This application claims the benefit of the International Application No. PCT/EP2019/073531, filed on Sep. 4, 2019, and of the European patent application No. 18192744.3 filed on Sep. 5, 2018, the entire disclosures of which are incorporated herein by way of reference.
The invention relates to a method of producing an integrated monolithic aluminum alloy structure, which can have a complex configuration, that is machined to near-net-shape out of a plate material. More specifically, the invention relates to a method of producing an integrated monolithic aluminum alloy structure made from a 2xxx-series alloy, which can have a complex configuration, that is machined to near-net-shape out of a plate material. The invention relates also to an integrated monolithic aluminum alloy structure produced by the method of this invention and to several intermediate semi-finished products obtained by the method.
U.S. Pat. No. 7,610,669-B2 (Aleris) discloses a method for producing an integrated monolithic aluminium structure, in particular an aeronautical member, comprising the steps of:
It is suggested that the disclosed method can be applied also to AA5xxx, AA6xxx and AA2xxx-series aluminium alloys.
Patent document US-2015/0315666-A1 (Ford Global Technologies) discloses a method of hydroforming a thin gauge workpiece of a AA6XXX aluminium alloy such as AA6082 in a T4 temper, comprising the steps: (i) bending the workpiece into a first preliminary shape; (ii) induction annealing the workpiece at a temperature between 120-160° C.; (iii) hydroforming the workpiece to a desired shape, (iv) trimming to a desired length and (v) artificial ageing. The disclosed workpiece is an A-pillar roof rail for an automobile. Here hydroforming is a term applied to sheet and tube forming in which the metal is formed against a die by fluid pressure. This may be done with an internal fluid pressure, with an applied axial load to a tube or with a one-sided die in which the sheet metal is formed by a bladder/diaphragm. Hydroforming typically uses conventional, single action hydraulic presses with high ram forces.
There is a demand for forming integrated monolithic aluminium structures of more complex configuration from a thick plate product.
As will be appreciated herein, except as otherwise indicated, aluminum alloy designations and temper designations refer to the Aluminium Association designations in Aluminium Standards and Data and the Registration Records, as published by the Aluminium Association in 2018 and are well known to the person skilled in the art. The temper designations are laid down in European standard EN515.
For any description of alloy compositions or preferred alloy compositions, all references to percentages are by weight percent unless otherwise indicated.
As used herein, the term “about” when used to describe a compositional range or amount of an alloying addition means that the actual amount of the alloying addition may vary from the nominal intended amount due to factors such as standard processing variations as understood by those skilled in the art.
The term “up to” and “up to about”, as employed herein, explicitly includes, but is not limited to, the possibility of zero weight-percent of the particular alloying component to which it refers. For example, up to 0.25% V may include an aluminum alloy having no V.
“Monolithic” is a term known in the art meaning comprising a substantially single unit which may be a single piece formed or created without joint or seams and comprising a substantially uniform whole.
It is an object of the invention to provide a method of producing an integrated monolithic aluminum alloy structure of complex configuration that is machined to near-net-shape.
It is an object of the invention to provide a method of producing an integrated monolithic 2xxx-series aluminum alloy structure of complex configuration that is machined to near-net-shape out of thick gauge plate material.
These and other objects and further advantages are met or exceeded by the present invention providing a method of producing an integrated monolithic aluminium structure, the method comprising the process steps of,
It is an important feature of this invention that the 2xxx-series starting plate product employed is provided in an F-temper or in an O-temper.
“F-temper” means that the 2xxx-series starting plate product is as-fabricated, optionally incorporating a small stretching operation of up to about 1% to improve product flatness, and there are no mechanical properties specified. In the case at hand this means that the plate material has been cast into a rolling ingot, pre-heated and/or homogenised, hot-rolled, and optionally cold-rolled, to final gauge as is regular in the art but without or devoid of any further purposive annealing, solution heat-treatment or artificial ageing.
