Method of producing absorbent structures with high wet strength, absorbency, and softness

Information

  • Patent Grant
  • 10422082
  • Patent Number
    10,422,082
  • Date Filed
    Friday, August 25, 2017
    7 years ago
  • Date Issued
    Tuesday, September 24, 2019
    5 years ago
Abstract
A method of making an absorbent structure including forming a stock mixture of fibers, a cationic wet strength resin, an anionic polyacrylamide and a cellulase enzyme, and at least partially drying the stock mixture to form a web.
Description
TECHNICAL FIELD

The present invention relates to a method of producing wet laid disposable absorbent structures of high wet strength, absorbency, and softness.


BACKGROUND

Disposable paper towels, napkins, and facial tissue are absorbent structures that need to remain strong when wet. For example, paper towels need to retain their strength when absorbing liquid spills, cleaning windows and mirrors, scrubbing countertops and floors, scrubbing and drying dishes, washing/cleaning bathroom sinks and toilets, and even drying/cleaning hands and faces. A disposable towel that can perform these demanding tasks, while also being soft, has a competitive advantage as the towel could be multi-purpose and be used as a napkin and facial tissue. The same can be said about a napkin or facial tissue, which could become a multi-purpose product if the right combination of quality attributes can be obtained of which wet strength, absorbency, and softness are key attributes.


The industrial methods or technologies used to produce these absorbent structures are numerous. The technologies that use water to form the cellulosic (or other natural or synthetic fiber type) webs that comprise the towel or wipe are called Water-Laid Technologies. These include Through Air Drying (TAD), Uncreped Through Air Drying (UCTAD), Conventional Wet Crepe (CWC), Conventional Dry Crepe (CDC), ATMOS, NTT, QRT and ETAD. Technologies that use air to form the webs that comprise the towel or wipe are called Air-Laid Technologies. To enhance the strength and absorbency of these towels and wipes, more than one layer of web (or ply) can be laminated together using strictly a mechanical process or preferably a mechanical process that utilizes an adhesive.


Absorbent structures can be produced using both Water or Air-Laid technologies. The Water-Laid technologies of Conventional Dry and Wet Crepe are the predominant method to make these structures. These methods comprise forming a nascent web in a forming structure, transferring the web to a dewatering felt where it is pressed to remove moisture, and adhering the web to a Yankee Dryer. The web is then dried and creped from the Yankee Dryer and reeled. When creped at a solids content of less than 90%, the process is referred to as Conventional Wet Crepe. When creped at a solids content of greater than 90%, the process is referred to as Conventional Dry Crepe. These processes can be further understood by reviewing Yankee Dryer and Drying, A TAPPI PRESS Anthology, pg 215-219 which is herein incorporated by reference. These methods are well understood and easy to operate at high speeds and production rates. Energy consumption per ton is low since nearly half of the water removed from the web is through drainage and mechanical pressing. Unfortunately, the sheet pressing also compacts the web which lowers web thickness and resulting absorbency.


Through Air Drying (TAD) and Uncreped Through Air Drying (UCTAD) processes are Wet-Laid technologies that avoid compaction of the web during drying and thereby produce absorbent structures of superior thickness and absorbency when compared to structures of similar basis weight and material inputs that are produced using the CWP or CDC process. Patents which describe creped through air dried products include U.S. Pat. Nos. 3,994,771, 4,102,737, 4,191,609, 4,529,480, 467,859, and 5,510,002, while U.S. Pat. No. 5,607,551 describes an uncreped through air dried product.


The remaining Wet-Laid processes termed ATMOS, ETAD, NTT, STT and QRT can also be utilized to produce absorbent structures. Each process/method utilizes some pressing to dewater the web, or a portion of the web, resulting in absorbent structures with absorbent capacities that correlate to the amount of pressing utilized when all other variables are the same. The ATMOS process and products are documented in U.S. Pat. Nos. 7,744,726, 6,821,391, 7,387,706, 7,351,307, 7,951,269, 8,118,979, 8,440,055, 7,951,269 or U.S. Pat. Nos. 8,118,979, 8,440,055, 8,196,314, 8,402,673, 8,435,384, 8,544,184, 8,382,956, 8,580,083, 7,476,293, 7,510,631, 7,686,923, 7,931,781, 8,075,739, 8,092,652, 7,905,989, 7,582,187, 7,691,230. The ETAD process and products are disclosed in U.S. Pat. Nos. 7,339,378, 7,442,278, and 7,494,563. The NTT process and products are disclosed in international patent application WO 2009/061079 A1 and U.S. Patent Application Publication Nos. US 2011/0180223 A1 and US 2010/0065234 A1. The QRT process is disclosed in U.S. Patent Application Publication No. 2008/0156450 A1 and U.S. Pat. No. 7,811,418. The STT process is disclosed in U.S. Pat. No. 7,887,673.


