Lithographic and gravure printing techniques have been refined and improved for many years. The basic principle of lithography is transferring ink from a surface having both ink-receptive and ink-repellent areas. Offset printing incorporates an intermediate transfer of the ink. For example, an offset lithographic press may transfer ink from a plate cylinder to a rubber blanket cylinder, and then the blanket cylinder transfers the image to the web (i.e., paper) in gravure printing, a cylinder with engraved ink wells makes contact with a web of paper and an electric charge helps transfer the ink onto the paper.
Early implementations of lithographic technology utilized reliefs of the image to be printed on the plate such that ink would only be received by the raised areas. Modern lithographic processes take advantage of materials science principles. For example, the image to be printed may be etched onto a hydrophilic plate such that the plate is hydrophobic in the areas to be printed. The plate is wetted before inking such that oil-based ink is only received by the hydrophobic regions of the plate (i.e., the regions of the plate that were not wetted by the dampening process).
However, all of these printing techniques have a similar limitation. The same image is printed over and over again. Lithographic printing uses plates containing a permanent image, whether it be a relief image or an etched hydrophobic image, etc. Gravure printing also uses a permanent image which is engraved in ink wells on a cylinder. Therefore, lithographic and gravure presses have not been used for printing “short-run” jobs or jobs containing variable data (e.g., billing statements, financial statements, targeted advertisements, etc.). There is a substantial overhead cost involved in making the plates that are used by a lithographic press. Therefore, it is not cost effective to print a job on a lithographic press that will have few copies produced (i.e., a short-run job). Furthermore, the content cannot be varied, such as in laser printing and ink jet printing.
Traditionally, many printed articles such as books and magazines have been printed using a process that involves a great deal of post-press processing. For example, a single page of the magazine may be printed 5,000 times. Then, a second page may be printed 5,000 times. This process is repeated for each page of the magazine until all pages have been printed. Then, the pages are sent to post-processing for cutting and assembly into the final articles. If variable images could be printed at lithographic image quality and speed, each magazine could be printed in sequential page order such that completed magazines would come directly off the press. This would drastically increase the speed and reduce the expenses of printing a magazine.
Ink jet printing technology provided printers with variable capability. There are two main ink jet technologies; bubble jet (i.e., thermal) and piezoelectric. In each, tiny droplets of ink are fired onto a page. In a bubble jet printer, a heat source vaporizes ink to create a bubble. The expanding bubble causes a droplet to form, and the droplet is ejected from the print head. Piezoelectric technology uses a piezo crystal located at the back of each ink reservoir. Electric charges are used to cause vibrations in the crystals. The back and forth motion of the crystal is able to draw in enough ink for one droplet and eject that ink onto the paper.
The quality of color ink jet printing is generally orders of magnitude lower than that of offset lithography and gravure. Furthermore, the speed of the fastest ink jet printer is typically much slower than a lithographic or gravure press. Traditional ink jet printing is also plagued by the effect of placing a water-based ink on paper. Using a water-based ink may saturate the paper and may lead to wrinkling and cockling of the print web. In order to control these phenomena, ink jet printers use certain specialized papers or coatings. These papers can often be much more expensive than a traditional web.
Furthermore, when ink jet technology is used for color printing, the ink coverage and water saturation is increased. This is due to the four color process that is used to generate color images. Four color processing involves laying cyan, magenta, yellow and black (i.e., CMYK) ink in varying amounts to make any color on the page. Thus, some portions of the page may have as many as four layers of ink if all four colors are necessary to produce the desired color. Additionally, the dots produced by an ink jet printer may spread and produce a fuzzy image.
Laser printing does not appear to be a viable alternative for high speed variable printing at present, because production speeds are still much slower than offset and gravure, and the material costs (e.g., toner, etc.) are extremely high. Laser color is also difficult to use for magazines and other bound publications, because the printed pages often crack when they are folded.
Therefore, it would be desirable to develop a variable printing technique having the quality and speed of traditional lithographic and gravure printing. It would further be desirable to provide a variable printing system that operated at speeds of at least 400 feet per minute.
In accordance with one aspect of the present invention, a method of producing a printed sheet output of a printing press uses an aqueous solution, an ink, and an input sheet. The method includes the steps of applying aqueous solution to the input sheet to form a non-image area and an image area thereon, and contacting the non-image and image areas of the input sheet with ink. Ink is transferred substantially only to the image areas to produce the printed sheet output of the printing press.
In accordance with a further aspect of the present invention, a method of producing a printed web of a printing press uses an aqueous solution, an ink, and an input web. The method includes the steps of applying aqueous solution to the input web to form a non-image area and an image area thereon, and contacting the non-image and image areas of the input web with ink. Ink is transferred substantially only to the image areas to produce the printed web of the printing press.
Further features of the invention, its nature, and various advantages will be more apparent from the following detailed description and the accompanying drawings, in which:
If a blanket cylinder is used, such as blanket cylinder 110, the inked image may be transmitted from plate cylinder 104 to blanket cylinder 110. Then, the image may be further transferred to web 112 (e.g., paper) between blanket cylinder 110 and impression cylinder 114. Using impression cylinder 114, the image transfer to web 112 may be accomplished by applying substantially equal pressure or force between the image to be printed and web 112. When a rubber blanket is used as an intermediary between plate cylinder 104 and web 112, this process is often referred to as “offset printing.” Because plate 102 is etched and then mounted on plate cylinder 104, a lithographic press is used to print the same image over and over. Lithographic printing is desirable because of the high quality that it produces. When four printing decks are mounted in series, magazine-quality four color images can be printed.
Illustrative apparatus in accordance with the principles of the present invention are illustrated in
Aqueous jet system 214 may contain a series of ink jet cartridges (e.g., bubble jet cartridges, thermal cartridges, piezoelectric cartridges, etc.). A bubble jet may emit a drop of ink when excited by a heater. A piezoelectric system may eject a drop of ink when excited by a piezoelectric actuator. The drop is emitted from a tiny hole in the ink jet cartridges. The cartridges may contain any number of holes. Commonly, ink jet cartridges can be found with six hundred holes, often arranged in two rows of three hundred.