As is well-known in the art, “O-temper” means that the 2xxx-series starting plate product has been annealed to obtain lowest strength temper having more stable mechanical properties. In the case at hand this means that the plate material has been cast into a rolling ingot, pre-heated and/or homogenised, hot-rolled, and optionally cold-rolled, to final gauge as is regular in the art, optionally incorporating a small stretching operation of up to about 1% to improve product flatness. As is known in the art, a recommended annealing to obtain lowest strength temper typically comprises soaking for about 2 to 3 hours at about 405° C., cooling at a rate of about 28° C. per hour or slower to about 260° C., and further cooling to ambient temperature whereby the cooling rate to ambient temperature is not critical.
An F-temper or O-temper plate product as a starting material is favourable as it provides significantly more ductility during a subsequent high-energy hydroforming operation. Whereas high-energy hydroforming of plate material in for example a T8 temper having a higher strength and lower ductility, will lead to more springback and residual stress after the high-energy hydroforming operation.
In an embodiment in a next process step the 2xxx-series plate material is pre-machined, such as by turning, milling, and drilling, to an intermediate machined structure. Preferably the ultra-sonic dead-zone is removed from the plate product. And depending on the final geometry of the integrated monolithic aluminium structure some material can be removed to create one or more pockets in the plate material and a more near-net-shape to the forming die. This may facilitate the shaping during the subsequent high-energy hydroforming operation.
In an embodiment of the method according to this invention the high-energy hydroforming step is by means of explosive forming. The explosive forming process is a high-energy-rate plastic deformation process performed in water or another suitable liquid environment, e.g., an oil, to allow ambient temperature forming of the aluminium alloy plate. The explosive charge can be concentrated in one spot or distributed over the metal, ideally using detonation cords. The plate is placed over a die and preferably clamped at the edges. In an embodiment the space between the plate and the die may be vacuumed before the forming process.
Explosive-forming processes may be equivalently and interchangeably referred to as “explosion-molding”, “explosive molding”, “explosion-forming” or “high-energy hydroforming” (HEH) processes. An explosive-forming process is a metalworking process where an explosive charge is used to supply the compressive force (e.g., a shockwave) to an aluminum plate against a form (e.g., a mold) otherwise referred to as a “die”. Explosive-forming is typically conducted on materials and structures of a size too large for forming such structures using a punch or press to accomplish the required compressive force. According to one explosive-forming approach, an aluminum plate, up to several inches thick, is placed over or proximate to a die, with the intervening space, or cavity, optionally evacuated by a vacuum pump. The entire apparatus is submerged into an underwater basin or tank, with a charge having a predetermined force potential detonated at a predetermined distance from the metal workpiece to generate a predetermined shockwave in the water. The water then exerts a predetermined dynamic pressure on the workpiece against the die at a rate on the order of milliseconds. The die can be made from any material of suitable strength to withstand the force of the detonated charge such as, for example, concrete, ductile iron, etc. The tooling should have higher yield strength than the metal workpiece being formed.
In an embodiment of the method according to this invention the high-energy hydroforming step is by means of electrohydraulic forming. The electrohydraulic forming process is a high-energy-rate plastic deformation process preferably performed in water or another suitable liquid environment, e.g., an oil, to allow ambient temperature forming of the aluminium alloy plate. An electric arc discharge is used to convert electrical energy to mechanical energy and change the shape of the plate product. A capacitor bank delivers a pulse of high current across two electrodes, which are positioned a short distance apart while submerged in a fluid. The electric arc discharge rapidly vaporizes the surrounding fluid creating a shock wave. The plate is placed over a die and preferably clamped at the edges. In an embodiment the space between the plate and the die may be vacuumed before the forming process.
A coolant is preferably used during the various pre-machining and machining or mechanical milling processes steps to allow for ambient temperature machining of the aluminum alloy plate or an intermediate product. Preferably wherein the pre-machining and the machining to near-final or final machined structure comprises high-speed machining, preferably comprises numerically-controlled (NC) machining.
Following the high-energy hydroforming step the resultant structure is solution heat-treated and cooled to ambient temperature. One of the objects is to heat the structure to a suitable temperature, generally above the solvus temperature, holding at that temperature long enough to allow soluble elements to enter into solid solution, and cooling rapidly enough to hold the elements as much as feasible in solid solution. The suitable temperature is alloy dependent and is commonly in a range of about 460° C. to 535° C. and can be performed in one step or as a multistep solution heat-treatment. The solid solution formed at high temperature may be retained in a supersaturated state by cooling with sufficient rapidity to restrict the precipitation of the solute atoms as coarse, incoherent particles.
