Claims
- 1. The method of producing an electrode on a chlorine-resistant metal base from the group consisting of titanium and tantalum, which comprises applying a coating mixture in liquid form to said base which on heating forms a mixture of an oxide of a platinum group metal, oxides from the group consisting of titanium and tantalum and at least one doping oxide from the group consisting of silver, tin, chromium, lanthanum, cobalt, antimony, molybdenum, nickel, iron, tungsten, vanadium, phosphorus, boron, beryllium, sodium, calcium, strontium, lead, copper and bismuth, and mixtures thereof, the percentage of doping oxide in said coating mixture being between 0.10 and 50% of the material from the group consisting of oxides of titanium and tantalum and the ratio of platinum group metals to the non-precious metals in said coating being between 20:100 and 85:100, all said percentages being based upon the metals in said oxides; applying said coating mixture and heating the coating on the chlorine-resistant metal base until oxides of the metals in said coating mixture have been produced.
- 2. The method of claim 1 in which the coating mixture is applied in several separate layers and heated in an oxidizing temperature between the application of each layer.
- 3. The method of claim 1 in which the coating mixture is applied to said base by electrostatic spray.
- 4. The method of claim 1 in which the titanium in said coating mixture is converted to a pertitanate before application of the coating mixture to said base.
- 5. The method of claim 1 in which the coating mixture is applied in multiple layers on the metal base and the doping oxide consists of tin and at least one oxide of a metal from the group consisting of tantilum, lanthanum, chromium and aluminum.
- 6. The method of producing an electrode on a chlorine-resistant metal base from the group consisting of titanium and tantalum having a semi-conductor coating thereon, which comprises applying a coating mixture in liquid form to said base, which coating mixture on heating forms (a) a platinum group metal oxide, (b) a metal oxide from the group consisting of titanium or tantalum and (c) a doping oxide from the group consisting of silver, tin, chromium, lanthanum, aluminum, cobalt, antimony, molybdenum, nickel, iron, tungsten, vanadium, phosphorus, boron, beryllium, sodium, calcium, strontium, lead, copper and bismuth, and mixtures thereof, the percentage of doping oxide in said coating being between 0.10 and 50% of the metal oxide from the group consisting of titanium oxide and tantalum oxide and the ratio of platinum group metals to the non-precious metals in said coatings being between 20:100 and 85:100, all said percentages being based upon the metal in said oxides; applying said coating mixture on said base and heating the coating on said base until oxides of the metals in said coating mixture have been produced.
- 7. The method of claim 6 in which the coating contains an oxide of a platinum group metal in sufficient amount to catalyze chlorine discharge from the anode in a chlorine cell.
- 8. The method of claim 6 in which the coating mixture includes oxides of two platinum group metals.
- 9. The method of claim 6 in which the oxides of platinum group metals are ruthenium oxide and iridium oxide.
- 10. The method of producing an electrode comprising a chlorine-resistant metal base from the group consisting of titanium and tantalum having a semi-conductor coating thereon, which comprises applying a coating mixture in liquid form to said base, which coating mixture on heating forms (a) a platinum group metal oxide, (b) a metal oxide from the group consisting of titanium and tantalum and (c) at least one doping oxide from the group consisting of oxides of vanadium, tantalum, tin, cobalt, lanthanum and aluminum, and heating said coating mixture on said base until the oxides of said metals are produced, the percentage of doping oxide in said coating mixture being between 0.10 and 50% of the material from the group consisting of oxides of titanium and tantalum and the ratio of platinum group metals to the non-precious metals in said coating being between 20:100 and 85:100, all said percentages being based upon the metals in said oxides.
- 11. The method of producing an electrode comprising a chlorine-resistant metal base from the group consisting of titanium and tantalum having a semi-conductor coating thereon, which comprises applying a coating mixture in liquid form to said base, which coating mixture on heating forms (a) ruthenium oxide, (b) titanium dioxide and (c) at least one doping oxide from the group consisting of oxides of tantalum, tin, lanthanum, cobalt, vanadium, aluminum, nickel and iron, and heating said coating mixture on said base until the oxides of said metals are produced.