In the present invention, aqueous jet system 214 may be used to emit an aqueous solution (e.g., water, ethylene glycol, propylene glycol, or any combination thereof). In some embodiments of the present invention, the aqueous solution may contain one or more surfactants, such as Air Products' Surfynol®. Such surfactants may contain a hydrophilic group at one end of each molecule and a lipophilic group at the other end of each molecule. Adding one or more surfactants to the aqueous solution may improve the surface tension properties of the aqueous solution. This may provide more control over drop placement and produce higher quality printed images. In some embodiments, the aqueous solution may comprise a gel.
The aqueous jets of aqueous jet system 214 may be used to place aqueous solution on a hydrophilic plate in much the same way that a drop of ink is placed on a piece of paper by an ink jet. In some embodiments, the aqueous solution may be ejected through traditional ink jet nozzles. Such ink jet nozzles may include, for example, ink jet nozzles manufactured by HP, Lexmark, Spectra, Canon, etc. in some embodiments, aqueous jet system 214 may support variable print speeds and output resolutions.
In accordance with the principles of the present invention, aqueous jet system 214 may be used to “print” or jet a negative image of the image to be printed, or any portion thereof, on plate cylinder 206. For example, as described in more detail below with regard to
In some embodiments of the present invention, vacuum source or heat source 215 may be positioned next to or near aqueous jet system 214. In some embodiments, vacuum source or heat source 215 may be integrated with aqueous jet system 214. The vacuum source or heat source may be used to reduce the size of the individual drops of aqueous solution placed by aqueous jet system 214 by blowing, drying, and/or heating the aqueous solution after it is printed onto plate 204 or plate cylinder 206. The ability to control drop size of the aqueous solution may improve the quality of the printed image.
As plate cylinder 206 completes its revolution, after passing the image to blanket cylinder 208, it passes through cleaning system 212, which may remove ink and/or aqueous solution residue so that plate cylinder 206 may be re-imaged by aqueous jet system 214 during the next revolution (or after a certain number of revolutions). Cleaning system 212 may comprise a rotary brush, a roller having a cleaning solution, a belt, a cleaning web treated with a cleaning solution, an apparatus for delivering heat and/or air, an electrostatic apparatus, or any other suitable means of removing ink, aqueous solution residue, or both, from plate cylinder 206. In some embodiments, blanket cylinder 208 may also have a cleaning system similar to cleaning system 215 to clean any residual material from blanket cylinder 208 after the image has been transferred to web 216.
In some embodiments, plate cylinder 206 may have all of the static data for a particular print job etched onto plate 204 by traditional lithographic techniques. Aqueous jet system 214 may then be used to image only variable portions of the job represented by the variable or semi-fixed image data on specified portions of plate 204.
In other embodiments, plate 204 may not be used. Instead, as is understood in the art, the surface of plate cylinder 206 may be treated, processed, or milled to receive the aqueous solution from aqueous jet system 214. Additionally, plate cylinder 206 may be treated, processed, or milled to contain the static data and be receptive to the aqueous solution to incorporate variable data. In these and any other embodiments of the present invention, blanket cylinder 208 may be eliminated entirely, if desired, by transferring the image directly to web 216.
In some embodiments, one or more of plate 204, plate cylinder 206, and blanket cylinder 208 may be customized or designed to work with various properties of aqueous jet system 214 or the aqueous solution. For example, as is understood in the art, one or more of these plates and cylinders may be specially processed or milled to only accept solution ejected by print heads of a particular resolution or dot size. The plates and cylinders may also be specially processed to accept certain types of aqueous solutions and reject others. For example, the plates and cylinders may accept solutions of a certain volume, specific gravity, viscosity, or any other desired property, while rejecting solutions outside the desired parameters. This may prevent, for example, foreign agent contamination and allow for one aqueous solution to be used in the printing process and another aqueous solution (with different physical properties) to be used in the cleaning process. In other embodiments, customary, general-purpose plates and cylinders are used.
As shown in
The aqueous jet system and cleaning system may be mounted in other arrangements as well. As shown in the example of
As shown in
One benefit of an embodiment like that shown in
Properties of the aqueous solution or gel (e.g., viscosity or specific gravity) and of the print medium (e.g., using bond paper, gloss paper, or various coating techniques) may be varied to achieve a desirable interaction between the protective negative image that is printed with the aqueous jet system and the print medium. For example, if image sharpness is desired, it may be beneficial to choose an aqueous solution that will not be absorbed at all by the print medium. However, if some transfer of ink is desirable even from the areas covered with the output of the aqueous jet system, it may be beneficial to use a print medium that quickly absorbs the aqueous solution so that some ink transfer is also able to occur from the covered areas.
Once the positive image has been protected, rotating imaging cylinder 808 next encounters stripping system 818. Stripping system 818 is used to strip away the ink from the unprotected areas of imaging cylinder 808. In other words, any ink that was not protected by aqueous jet system 814 and is therefore not part of the image to be printed, is stripped away from the imaging cylinder. Stripping system 818 may be, for example, a series of blank webs that can be used to pull the unprotected ink away from the imaging cylinder. Stripping system 818 may alternatively employ a reverse form roller as described below. The protected ink image is then transferred to the print medium.
The transfer of the protected ink image may be achieved by transferring both the protective aqueous layer and the protected ink to web 816. Alternatively, stripping system 818 may remove the protective aqueous layer so that the originally protected ink may be transferred to the web without the protective aqueous layer. In some embodiments, stripping system 818 may remove the protective aqueous layer at the same time it removes the unprotected ink (i.e., the ink not covered by the protective aqueous layer), leaving only the originally protected ink to be transferred to web 816. In such an embodiment, a reverse form roller may be used to strip off the unprotected ink and aqueous solution. The reverse form roller may also be used to return the stripped ink to inking system 802. In other words, the unused ink may be recycled by stripping system 818. Any other suitable method may be used to transfer the protected ink image to web 816.
Another alternative embodiment of the present invention is illustrated by printing deck 900 of
For example, aqueous jet system 914 may be used to print a positive image onto imaging cylinder 908. Then, a heat source, e.g., dryer 918 or any other suitable means of evaporating the water, may be used to dry the aqueous solution. This will leave the block copolymer bonded to imaging cylinder 908 at the location at which it was printed by aqueous jet system 914. The block copolymer should be chosen such that one end bonds with surface material of the imaging cylinder while the other end is lipophilic. If a naturally hydrophilic imaging cylinder is used, the imaging cylinder will be lipophilic everywhere that aqueous jet system 914 printed the block copolymer, and hydrophilic everywhere else. The imaging cylinder may now be used in the known lithographic process. For example, ink may be constantly applied to imaging cylinder 908 by inking system 902. The image may then be transferred to the print medium (e.g., web 916 between imaging cylinder 908 and impression cylinder 910).