The solution heat-treatment followed by cooling is important because of obtaining an optimum microstructure that is substantially free from grain boundary precipitates that deteriorate corrosion resistance, strength and damage tolerance properties and to allow as much solute to be available for subsequent strengthening by means of ageing.
In an embodiment of the method according to this invention following the solution heat-treatment the intermediate product is stress relieved, preferably by an operation including a cold compression type of operation, else there will be too much residual stress impacting a subsequent machining operation.
In an embodiment the stress relieve via a cold compression of operation is by performing one or more next high-energy hydroforming steps. Preferably applying a milder shock wave compared to the first high-energy hydroforming step creating the initial high-energy hydroformed structure.
In one embodiment the solution heat-treated high-energy formed intermediate structure, and optionally also stress relieved, is, in that order, next machined or mechanically milled to a near-final or final machined integrated monolithic aluminum structure and followed by ageing to a desired temper to achieve final mechanical properties.
In another more preferred embodiment, the solution heat-treated high-energy formed intermediate structure, and optionally also stress relieved, is, in that order, aged, natural ageing or artificial ageing, to a desired temper to achieve final mechanical properties and followed by machining or mechanical milling to a near-final or final machined integrated monolithic aluminum structure. Thus, the machining occurs after the ageing.
In both embodiments the ageing to a desired temper to achieve final mechanical properties is selected from the group of: T3, T4, T6, and T8. The artificial ageing step for the T6 and T8 temper preferably includes at least one ageing step at a temperature in the range of 130° C. to 210° C. for a soaking time in a range of 4 to 30 hours.
In a preferred embodiment the ageing to a desired temper to achieve final mechanical properties is by natural ageing to a T3 temper, more preferably a T37 or T39 temper, or a T352 temper.
In a preferred embodiment the ageing to a desired temper to achieve final mechanical properties is to a T6 temper.
In a preferred embodiment the ageing to a desired temper to achieve final mechanical properties is to a T8 temper, more preferably a T852, T87 or T89 temper.
In an embodiment the ageing, natural or artificial ageing, is to a T354, a T654 or a T854 temper, and which represents a stress relieved temper with combined stretching and compression.
In an embodiment the final aged near-final or final machined formed integrated monolithic aluminum structure has a tensile strength of at least 200 MPa. In an embodiment the tensile strength is at least 250 MPa, and more preferably at least 280 MPa.
In an embodiment the predetermined thickness of the aluminum alloy plate is at 12.7 mm (0.5 inches).
In an embodiment the predetermined thickness of the aluminum alloy plate is at 38.1 (1.5 inches), and preferably at least 50.8 mm (2.0 inches), and more preferably at least 63.5 mm (2.5 inches).
In an embodiment the predetermined thickness of the aluminum alloy plate is at most 127 mm (5 inches), and preferably at most 114.3 mm (4.5 inches).
In an embodiment the 2xxx-series aluminium alloy has a composition comprising, in wt. %:
The Cu is the main alloying element in 2xxx-series alloys, and for the method according to this invention it should be in a range of 1.9% to 7.0%. A preferred lower-limit for the Cu-content is about 3.0%, more preferably about 3.8%, and more preferably about 4.2%. A preferred upper-limit for the Cu-content is about 6.8%. In an embodiment the upper-limit for the Cu-content is about 5.5%.
Mn is another important alloying element for many 2xxx-series aluminum alloys and should be present in a range of up to 1.2%. In an embodiment the Mn-content is in a range of 0.2% to about 1.2%, and preferably 0.2% to about 0.9%,
Mg is another important alloying element and should be present in a range of 0.3% to 1.8%. A preferred lower-limit for the Mg content is about 0.35%. A preferred upper-limit for the Mg content is about 1.6%. A preferred upper-limit for the Mg content is about 1.4%.
Zr can be present is a range of up to 0.25%, and preferably is present in a range of about 0.07% to 0.25%.