- 12. The method of producing an electrode on a chlorine-resistant metal base from the group consisting of titanium and tantalum, which comprises applying a thermally-reducible coating mixture in liquid form to said base which, on heating, forms an oxide of a platinum group metal, and an oxide of titanium, the ratio of platinum group metals to the non-precious metals in said mixture being between 20:100 and 85:100, said percentages being based upon the metals in said oxides, converting the titanium in said mixture into a pertitanate before application of the coating to said base and heating the coating on the chlorine-resistant metal base until oxides of the metals in said coating mixture have been produced.
- 13. The method of claim 12 in which the coating mixture is applied in several separate layers and heated between the application of each layer.
- 14. The method of producing a semi-conductor face on an electrode support comprising a chlorine-resistant metal base, which comprises applying a thermally reducible coating mixture in liquid form to said electrode support which on heating forms a mixture of an oxide of a platinum group metal, oxides from the group consisting of titanium and tantalum and at least one doping oxide from the group consisting of silver, tin, chromium, lanthanum, aluminum, cobalt, antimony, molybdenum, nickel, iron, tungsten, vanadium, phosphorus, boron, beryllium, sodium, calcium, strontium, lead, copper and bismuth, and mixtures thereof, the percentage of doping oxide being between 0.10 and 50% of the material from the group consisting of oxides of titanium and tantalum and the ratio of platinum group metals to the non-precious metals in said coating being between 20:100 and 85:100, all said percentages being based upon the metals in said oxides; applying said coating mixture and heating the coating on the support until oxides of the metals in said coating mixture have been produced.
- 15. The method of claim 14 in which the coating mixture is applied in several separate layers and heated in air between the application of each layer.
- 16. The method of claim 14 in which the coating mixture is applied to said support by electrostatic spray.
- 17. The method of claim 14 in which the titanium in said coating mixture is converted to a pertitanate before application of the coating mixture to said support.
- 18. The method of increasing the non-stoichiometry of platinum group metal oxides and valve metal oxides from the group consisting of titanium and tantalum on a chlorine-resistant metal base from the group consisting of titanium and tantalum, which comprises applying a coating mixture in liquid form to said base which on heating forms a mixture of an oxide of a platinum group metal, oxides from the group consisting of titanium and tantalum and at least one other oxide from the group consisting of silver, tin, chromium, lanthanum, cobalt, antimony, molybdenum, nickel, iron, tungsten, vanadium, phosphorus, boron, beryllium, sodium, calcium, strontium, lead, copper and bismuth, and mixtures thereof, the percentage of said other oxide in said coating mixture being between 0.10 and 50% of the material from the group consisting of oxides of titanium and tantalum and the ratio of platinum group metals to the non-precious metals in said coating being between 20:100 and 85:100, all said percentages being based upon the metals in said oxides, applying said coating mixture and heating the coating on the chlorine-resistant metal base until oxides of the metals in said coating mixture have been produced.
- 19. The method of claim 18 in which the coating mixture is applied in several separate layers and heated in an oxidizing atmosphere between the application of each layer.
- 20. The method of increasing the non-stoichiometry of electrocatalysts from the group consisting of platinum group metal oxides and valve metal oxides from the group consisting of titanium and tantalum, which comprises forming a liquid mixture which on heating forms a mixture of an oxide of a platinum group metal, oxides from the group consisting of titanium and tantalum and at least one other oxide from the group consisting of silver, tin, chromium, lanthanum, cobalt, antimony, molybdenum, nickel, iron, tungsten, vanadium, phosphorus, boron, beryllium, sodium, calcium, strontium, lead, copper and bismuth, and mixtures thereof, the percentage of said other oxide in said coating mixture being between 0.10 and 50% of the material from the group consisting of oxides of titanium and tantalum and the ratio of platinum group metals to the non-precious metals in said coating being between 20:100 and 85:100, all said percentages being based upon the metals in said oxides, and heating said mixture in an oxidizing atmosphere until oxides of the metals in said mixture have been produced.
Parent Case Info
This application is a continuation-in-part of our copending application Ser. No. 690,407, filed Dec. 14, 1967 U.S. Pat. No. 3,616,445, and a division of application No. 771,665 filed Oct. 29, 1968, U.S. Pat. No. 3,948,751.
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1,147,442 |
Apr 1969 |
UK |
Divisions (1)
|
Number |
Date |
Country |
Parent |
771665 |
Oct 1968 |
|