The embodiment of
In an alternative embodiment of
In yet another alternative of the
Alternatively, imaging cylinder 908 may have a charged surface that is controllable to change the charged property of a particular point on the imaging cylinder at a particular time. In other words, points on imaging cylinder 908 may be toggled between positively and negatively charged to attract and repel the surfactants at the appropriate time in the printing process.
As evidenced by the above description, surfactant block copolymers having various properties may be used with imaging cylinders having various material properties to achieve an imaging cylinder that has a selectively oleophilic and hydrophilic surface. The physical bond created between the surfactant and the imaging cylinder's surface allows the imaging cylinder to repeat the same image multiple times or to selectively vary the image in any given rotation of the imaging cylinder. By taking advantage of the material properties of the imaging cylinder and the block copolymer surfactants, a durable, yet variable, imaging system having the quality of known lithographic printing techniques may be achieved.
Surfactants like those described above are sold in various forms (e.g., solid, powder, aqueous solution, gel, etc.). Any desirable form may be used in accordance with the principles of the present invention.
To generate the variable image, a negative image of the variable image may be printed by aqueous jet system 1014 directly onto web 1012. Before web 1012 reaches aqueous jet system 1014, web 1012 may be coated to prevent web 1012 from absorbing the aqueous solution. Thus, when the portion of web 1012 to receive the variable image makes contact with the portion of blanket cylinder 1008 transferring the ink for the variable image, web 1012 selectively receives the ink only in the areas not previously printed on by aqueous jet system 1014. The standard lithographic deck operates as though it is printing the same image repeatedly (e.g., a solid rectangle). However, web 1012, which is first negatively imaged by aqueous jet system 1014, only selectively receives the ink in the solid rectangle on blanket cylinder 1008 to create the variable image on web 1012.
Coating system 1016 may be an entire deck of its own for applying the coating. Alternatively, coating system 1016 may be any suitable alternative for applying a coating to web 1012 to reduce its ability to absorb the aqueous solution. For example, coating system 1016 may include a sprayer that sprays a suitable solution onto web 1012. The solution may prevent web 1012 from absorbing all or some of the aqueous solution.
In any of the foregoing embodiments, a blanket and plate cylinder combination may be replaced by a single imaging cylinder and vice versa. In any case, it may be desirable to pair a soft imaging/blanket cylinder with a hard impression cylinder (e.g., a silicone imaging/blanket cylinder and a steel impression cylinder). Alternatively, a hard imaging/blanket cylinder may be paired with a soft impression cylinder (e.g., a ceramic imaging/blanket cylinder and a rubber impression cylinder).
In some embodiments, it may be desirable to employ a silicone imaging cylinder to create a “waterless” system. In such embodiments, the imaging cylinder may have a silicone surface that is entirely oleophobic. As known in the art of waterless lithography, such cylinders may be developed (e.g., etched) such that portions of the cylinder's surface become oleophilic. Because the silicone is naturally oleophobic there is no need to wet the cylinder before applying ink to the cylinder's surface. In some embodiments of the present invention employing a silicone imaging cylinder, an aqueous solution may be used that includes silicone-based surfactants or other suitable materials that may be both oleophilic and attracted to the imaging cylinder's silicone surface. Thus, the imaging cylinder may be variably imaged with such an aqueous solution in accordance with the principles of the present invention described herein. If necessary, an appropriate cleaning mechanism may be used to clear any residual aqueous solution or ink from the imaging cylinder.
Multiple decks like those shown in
The entire press may be managed by a single data system, such as data system 1218, that controls RIP controllers 1210, 1212, 1214, and 1216, which in turn control decks 1202, 1204, 1206, and 1208, respectively. Data system 1218 may be provided with customer input 1224 via database 1220 and variable data source 1222. Database 1220 may include image data, messages, one-to-one marketing data, etc.
In some embodiments, database 1220 contains all the layout information and static image information for the job to be printed, while variable data source 1222 contains all the variable data. For example, customer input 1224 may provide customer data (e.g., layout and content preferences) to database 1220. Variable data source 1222 may store personalized text (e.g., the customer's name and location) and graphics. Data system 1218 may then access both database 1220 and variable data source 1222 in order to print a job. Database 1220 and variable data source 1222 may include any suitable storage device or storage mechanisms (e.g., hard drives, optical drives, RAM, ROM, and hybrid types of memory). Press 1200 may be fed by roll or sheet input 1226. Output 1228 of the press may also be in the roll or sheet format. Additionally, output 1228 of press 1200 may be fully-bound or may be prepared for optional post-processing.
One or more of the aqueous jet systems, cleaning systems, stripping systems, and vacuum or heating systems described in the embodiments above may be electronically controlled via data system 1218. For example, in a typical usage scenario, data system 1218 may access raster image data (or any other type of image data, including, for example, bitmap data, vector graphics image data, or any combination thereof) from database 1220 and/or variable data source 1222. In some embodiments, the image data may be stored in page description code, such as PostScript, PCL, or any other PDL code. The page description code may represent the image data in a higher level than an actual output bitmap or output raster image. Regardless of how the image data is stored, data system 1218 may cause the aqueous jet system of the present invention to print a negative image representing the image data (or any portion thereof) in aqueous solution to a plate or plate cylinder. In some embodiments, as described above, only the data represented by the variable image data may be printed in aqueous solution on the plate or plate cylinder.
Controlling the entire press from a single data system, such as data system 1218, may enable a user to take advantage of form lag techniques. Form lag relates to the timing of multiple variable printing devices acting on the same document. Certain data may need to be printed by one deck while another portion of data may need to be printed by another deck on the same document. In this respect, it may be beneficial to delay the transmission of data to the latter deck, because the document may pass through several intermediary decks before reaching the latter deck. By efficiently managing form lag, image resolution and placement may be improved.
