 running in radial direction. This is illustrated in
Since a circular saw blade has to be fastened to a shaft of the circular saw the need exists to form a central bore 4 in the disc pair 1, 2, as is shown in, for example,
Moreover, a circular saw blade usually has teeth along its outer circumference, as is illustrated by way of example in
An advantageous development of a method according to the invention consists in placing on the first disc 1, additionally to the thread-shaped bodies 3 illustrated in
The cooling channels running in circumferential direction preferably have a greater cross-sectional area than the cooling channels running in radial direction so as to also be able to supply a greater number of cooling channels with coolant even in unfavourable space conditions with a smaller number of cooling channels in the centre.
Another advantageous development consists in providing the circular saw blade in its radially inner region, which adjoins the central bore 4, with a groove 6 which extends in circumferential direction and by which the radially running cooling channels 5 are connected together. A groove 6 of that kind is illustrated by way of example in
1 first circular disc
2 second circular disc
3 thread-shaped body
3
a further thread-shaped body
4 central bore
5, 5b cooling channel running in radial direction
5
a cooling channel running in circumferential direction
6 groove
7 circular saw blade
P pressure
Number | Date | Country | Kind |
---|---|---|---|
10 2007 022 310.4 | May 2007 | DE | national |
This patent application claims priority under 35 U.S.C. 120 and under 35 U.S.C. 121, and is a divisional patent application of U.S. patent application Ser. No. 12/451,237 filed Nov. 2, 2009, which application is the National Stage of PCT/EP2008/055670 filed on May 8, 2008, which claims priority under 35 U.S.C. §119 of German Application No. 10 2007 022 310.4 filed on May 12, 2007. The international application under PCT article 21(2) was not published in English.
Number | Date | Country | |
---|---|---|---|
Parent | 12451237 | Nov 2009 | US |
Child | 14231854 | US |