To impart wet strength to the absorbent structure in the wet laid process, typically a cationic strength component is added to the furnish during stock preparation. The cationic strength component can include any polyethyleneimine, polyethylenimine, polyaminoamide-epihalohydrin (preferably epichlorohydrin), polyamine-epichlorohydrin, polyamide, or polyvinyl amide wet strength resin. Useful cationic thermosetting polyaminoamide-epihalohydrin and polyamine-epichlorohydrin resins are disclosed in U.S. Pat. Nos. 5,239,047, 2,926,154, 3,049,469, 3,058,873, 3,066,066, 3,125,552, 3,186,900, 3,197,427, 3,224,986, 3,224,990, 3,227,615, 3,240,664, 3,813,362, 3,778,339, 3,733,290, 3,227,671, 3,239,491, 3,240,761, 3,248,280, 3,250,664, 3,311,594, 3,329,657, 3,332,834, 3,332,901, 3,352,833, 3,248,280, 3,442,754, 3,459,697, 3,483,077, 3,609,126, 4,714,736, 3,058,873, 2,926,154, 3,877,510, 4,515,657, 4,537,657, 4,501,862, 4,147,586, 4,129,528 and 3,855,158.


Absorbent structures are also made using the Air-Laid process. This process spreads the cellulosic, or other natural or synthetic fibers, in an air stream that is directed onto a moving belt. These fibers collect together to form a web that can be thermally bonded or spray bonded with resin and cured. Compared to Wet-Laid, the web is thicker, softer, more absorbent and also stronger. It is known for having a textile-like surface and drape. Spun-Laid is a variation of the Air-Laid process, which produces the web in one continuous process where plastic fibers (polyester or polypropylene) are spun (melted, extruded, and blown) and then directly spread into a web in one continuous process. This technique has gained popularity as it can generate faster belt speeds and reduce costs.


To further enhance the strength of the absorbent structure, more than one layer of web (or ply) can be laminated together using strictly a mechanical process or preferably a mechanical process that utilizes an adhesive. It is generally understood that a multi-ply structure can have an absorbent capacity greater than the sum of the absorbent capacities of the individual single plies. It is thought this difference is due to the inter-ply storage space created by the addition of an extra ply. When producing multi-ply absorbent structures, it is critical that the plies are bonded together in a manner that will hold up when subjected to the forces encountered when the structure is used by the consumer. Scrubbing tasks such as cleaning countertops, dishes, and windows all impart forces upon the structure which can cause the structure to rupture and tear. When the bonding between plies fails, the plies move against each other imparting frictional forces at the ply interface. This frictional force at the ply interface can induce failure (rupture or tearing) of the structure thus reducing the overall effectiveness of the product to perform scrubbing and cleaning tasks.


There are many methods used to join or laminate multiple plies of an absorbent structure to produce a multiply absorbent structure. One method commonly used is embossing. Embossing is typically performed by one of three processes: tip to tip, nested, and/or rubber to steel embossing. Tip to tip embossing comprises axially parallel jumbo rolls of the absorbent structure juxtaposed to form a nip between the crests of the embossing tips of the opposing emboss rolls. The nip in nested embossing has the embossing tips on one emboss roll meshed between the embossing tips of the other. Rubber to steel embossing comprises a steel roll with embossing tips opposed to a roll having an elastomeric roll cover wherein the two rolls are axially parallel and juxtaposed to form a nip where the embossing tips of the emboss roll mesh with the elastomeric roll cover of the opposing roll.


For example, during the tip to tip embossing process of a two ply absorbent structure web, each web is fed through separate nips formed between separate embossing rolls and pressure rolls with the embossing tips on the embossing rolls producing compressed regions in each web. The two webs are then fed through a common nip formed between the embossing rolls where the embossing tips on the two rolls bring the webs together in a face to face contacting relationship.


By comparison, nested embossing works by having the crests of the embossing tips on one embossing roll intermesh with the embossing tips on the opposing embossing roll with the nip formed between the two rolls. As the web is passed between the two embossing rolls, a pattern is produced on the surface of the web by the interconnectivity of the tips of one roll with the open spaces of the opposing roll.


Rubber to steel embossing works by having one hard embossing roll with embossing tips in a desired pattern and a back-side soft impression roll, often having an elastomeric roll cover aligned in an axially parallel configuration to form a nip between the rolls. As the web is passed through the nip between the rolls, the embossing tips impress the web against and into the rubber to deform the structure of the web.