The aqueous jet systems of the various embodiments of the present invention may be arranged in a number of ways. For example,
The aqueous jet units may be known print cartridge units such as those manufactured by HP, Lexmark, Spectra, Canon, etc. Each jet unit may comprise any number of small holes for emitting the aqueous solution. As shown in
Alternatively, aqueous jet units 1402 may be arranged in series as shown in cylinder 1400 of
The high speed variable printing systems and methods of the present invention may be used in a number of lithographic applications. For example, the disclosed systems and methods may be ideal for high-quality one-to-one marketing applications, such as direct mailing, advertisements, statements, and bills. Other applications are also well-suited to the present invention, including the production of personalized books, periodicals, publications, posters, and displays. The high speed variable printing systems and methods of the present invention may also facilitate post-processing (e.g., binding and finishing) of any of the aforementioned products.
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the order of some steps in the procedures that have been described are not critical and can be changed if desired. Also, various steps may be performed by various techniques.
The present application is a continuation of U.S. patent application Ser. No. 11/709,396 filed on Feb. 21, 2007, and claims the benefit of U.S. Provisional Patent Application Nos. 60/775,511, filed Feb. 21, 2006 and 60/819,301, filed Jul. 7, 2006, both of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
778892 | Read | Jan 1905 | A |
1766957 | Smith | Jun 1930 | A |
2562782 | Frost | Jul 1951 | A |
3574297 | Bozer | Apr 1971 | A |
3589289 | Gosnell | Jun 1971 | A |
3741118 | Carley | Jun 1973 | A |
3790703 | Carley | Feb 1974 | A |
3800699 | Carley | Apr 1974 | A |
3869986 | Hubbard | Mar 1975 | A |
3986452 | Dahlgren | Oct 1976 | A |
4010686 | Harris | Mar 1977 | A |
4069759 | Endo et al. | Jan 1978 | A |
4368669 | Love, III | Jan 1983 | A |
4404907 | Köbler et al. | Sep 1983 | A |
4718340 | Love, III | Jan 1988 | A |
4729310 | Love, III | Mar 1988 | A |
4808443 | Minamoto et al. | Feb 1989 | A |
4833486 | Zerillo | May 1989 | A |
4833530 | Kohashi | May 1989 | A |
4865646 | Egberg | Sep 1989 | A |
5106414 | Kunichika et al. | Apr 1992 | A |
5129321 | Fadner | Jul 1992 | A |
5188033 | Fadner | Feb 1993 | A |
5202206 | Tam | Apr 1993 | A |
5221330 | Matsumoto et al. | Jun 1993 | A |
5294946 | Gandy et al. | Mar 1994 | A |
5312654 | Arimatsu et al. | May 1994 | A |
5333548 | Fadner | Aug 1994 | A |
5366000 | Reimann et al. | Nov 1994 | A |
5389958 | Bui et al. | Feb 1995 | A |
5462591 | Karandikar et al. | Oct 1995 | A |
5476043 | Okuda et al. | Dec 1995 | A |
5495803 | Gerber et al. | Mar 1996 | A |
5501150 | Leenders et al. | Mar 1996 | A |
5505126 | Ohno et al. | Apr 1996 | A |
5511477 | Adler et al. | Apr 1996 | A |
5552817 | Kuehnle | Sep 1996 | A |
5554212 | Bui et al. | Sep 1996 | A |
5560608 | Silverschotz | Oct 1996 | A |
5644981 | Ohno et al. | Jul 1997 | A |
5681065 | Rua, Jr. et al. | Oct 1997 | A |
5697297 | Rasmussen | Dec 1997 | A |
5738013 | Kellett | Apr 1998 | A |
5765083 | Shinohara | Jun 1998 | A |
5809893 | Gamperling et al. | Sep 1998 | A |
5820932 | Hallman et al. | Oct 1998 | A |
5826507 | Lim | Oct 1998 | A |
5852975 | Miyabe et al. | Dec 1998 | A |
5906156 | Shibuya et al. | May 1999 | A |
5953988 | Vinck | Sep 1999 | A |
5966154 | DeBoer | Oct 1999 | A |
5969740 | Maeda et al. | Oct 1999 | A |
6002904 | Yoshida et al. | Dec 1999 | A |
6006666 | Gottling | Dec 1999 | A |
6050193 | DeBoer et al. | Apr 2000 | A |
6079331 | Koguchi et al. | Jun 2000 | A |
6082263 | Koguchi et al. | Jul 2000 | A |
6113231 | Burr et al. | Sep 2000 | A |
6120665 | Chiang et al. | Sep 2000 | A |
6125750 | Achelpohl | Oct 2000 | A |
6125755 | Link et al. | Oct 2000 | A |
6126281 | Shimoda et al. | Oct 2000 | A |
6131514 | Simons | Oct 2000 | A |
6152037 | Ishii et al. | Nov 2000 | A |
6164757 | Wen et al. | Dec 2000 | A |
6173647 | Kakuta et al. | Jan 2001 | B1 |
6187380 | Hallman et al. | Feb 2001 | B1 |
6196129 | Kellett | Mar 2001 | B1 |
6231177 | Cherukuri et al. | May 2001 | B1 |
6283031 | Kakuta et al. | Sep 2001 | B1 |
6283589 | Gelbart | Sep 2001 | B1 |
6295928 | Heinzl et al. | Oct 2001 | B1 |
6298780 | Ben-Horin et al. | Oct 2001 | B1 |
6315916 | Deutsch et al. | Nov 2001 | B1 |
6318264 | D'Heureuse et al. | Nov 2001 | B1 |
6341559 | Riepenhoff et al. | Jan 2002 | B1 |
6354207 | Maekawa et al. | Mar 2002 | B1 |
6367380 | Whelan | Apr 2002 | B1 |
6386696 | Rodi et al. | May 2002 | B1 |
6393980 | Simons | May 2002 | B2 |
6402317 | Yanagawa et al. | Jun 2002 | B2 |
6416175 | Furukawa et al. | Jul 2002 | B2 |
6422696 | Takahashi et al. | Jul 2002 | B1 |
6439713 | Noguchi et al. | Aug 2002 | B1 |
6470799 | Nakazawa et al. | Oct 2002 | B2 |
6477948 | Nissing et al. | Nov 2002 | B1 |
6520087 | Heinzl et al. | Feb 2003 | B2 |
6526886 | Loccufier et al. | Mar 2003 | B2 |
6536873 | Lee et al. | Mar 2003 | B1 |
