The subject matter disclosed herein relates to a method of producing an electrode support for a spark plug, and more specifically to a method of producing a spark gap for an electrode support of a spark plug using sacrificial material.
Spark plugs include an electrode chip located at an end of a center electrode. A separate chip is also located on an end of a side or ground electrode. An air or spark gap is located between the chip positioned on the center electrode and the chip positioned on the ground electrode. In one approach, the spark plug is manufactured by welding a single chip to both the center electrode and the ground electrode. Then, the chip is machined to create the spark gap between the center electrode and the ground electrode. The chip is generally constructed from a precious or noble metal such as, for example, a platinum based alloy. Noble and precious metals usually have a relatively high cost.
Spark plugs for applications such as, for example, industrial engines generally require precision machining and adjustment in order to create the parallelism and clearance needed in the spark gap. Machining the air gap results in a precise and substantially parallel gap. However, machining also results in a significant amount of noble or precious metal being wasted.
According to one aspect of the invention, a method of producing an electrode support for a spark plug is provided. The method includes attaching a chip to the electrode support. The chip includes a section of sacrificial material located between two sections of electrode material. The method includes substantially removing the section of sacrificial material from the chip to create a spark gap between the two sections of electrode material.
According to another aspect of the invention, a method of producing an electrode support for a spark plug is provided. The method includes providing the electrode support. The electrode support has a center portion and a side portion. The method includes providing a chip having a section of sacrificial material located between two sections of electrode material. The section of sacrificial material is brazed to the two sections of electrode material. The method includes attaching the chip to both the center portion and the side portion of the electrode support. The method includes substantially removing the section of sacrificial material from the chip to create a spark gap between the two sections of electrode material.
According to yet another aspect of the invention, a spark plug is provided. The spark plug includes an electrode support having a center portion and a side portion. The spark plug also includes at least one chip that is attached to both the center portion and the side portion. The chip includes a section of sacrificial material and two sections of electrode material. The section of sacrificial material is located between two sections of electrode material.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
The electrode chip 26 includes a section of laminate or sacrificial material 30 as well as two sections of electrode material 32. The sacrificial material 30 is sandwiched or interposed between the two sections of electrode material 32. The sacrificial material 30 may be any material that is generally less costly than the sacrificial material 30. For example, the sacrificial material 30 could be a nickel alloy, a polymer, or a ceramic material. The sacrificial material 30 is eventually removed to create a spark gap 70 between the two sections of electrode material 32 (the spark gap 70 is shown in
In one embodiment, the two sections of electrode material 32 of each electrode chip 26 are attached to either the outer surface 44 of the center portion 20 or the outer surface 46 of the corresponding side portion 22 of the electrode support 10 by a joining process such as, for example, welding or brazing. Welding involves melting and fusing both the electrode material 32 and the electrode support 10 together. Brazing generally utilizes a filler material that is used to join the electrode material 32 to the electrode support 10 together. Thus, brazing does not consume a portion of the relatively costly electrode material 32.
The spark gap 70 may be created by substantially removing the sacrificial material 30 (shown in
Referring generally to
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3586903 | Taterzynski et al. | Jun 1971 | A |
5502294 | Yang | Mar 1996 | A |
6676468 | Ishiguro et al. | Jan 2004 | B2 |
20020055318 | Ishiguro et al. | May 2002 | A1 |
20020075125 | Yang | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
0400950 | Dec 1990 | EP |
0400950 | Feb 2000 | EP |
1037345 | Sep 2000 | EP |