It is possible to marry two or more webs of an absorbent structure (or different absorbent structures) together using an adhesive. In an exemplary nested embossing process an adhesive applicator roll may be aligned in an axially parallel arrangement with one of the two embossing rolls forming a nip therewith, such that the adhesive applicator roll is upstream of the nip formed between the two embossing rolls. The adhesive applicator roll transfers adhesive to the embossed webs on the embossing roll at the crests of the embossing knobs. The crests of the embossing knobs typically do not touch the perimeter of the opposing roll at the nip formed there between, necessitating the addition of a marrying roll to apply pressure for lamination. The marrying roll forms a nip with the same embossing roll forming the nip with the adhesive applicator roll, downstream of the nip formed between the two embossing rolls. An example of this lamination method is described in U.S. Pat. No. 5,858,554.


Other attempts to laminate absorbent structure webs include bonding the plies at junction lines wherein the lines include individual pressure spot bonds. The spot bonds are formed by the use of thermoplastic low viscosity liquid such as melted wax, paraffin, or hot melt adhesive, as described in U.S. Pat. No. 4,770,920. Another method laminates webs of absorbent structure by thermally bonding the webs together using polypropylene melt blown fibers, as described in U.S. Pat. No. 4,885,202. Other methods use metlblown adhesive applied to one face of an absorbent structure web in a spiral pattern, a stripe pattern, or random patterns before pressing the web against the face of a second absorbent structure, as described in U.S. Pat. Nos. 3,911,173, 4,098,632, 4,949,688, 4,891249, 4,996,091 and 5,143,776.


SUMMARY OF THE INVENTION

This invention relates to a method of producing single or multi-ply, cellulosic based, wet laid, disposable, absorbent structures of high wet strength, absorbency, and softness by utilizing cationic wet strength resin(s) with anionic polyacrylamide(s) and cellulase enzyme(s) in the stock preparation stage of the manufacturing process of any wet laid manufacturing process.


The cationic wet strength resin can be one or a combination of the following: polyethyleneimine, polyethylenimine, polyaminoamide-epihalohydrin (preferably epichlorohydrin) polyamine-epichlorohydrin, polyamide, or polyvinyl amide wet strength resin.


The anionic polyacrylamide(s) can be of various molecular weights and charge density.


The cellulase enzyme(s) can be mono-component or multi-component endo-cellulases, exo-cellulases, or cellobiase cellulases.


This invention allows for the removal of carboxymethylcellulose, CMC, and limits mechanical refining, both of which can adversely affect softness by imparting stiffness and high surface roughness to the absorbent structure.


The absorbent structures of preferred application of the invention's method are disposable paper towel, napkin, and facial products.


An absorbent structure according to an exemplary embodiment of the present invention has a CD wet tensile strength value that is at least 35% of the value of a CD dry tensile strength value of the absorbent structure.


In at least one embodiment, the absorbent structure comprises two or more plies.


In at least one embodiment, each ply comprises a multi-layer web.


In at least one embodiment, the absorbent structure is a paper towel product.


In at least one embodiment, the absorbent structure has a HF softness of at least 46.


In at least one embodiment, the absorbent structure has a TS750 value of less than 60.


These and other features and advantages of the present invention will be presented in more detail in the following detailed description and the accompanying figures which illustrate by way of example principles of the invention.





DESCRIPTION OF THE DRAWINGS

The features and advantages of exemplary embodiments of the present invention will be more fully understood with reference to the following, detailed description when taken in conjunction with the accompanying figures, wherein:



FIG. 1 is a schematic diagram of a three layer tissue in accordance with an exemplary embodiment of the present invention;



FIG. 2 is a block diagram of a system for manufacturing tissue according to an exemplary embodiment of the present invention;



FIG. 3 is a block diagram of a system for manufacturing a multi-ply absorbent product according to an exemplary embodiment of the present invention;



FIG. 4 shows an absorbent product that has an embossed pattern in accordance with an exemplary embodiment of the present invention; and



FIG. 5 is a list of steps performed during absorbency testing of absorbent products.





DETAILED DESCRIPTION

As discussed, to impart wet strength to the absorbent structure in a wet laid process, a cationic strength component may be added to the furnish during stock preparation. To impart capacity of the cationic strength resins it is well known in the art to add water soluble carboxyl containing polymers to the furnish in conjunction with the cationic resin. Suitable carboxyl containing polymers include carboxymethylcellulose (CMC) as disclosed in U.S. Pat. Nos. 3,058,873, 3,049,469 and 3,998,690. However, the use of CMC can be disadvantageous because it prohibits the use of cellulase enzymes, which would otherwise react with the CMC to cleave bonds and shorten the degree of polymerization of the molecule, rendering it much less effective. Anionic polyacrylamide polymers are an alternative to using carboxyl containing polymers to improve wet strength development in conjunction with cationic strength resins, as disclosed in U.S. Pat. Nos. 3,049,469 and 6,939,443.