6539856 | Jones et al. | Apr 2003 | B2 |
6543360 | Sasaki et al. | Apr 2003 | B2 |
6558458 | Gloster | May 2003 | B1 |
6566039 | Teng | May 2003 | B1 |
6585367 | Gore | Jul 2003 | B2 |
6595631 | Tanikawa et al. | Jul 2003 | B2 |
6634295 | Newington et al. | Oct 2003 | B1 |
6644183 | Takasawa et al. | Nov 2003 | B2 |
6648468 | Shinkoda et al. | Nov 2003 | B2 |
6652631 | Itakura | Nov 2003 | B2 |
6662723 | Loccufier et al. | Dec 2003 | B2 |
6679170 | Mori | Jan 2004 | B2 |
6699640 | Verschueren et al. | Mar 2004 | B2 |
6736500 | Takahashi et al. | May 2004 | B2 |
6739260 | Damme et al. | May 2004 | B2 |
6745693 | Teng | Jun 2004 | B2 |
6758140 | Szumia et al. | Jul 2004 | B1 |
6772687 | Damme et al. | Aug 2004 | B2 |
6779444 | Hauptmann et al. | Aug 2004 | B2 |
6780305 | Nishino et al. | Aug 2004 | B2 |
6783228 | Szumia et al. | Aug 2004 | B2 |
6815075 | Kasai et al. | Nov 2004 | B2 |
6851363 | Schneider | Feb 2005 | B2 |
6851366 | Gutfleisch et al. | Feb 2005 | B2 |
6852363 | Loccufier et al. | Feb 2005 | B2 |
6862992 | Nakazawa et al. | Mar 2005 | B2 |
6906019 | Nitzan et al. | Jun 2005 | B2 |
6918663 | Schaschek et al. | Jul 2005 | B2 |
6935735 | Tanikawa et al. | Aug 2005 | B2 |
6983693 | Simons | Jan 2006 | B2 |
7070269 | Tanikawa et al. | Jul 2006 | B2 |
7191703 | Dilling | Mar 2007 | B2 |
7191705 | Berg et al. | Mar 2007 | B2 |
7240998 | Murakami et al. | Jul 2007 | B2 |
7281790 | Mouri et al. | Oct 2007 | B2 |
7311396 | Kwon et al. | Dec 2007 | B2 |
7523704 | Domotor | Apr 2009 | B2 |
7691280 | Waldrop et al. | Apr 2010 | B2 |
7959278 | Regan et al. | Jun 2011 | B2 |
20010020964 | Irihara et al. | Sep 2001 | A1 |
20010022596 | Korol | Sep 2001 | A1 |
20010040615 | Beauchamp et al. | Nov 2001 | A1 |
20010042460 | Yoshida | Nov 2001 | A1 |
20020001004 | Mantell et al. | Jan 2002 | A1 |
20020014169 | Siler et al. | Feb 2002 | A1 |
20020017209 | Gutfleisch et al. | Feb 2002 | A1 |
20020038611 | Naniwa et al. | Apr 2002 | A1 |
20020043171 | Loccufier et al. | Apr 2002 | A1 |
20020056388 | Makino | May 2002 | A1 |
20020100383 | McPherson et al. | Aug 2002 | A1 |
20020104455 | Deutsch et al. | Aug 2002 | A1 |
20020139268 | Emery et al. | Oct 2002 | A1 |
20020154188 | Hiyane et al. | Oct 2002 | A1 |
20020170452 | Heinzl et al. | Nov 2002 | A1 |
20030047272 | Tanikawa et al. | Mar 2003 | A1 |
20030089261 | Landsman | May 2003 | A1 |
20030103093 | Vanhooydonck | Jun 2003 | A1 |
20030106459 | Itakura | Jun 2003 | A1 |
20030128249 | Booth | Jul 2003 | A1 |
20030128250 | Booth | Jul 2003 | A1 |
20030153649 | Bromberg | Aug 2003 | A1 |
20030159607 | Nitzan et al. | Aug 2003 | A1 |
20030210298 | Madeley | Nov 2003 | A1 |
20030210314 | Palmer et al. | Nov 2003 | A1 |
20040053011 | Behm et al. | Mar 2004 | A1 |
20040085395 | Madeley | May 2004 | A1 |
20040089179 | Link | May 2004 | A1 |
20040090508 | Chowdry et al. | May 2004 | A1 |
20040090516 | Gruetzmacher et al. | May 2004 | A1 |
20040103801 | Miller et al. | Jun 2004 | A1 |
20040103803 | Price et al. | Jun 2004 | A1 |
20040106696 | Ma et al. | Jun 2004 | A1 |
20040109055 | Pan et al. | Jun 2004 | A1 |
20040129158 | Figov et al. | Jul 2004 | A1 |
20040135276 | Nielsen et al. | Jul 2004 | A1 |
20040154489 | Deutsch et al. | Aug 2004 | A1 |
20040182270 | Wiedemer et al. | Sep 2004 | A1 |
20040187720 | Naniwa et al. | Sep 2004 | A1 |
20040250836 | Koppelkamm et al. | Dec 2004 | A1 |
20050028696 | Price et al. | Feb 2005 | A1 |
20050056169 | Hashimoto et al. | Mar 2005 | A1 |
20050115429 | Link | Jun 2005 | A1 |
20050122355 | Kanda et al. | Jun 2005 | A1 |
20050181187 | Vosseler et al. | Aug 2005 | A1 |
20050204945 | Sonokawa | Sep 2005 | A1 |
20050211130 | Watanabe | Sep 2005 | A1 |
20050223927 | Wiedemer | Oct 2005 | A1 |
20050270351 | Mouri et al. | Dec 2005 | A1 |
20060011817 | Harush et al. | Jan 2006 | A1 |
20060040210 | Eck et al. | Feb 2006 | A1 |
20060066704 | Nishida | Mar 2006 | A1 |
20060075916 | Edwards et al. | Apr 2006 | A1 |
20060075917 | Edwards | Apr 2006 | A1 |
20060077243 | Edwards | Apr 2006 | A1 |
20060077244 | Edwards | Apr 2006 | A1 |
20060132566 | Desie et al. | Jun 2006 | A1 |
20060201361 | Wiedemer | Sep 2006 | A1 |
20060284951 | Ikeda et al. | Dec 2006 | A1 |
20070062389 | Link | Mar 2007 | A1 |
20070068404 | Hirahara et al. | Mar 2007 | A1 |
20070137509 | Fork | Jun 2007 | A1 |
20070164559 | Kozdras | Jul 2007 | A1 |
20070199457 | Cyman et al. | Aug 2007 | A1 |
20070199458 | Cyman et al. | Aug 2007 | A1 |
20070199459 | Cyman et al. | Aug 2007 | A1 |
20070199460 | Cyman et al. | Aug 2007 | A1 |
20070199461 | Cyman et al. | Aug 2007 | A1 |
20070199462 | Cyman et al. | Aug 2007 | A1 |
20070200794 | Mueller et al. | Aug 2007 | A1 |
20070204755 | Moreau | Sep 2007 | A1 |
20070227383 | Decre et al. | Oct 2007 | A1 |
20070240593 | Schneider et al. | Oct 2007 | A1 |
20080271627 | Teng | Nov 2008 | A1 |
20090056577 | Hook et al. | Mar 2009 | A1 |
20090056578 | DeJoseph et al. | Mar 2009 | A1 |
20090064884 | Hook et al. | Mar 2009 | A1 |
20090064886 | Hook et al. | Mar 2009 | A1 |
20090213201 | Numata et al. | Aug 2009 | A1 |