Cr can be present in a range of up to 0.10%. In an embodiment there is no purposive addition of Cr and it can be present up to 0.05%, and preferably is kept below 0.02%.
Silver (Ag) in a range of up to about 0.8% can be purposively added to further enhance the strength during ageing. A preferred lower limit for the purposive Ag addition would be about 0.05% and more preferably about 0.1%. A preferred upper limit would be about 0.7%.
In an embodiment the Ag is an impurity element and it can be present up to 0.05%, and preferably up to 0.03%.
Zinc (Zn) in a range of up to 1.0% can be purposively added to further enhance the strength during ageing. A preferred lower limit for the purposive Zn addition would be 0.25% and more preferably about 0.3%. A preferred upper limit would be about 0.8%.
In an embodiment the Zn is an impurity element and it can be present up to 0.25%, and preferably up to 0.10%.
Lithium (Li) in a range of up to about 2% can be purposively added to further enhance damage tolerance properties and to lower the specific density of the alloy product. A preferred lower limit for the purposive Li addition would be about 0.6% and more preferably about 0.8%. A preferred upper limit would be about 1.8%.
In an embodiment the Li is an impurity element and it can be present up to 0.10%, and preferably up to 0.05%.
Nickel (Ni) can be added up to about 2.5% to improve properties at elevated temperature. When purposively added a preferred lower-limit is about 0.75%. A preferred upper-limit is about 1.5%. When Ni is purposively added, it is required that also the Fe content in the aluminum alloy is increased to a range of about 0.7% to 1.4%.
In an embodiment the Ni is an impurity element and it can be present up to 0.10%, and preferably up to 0.05%.
Vanadium (V) in a range of up to 0.25% can be purposively added, and preferably to up about 0.15%. A preferred lower limit for the purposive V addition would be 0.05%.
In an embodiment the V is an impurity element and it can be present up to about 0.05%, and preferably is kept to below about 0.02%.
Ti can be added to the alloy product amongst others for grain refiner purposes during casting of the rolling stock. The addition of Ti should not exceed about 0.15%, and preferably it does not exceed 0.06%. A preferred lower limit for the Ti addition is about 0.01%. Ti can be added as a sole element or with either boron or carbon serving as a casting aid, for grain size control.
Fe is a regular impurity in aluminium alloys and can be tolerated up to 0.25%. Preferably it is kept to a level of up to about 0.15%, and more preferably up to about 0.10%.
Si is also a regular impurity in aluminium alloys and can be tolerated up to 0.25%. Preferably it is kept to a level of up to 0.15%, and more preferably up to 0.10%.
In an embodiment the 2xxx-series aluminium alloy has a composition consisting of, in wt. %: Cu 1.9% to 7.0%, Mn up to 1.2%, Mg 0.3% to 1.8%, Zr up to 0.25%, Ag up to 0.8%, Zn up to 1.0%, Li up to 2%, Ni up to 2.5%, V up to 0.25%, Ti up to 0.15%, Cr up to 0.10%, Fe up to 0.25%, Si up to 0.20%, balance aluminium and impurities each <0.05% and total <0.15%, and with preferred narrower compositional ranges as herein described and claimed.
In an embodiment the 2xxx-series aluminium alloy has a composition consisting of, in wt. %: Cu 3.8% to 4.5%, Mn 0.3% to 0.9%, Mg 0.9% to 1.6%, Si up to 0.15%, Fe up to 0.15%, Cr up to 0.10%, Zn up to 0.25%, Ti up to 0.15%, Ag up to 0.05%, balance aluminium and impurities each <0.05% and total <0.15%, and with preferred narrower compositional ranges as herein described and claimed.
In a further aspect the invention relates to an integrated monolithic aluminium structure manufactured by the method according to this invention.
In a further aspect the invention relates to an intermediate semi-finished product formed by the intermediate machined structure prior to the high-energy hydro forming operation.
In a further aspect the invention relates to an intermediate semi-finished product formed by the intermediate, and optionally pre-machined, structure having been high-energy hydroformed formed and having at least one of a uniaxial curvature and a biaxial curvature by the method according to this invention.