20110267397 | Cyman et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2 392 730 | Oct 2003 | CA |
1383992 | Dec 2002 | CN |
4327212 | Feb 1995 | DE |
10245066 | Apr 2003 | DE |
101 266 | Feb 1984 | EP |
0126479 | Nov 1984 | EP |
0588399 | Mar 1994 | EP |
0590164 | Apr 1994 | EP |
0601531 | Jun 1994 | EP |
0646458 | Apr 1995 | EP |
0965444 | Jun 1998 | EP |
0882584 | Dec 1998 | EP |
0883026 | Dec 1998 | EP |
0911154 | Apr 1999 | EP |
0911155 | Apr 1999 | EP |
0936064 | Aug 1999 | EP |
1 118 470 | Jul 2001 | EP |
1 118 471 | Jul 2001 | EP |
1 118 472 | Jul 2001 | EP |
1170122 | Jan 2002 | EP |
1177514 | Feb 2002 | EP |
1177914 | Feb 2002 | EP |
1 426 193 | Jun 2004 | EP |
1 522 404 | Apr 2005 | EP |
1 547 793 | Jun 2005 | EP |
53015905 | Feb 1978 | JP |
56105960 | Aug 1981 | JP |
56-113456 | Sep 1981 | JP |
58-217567 | Dec 1983 | JP |
62-025081 | Feb 1987 | JP |
63-109052 | May 1988 | JP |
63-125534 | Aug 1988 | JP |
02-098482 | Apr 1990 | JP |
2-98482 | Apr 1990 | JP |
02-269094 | Nov 1990 | JP |
4-69244 | Mar 1992 | JP |
4-97236 | Mar 1992 | JP |
4-97848 | Mar 1992 | JP |
06-206297 | Jul 1994 | JP |
62-25081 | Aug 1994 | JP |
6-270380 | Sep 1994 | JP |
8-310101 | Nov 1996 | JP |
08-310151 | Nov 1996 | JP |
9-85929 | Mar 1997 | JP |
09-267549 | Oct 1997 | JP |
10-235989 | Sep 1998 | JP |
10-286939 | Oct 1998 | JP |
2946201 | Oct 1998 | JP |
11-302585 | Nov 1999 | JP |
11-320865 | Nov 1999 | JP |
2002-536462 | Aug 2000 | JP |
2000-272261 | Oct 2000 | JP |
2001-212956 | Aug 2001 | JP |
2001-225437 | Aug 2001 | JP |
2002-127354 | May 2002 | JP |
2002-326455 | Nov 2002 | JP |
2002-361833 | Dec 2002 | JP |
2003-25554 | Jan 2003 | JP |
2003-80816 | Mar 2003 | JP |
2003-237220 | Aug 2003 | JP |
2004-050575 | Feb 2004 | JP |
2004-66816 | Mar 2004 | JP |
2004-98682 | Apr 2004 | JP |
2004-299167 | Oct 2004 | JP |
2005-059458 | Mar 2005 | JP |
2005-074693 | Mar 2005 | JP |
3756943 | Mar 2005 | JP |
2005-313490 | Nov 2005 | JP |
WO 9411191 | May 1994 | WO |
WO 9917938 | Apr 1999 | WO |
WO 0134394 | May 2001 | WO |
WO 0149506 | Jul 2001 | WO |
WO 0154915 | Aug 2001 | WO |
2003-080664 | Mar 2003 | WO |
WO 2004039586 | May 2004 | WO |
2004-181955 | Jul 2004 | WO |
WO 2005068197 | Jul 2005 | WO |
WO 2007071551 | Jun 2007 | WO |
Entry |
---|
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004437 International filing date Feb. 21, 2007. |
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004441 International filing date Feb. 21, 2007. |
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004440 International filing date Feb. 21, 2007. |
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004438 International filing date Feb. 21, 2007. |
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004444 International filing date Feb. 21, 2007. |
International Preliminary Report on Patentability dated Sep. 4, 2008, International Application No. PCT/US2007/004442 International filing date Feb. 21, 2007. |
International Search Report and Written Opinion in PCT/US2008/009910 dated Jan. 20, 2009. |
Search Report in EP 08 00 6593 dated Jan. 12, 2009. |
Search Report in EP 08 00 6594 dated Jan. 12, 2009. |
Gloster et al., Abstract of “Direct Computer to Plate Printing,” Society for Imaging Science and Technology, Oct. 2001, 1 page. |
Nobuhiro et al., Abstract of “Application of Solid Ink Jet Technology to a Direct Plate Maker,” Science Links Japan, 1999, 1 page. |
Katherine O'Brien, “CTP in Small Packages,” American Printer, Sep. 1, 1998, 4 pages. |
U.S. Appl. No. 60/775,511, Inventors Cyman, Jr. et al., filed Feb. 21, 2006. |
U.S. Appl. No. 60/819,301, Inventors Cyman, Jr. et al., filed Jul. 7, 2006. |
Letter to EPO dated Nov. 30, 2010, with attachments, EP Application No., 07-751-214.3, Applicant Moore Wallace North America, Inc. |
Letter to EPO dated Dec. 7, 2010, with attachments, EP Application No. 08-006-593.1, Applicant Moore Wallace North America, Inc. |
EPO Office Action dated Oct. 1, 2010, EP Application No. 08-006-593.1, Applicant Moore Wallace North America, Inc. |
EPO Office Action dated Jul. 28, 2010, EP Application No. 07-751-214.3, Applicant Moore Wallace North America, Inc. |
Letter to EPO dated Aug. 12, 2010 with attachment, EP Application No. 08-006-593.1, Applicant Moore Wallace North America, Inc. |
Letter to EPO dated Jul. 19, 2010 with attachment, EP Application No. 08828001.1, Applicant Moore Wallace North America, Inc. |
EPO Office Action dated Jul. 28, 2010, EP Application No. 08-006-593.1, Applicant Moore Wallace North America, Inc. |
Letter from Mr. Qi Xue regarding Second Office Action from Chinese Patent Office dated Nov. 29, 2010, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Second Office Action dated Nov. 3, 2010, with English translation attached, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter to Mr. Qi Xue dated Jan. 4, 2011, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter from Mr. Qi Xue dated Jan. 7, 2011, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter to Mr. Qi Xue dated Jan. 12, 2011 regarding Jan. 7, 2011 communication, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter from Mr. Qi Xue dated Jan. 13, 2011, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter to Mr. Qi Xue dated Jan. 12, 2011 regarding Jan. 12, 2011 communication, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Letter from Mr. Qi Xue dated Jan. 18, 2011 regarding Second Office Action Response, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Second Office Action Response dated Jan. 18, 2011, with English translation attached, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Email to Mr. Qi Xue dated Mar. 9, 2011, with substitute Response to Second Office Action attached, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
Second email to Mr. Qi Xue dated Mar. 9, 2011, with revised substitute Response to Second Office Action attached, Chinese Patent Application No. 200780006170.9, Applicant Moore Wallace North America, Inc. |
International Search Report and Written Opinion in PCT/US2010/053830 dated Dec. 27, 2010. |
EPO Communication under Rule 71(3) EPC dated Jan. 10, 2011, with attached examiner's amendments, European Patent Appl. No. 07751211.9, Applicant Moore Wallace North America, Inc. |
www.flickr.com, “MacWorld Magazine: Cover Art Woes”, website, http://www.flickr.com/photos/66071596@N00/3964123486/ (printed on Mar. 8, 2011). |
www.livedocs.adobe.com, “Fill a selection or layer with a color”, website, http://livedocs.adobe.com/en—US/Photoshop/10.0/help.html?content=WSfd1234e1c4b69f30ea53e41001031ab64-77d4.html (printed on Mar. 8, 2011). |
www.magazinepublisher.com, “Mailing Magazines”, website, http://www.magazinepublisher.com/mailing.html (printed on Mar. 8, 2011). |
www.printindustry.com, “Magazine Cover Wraps”, website, http://www.printindustry.com/Newsletters/Newsletter - - - 67.aspx (printed on Mar. 8, 2011). |
www.mdprint.com, “M&D Printing Periodical Co-mailing Template Inkjet Knockout Version”, available at http://www.mdprint.com/knockout%20template.pdf, (printed on Mar. 8, 2011). |
www.riponprinters.com, “Designing Your Mailpiece for Inkjet Addressing”, available at http://www.riponprinters.com/tech - - - library/pdf/M7—TLines—Design—for—Inkjet.pdf (printed on Mar. 8, 2011). |
www.malanenewman.com, “Graphic Design Terminology”, website, available at http://www.malanenewman.com/graphic—design—terminology.html (printed on Mar. 8, 2011). |
U.S. Appl. No. 61/278,915, Inventors DeJoseph et al., filed Oct. 14, 2009. |
European Patent Office Search Report & Written Opinion, EP 11 17 1598 dated Jun. 9, 2011. |
Response, dated Apr. 11, 2012, to European Patent Office Search Report and Written Opinion, dated Sep. 9, 2011, (3 pages), European Patent Application No. 11171598.3, Applicant Moore Wallace North America Inc. |
Second Office Action dated Apr. 6, 2011, with English translation attached, Chinese Patent Application No. 200780006171.3, Applicant Moore Wallace North America, Inc. |
Letter to Mr. Qi Xue dated May 12, 2011, with claim amendments attached, Chinese Patent Application No. 200780006171.3, Applicant Moore Wallace North America, Inc. |
Letter from Mr. Qi Xue dated Jun. 8, 2011, Chinese Patent Application No. 200780006171.3, Applicant Moore Wallace North America, Inc. |
English translation of Office Action dated Aug. 30, 2011, Mexican Patent Application File No. MX/a/2010/001992, Applicant Moore Wallace North America, Inc. |
Letter dated Nov. 2, 2011 to Arochi, Marroquin & Lindner, S.C. |
Letter dated Nov. 9, 2011 from Arochi, Marroquin & Lindner, S.C. |
Int'l. Search Report and Written Opinion dated Dec. 2, 2011 for International Application No. PCT/US2011/051975. |
Letter dated Apr. 4, 2012 to Mr. Fujio Sasajima regarding Japanese Patent Application No. 2008-556392 (2 pages). |
Email dated Apr. 20, 2012 to Mr. Fujio Sasajima regarding Japanese Patent Application No. 2008-556392 (1 page). |
Letter dated Apr. 24, 2012 from Mr. Fujio Sasajima regarding Japanese Patent Application No. 2008-556392 (1 page). |
Letter dated Apr. 19, 2012 to Mr. Qi Xue regarding Chinese Patent Application No. 2008801133100.8 (3 pages). |
Letter dated May 3, 2012 from Mr. Qi Xue regarding Chinese Patent Application No. 2008801133100.8 (1 page). |
Office Action dated Dec. 27, 2011, for JP Patent Application No. 2008-556391 with English translation attached, Applicant, Moore Wallace North America, Inc., (5 pages). |
EP Search Report and English translation, dated Jan. 5, 2012, for European Patent Application No. EP 11 18 4552, Applicant, Moore Wallace North America, Inc., (7 pages). |
Office Action dated Jan. 24, 2012, for JP Patent Application No. 2008-556396, with English translation attached, Applicant, Moore Wallace North America, Inc., (7 pages). |
Second Office Action dated Feb. 16, 2012, for CN Patent Application No. 2008-80113100.8, Applicant, Moore Wallace North America, Inc., (6 pages). |
European Patent Office Response dated Dec. 4, 2012 for European Patent Application 11171598.3, Applicant, Moore Wallace North America Inc. (4 pages). |
European Patent Office Response dated Dec. 18, 2012 for European Patent Application 11171598.3, Applicant, Moore Wallace North America Inc. (2 pages). |