In a further aspect the invention relates to an intermediate semi-finished product formed by the intermediate, and optionally pre-machined, structure then high-energy hydroformed and having at least one of a uniaxial curvature and a biaxial curvature, and then solution heat-treated and cooled to ambient temperature.
In a further aspect the invention relates to an intermediate semi-finished product formed by the intermediate, and optionally pre-machined, structure then high-energy hydroformed and having at least one of a uniaxial curvature and a biaxial curvature, then solution heat-treated and cooled, stress relieved in a cold compression operation, and aged prior to machining into a near-final or final formed integrated monolithic aluminium structure, the ageing is to a desired temper to develop the required strength and other engineering properties relevant for the intended application of the integrated monolithic aluminium structure.
The aged and machined final integrated monolithic aluminium structure can be part of a structure like a fuselage panel with integrated stringers, cockpit of an aircraft, lateral windshield of a cockpit, integral lateral windshield of a cockpit, an integral frontal windshield of a cockpit, front bulkhead, door surround, nose landing gear bay, and nose fuselage. It can also be part of a structure like an underbody structure of an armoured vehicle providing mine blast resistance, the door of an armoured vehicle, the engine hood or front fender of an armoured vehicle, a turret.
In a further aspect the invention relates to the use of a 2xxx-series aluminum alloy plate in an F-temper or an O-temper, having a composition of, in wt. %, Cu 1.9% to 7.0%, Mn up to 1.2%, Mg 0.3% to 1.8%, Zr up to 0.25%, Ag up to 0.8%, Zn up to 1.0%, Li up to 2%, Ni up to 2.5%, V up to 0.25%, Ti up to 0.15%, Cr up to 0.10%, Fe up to 0.25%, Si up to 0.20%, balance aluminum and impurities each <0.05% and total <0.15%, and with preferred narrower compositional ranges as herein described and claimed, and a gauge in a range of 3 mm to 127 mm in a high-energy hydroforming operation according to this invention, and preferably to produce an aircraft structural part.
The invention shall also be described with reference to the appended drawings, in which:
In
Or in an alternative embodiment there is firstly ageing of intermediate integrated monolithic aluminium structure to a desired temper to develop the required strength and other engineering properties relevant for the intended application of the integrated monolithic aluminium structure, followed by machining or mechanical milling of the aged high-energy formed structure into a near-final or final machined integrated monolithic aluminium structure.
The method illustrated in
Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made without departing from the spirit or scope of the invention as herein described.
While at least one exemplary embodiment of the present invention(s) is disclosed herein, it should be understood that modifications, substitutions and alternatives may be apparent to one of ordinary skill in the art and can be made without departing from the scope of this disclosure. This disclosure is intended to cover any adaptations or variations of the exemplary embodiment(s). In addition, in this disclosure, the terms “comprise” or “comprising” do not exclude other elements or steps, the terms “a” or “one” do not exclude a plural number, and the term “or” means either or both. Furthermore, characteristics or steps which have been described may also be used in combination with other characteristics or steps and in any order unless the disclosure or context suggests otherwise. This disclosure hereby incorporates by reference the complete disclosure of any patent or application from which it claims benefit or priority.
Number | Date | Country | Kind |
---|---|---|---|
18192744 | Sep 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/073531 | 9/4/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/049021 | 3/12/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7610669 | Keidel et al. | Nov 2009 | B2 |
20040055349 | El-Soudani | Mar 2004 | A1 |
20110067470 | Golovashchenko | Mar 2011 | A1 |
20120042995 | Kropfl | Feb 2012 | A1 |
20130125606 | Lin | May 2013 | A1 |
20150315666 | Harrison et al. | Nov 2015 | A1 |
20160115576 | Long et al. | Apr 2016 | A1 |
20180339783 | Leon | Nov 2018 | A1 |
20190240716 | Yuan | Aug 2019 | A1 |
20220056562 | Bürger | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
3012338 | Apr 2016 | EP |
3275567 | Jan 2018 | EP |
Entry |
---|
International Search Report; priority document. |
Number | Date | Country | |
---|---|---|---|
20210340657 A1 | Nov 2021 | US |