Japanese Patent Office Action dated Oct. 23, 2010 for Japanese Patent Application 2010-521872, with English translation attached, Applicant, Moore Wallace North America Inc. (6 pages). |
Japanese Patent Office Action dated Oct. 2, 2012, for Japanese Patent Application 2010-521871, with English translation attached, Applicant, Moore Wallace North America Inc. (9 pages). |
English translation of Japanese Patent Application JP-4-97848. Applicant, Mitsubishi Heavy Industries KK. (9 pages), (Mar. 30, 1992). |
Amendment/Instructions to Japanese associate dated Jan. 9, 2013 and confirmation of Amendment filing dated Jan. 23, 2013 (9 pages). |
3rd Supplemental Information Disclosure Statement & Interview Summary dated, Apr. 28, 2010 for U.S. Appl. No. 11/709,396. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2008/009893, dated Mar. 4, 2010. |
Response letter to EPO for Appl. No. 08-006-593.1-1251, dated Feb. 8, 2010, and attached amendments. |
Lamont Wood, 3-D Home Printers Could Change Economy Oct. 11, 2007, URL: http://www/msnbc.msn.com/id/21252137/, (2 pages). |
W. Shen et al., “A New Understanding on the Mechanism of Fountain Solution in the Prevention of Ink Transfer to the Non-image Area in Conventional Offset Lithography”, J. Adhesion Sci. Technol., vol. 18, No. 15-16, pp. 1861-1887, (2004), (27 pages). |
Air Products, Surfynol® 400 Series Surfactants, (3 pages), (2010). |
“Amine Ethoxylates,” (Jun. 26, 2008), URL: http://www.huntsman.com/performance—products/Index.cfm? PageID=5723&PrintPage=1&Showtitle=1, (1 page). |
“Effect of Polyether Monoamine Structure on Pigment Dispersant Properties,” (Feb. 2, 2009), Paint & Coatings Industry, (Mar. 1, 2006), URL: http://www.accessmylibrary.com/comsite5/bin/aml—landing—tt.pl?purchase—type=ITM & item . . . , (5 pages). |
R. Steitz et al., “Experimental Report: Does the Chemical Nature of the Substrate Trigger Net Adsorption of Pluronic F127?”, BENSC, (Jan. 15, 2003), (1 page). |
BASF,Key Features & Benefits, Joncryl® 50, (2 pages); Joncryl® 52 (2 pages); Joncryl® 60 (2 pages); Joncryl® 61 (2 pages); Joncryl® 678 (3 pages); Joncryl® 682 (3 pages), (Mar. 23, 2007). |
Polyethylenimines (General Information), (3 pages), (2010). |
Nissan Chemical—Colloidal Silica, “Snowtex®”, URL: http://www.nissanchem-usa.com/snowtex.php, (Jun. 26, 2008), (8 pages). |
BASF Corporation 1999, Table of Contents, (37 pages). |
BASF Corporation 2002 Technical Bulletin, “Pluronic® F127 Block Copolymer Surfactant”, (1 page). |
Huntsman Corporation 2005 Technical Bulletin, “Surfonic® T-2 Surfactant”, (2 pages). |
Huntsman Corporation 2007 Technical Bulletin, “The Use of Surfonamine® Amines in Ink and Pigment Applications”, (5 pages). |
“Amendment of the Claims” for PCT/US2008/009893 dated Mar. 20, 2009, (2 pages). |
“Amendment of the Claims” for PCT/US2008/009910 dated Mar. 19, 2009, (3 pages). |
EPO Office Action for Appl. No. 077-751-211.9-1251, dated Sep. 22, 2009, and attached Jul. 1, 2009 letter to EPO and amendments. |
Response letter to EPO for Appl. No. 077-751-211.9-1251, dated Jan. 29, 2010, and attached amendments. |
EPO Office Action for Appl. No. 077-751-214.3-1251, dated Aug. 3, 2009, and attached Jul. 1, 2009 letter to EPO and amendments. |
Response letter to EPO for Appl. No. 077-751-214.3-1251, dated Oct. 21, 2009. |
EPO Office Action for Appl. No. 077-751-214.3-1251, dated Dec. 10, 2009, and attached Jul. 1, 2009 letter to EPO and ammendments. |
Response letter to EPO for Appl. No. 077-751-214.3-1251, dated Mar. 31, 2013, and attached ammendments. |
EPO Office Action for Appl. No. 08-006-593.1-1251, dated Oct. 8, 2009. |
International Search Report and Written Opinion for PCT/US2008/009893 dated Jan. 23, 2009. |
Response letter to EPO for Appl. No. 08006594.9, dated Nov. 26, 2009, and attached amendments and EP search report 08006594 Jan. 12, 2009. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2008/009910 dated Mar. 4, 2010. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2008/009901 dated Mar. 4, 2010. |
U.S. Appl. No. 61/254,101, Inventors DeJoseph et al., filed Oct. 22, 2009. |
H. Kipphan: “Handbook of Print Media” 2001, Springer, Berlin, XP002446641, p. 52-55. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2008/009911 dated Mar. 4, 2010. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004437 dated Sep. 3, 2007. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004441 dated Aug. 28, 2007. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004440 dated Aug. 28, 2007. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004438 dated Aug. 28, 2007. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004444 dated Aug. 28, 2007. |
International Search Report and Written Opinion, International Application No. PCT/US2007/004442 dated Aug. 28, 2007. |
Number | Date | Country | |
---|---|---|---|
20110267397 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
60775511 | Feb 2006 | US | |
60819301 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11709396 | Feb 2007 | US |
Child | 13105563 | US |