When replacing CMC with an anionic polyacrylamide to boost the efficacy of the cationic wet strength resin, the use of cellulase enzymes becomes possible. Cellulase is generally referred to as an enzyme composition derived from a microorganism, fungi, or bacterial that can catalyze the hydrolysis of B-1-4 glycosidic bonds of a cellulose molecule or its derivatives. There are three types of cellulases, each having a different activation towards the cellulose molecule. The three types are endo-cellulases, exo-cellulases, and cellobiase cellulases. Cellulases can be used to modify the surface of the cellulose molecules, which are contained in the fibers used to make absorbent structures, and disrupt the crystalline structure of the cellulose to fibrillate the fiber, thereby enhancing the fiber to fiber bonding during web formation and the final strength of the absorbent structure. The ability to provide enhanced fibrillation and fiber to fiber bonding can limit or eliminate the need for mechanical refining to fibrillate the fiber, which can reduce bulk, absorbency, and softness of the absorbent structure.


According to an exemplary embodiment of the present invention, one or more cationic strength resins, one or more anionic polyacrylamides (APAM) and one or more cellulase enzymes are added to the pulp slurry (furnish) during the stock preparation stage of an absorbent product manufacturing process. Without being bound by theory, the APAM promotes the wet strength imparting capacity of the cationic strength resins, and the cellulase provides enhanced fibrillation and fiber to fiber bonding so that mechanical refining can be minimized or eliminated.


The following description relates to a multi-layer tissue product, and is provided to illustrate one possible application of the present invention. However, it should be appreciated that inventive aspects of the present invention involving the combined use of APAM and cellulase may be applicable to any wet-laid manufacturing process for an absorbent paper product.



FIG. 1 shows a three layer tissue, generally designated by reference number 1, according to an exemplary embodiment of the present invention. The general structure and manufacturing process of the tissue 1 are as described in U.S. Pat. No. 8,968,517 (assigned to applicant), the contents of which are incorporated herein by reference in their entirety. The tissue 1 has external layers 2 and 4 as well as an internal, core layer 3. External layer 2 is composed primarily of hardwood fibers 20 whereas external layer 4 and core layer 3 are composed of a combination of hardwood fibers 20 and softwood fibers 21. The internal core layer 3 includes an ionic surfactant functioning as a debonder 5 and a non-ionic surfactant functioning as a softener 6. As explained in further detail below, external layers 2 and 4 also include non-ionic surfactant that migrated from the internal core layer 3 during formation of the tissue 1. External layer 2 further includes a dry strength additive 7. External layer 4 further includes both a dry strength additive 7 and a temporary wet strength additive 8.


Pulp mixes for exterior layers of the tissue are prepared with a blend of primarily hardwood fibers. For example, the pulp mix for at least one exterior layer is a blend containing about 70 percent or greater hardwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for at least one exterior layer is a blend containing about 80 percent hardwood fibers relative to the total percentage of fibers that make up the blend.


Pulp mixes for the interior layer of the tissue are prepared with a blend of primarily softwood fibers. For example, the pulp mix for the interior layer is a blend containing about 70 percent or greater softwood fibers relative to the total percentage of fibers that make up the blend. As a further example, the pulp mix for the interior layer is a blend containing about 90-100 percent softwood fibers relative to the total percentage of fibers that make up the blend.


As known in the art, pulp mixes are subjected to a dilution stage in which water is added to the mixes so as to form a slurry. After the dilution stage but prior to reaching the headbox, each of the pulp mixes are dewatered to obtain a thick stock of about 95% water. In an exemplary embodiment of the invention, wet end additives are introduced into the thick stock pulp mixes of at least the interior layer. In an exemplary embodiment, a non-ionic surfactant and an ionic surfactant are added to the pulp mix for the interior layer. Suitable non-ionic surfactants have a hydrophilic-lipophilic balance of less than 10, and preferably less than or equal to 8.5. An exemplary non-ionic surfactant is an ethoxylated vegetable oil or a combination of two or more ethoxylated vegetable oils. Other exemplary non-ionic surfactants include ethylene oxide, propylene oxide adducts of fatty alcohols, alkyl glycoside esters, and alkylethoxylated esters.


Suitable ionic surfactants include but are not limited to quaternary amines and cationic phospholipids. An exemplary ionic surfactant is 1,2-di(heptadecyl)-3-methyl-4,5-dihydroimidazol-3-ium methyl sulfate. Other exemplary ionic surfactants include (2-hydroxyethyl)methylbis[2-[(1-oxooctadecyl)oxy]ethyl]ammonium methyl sulfate, fatty dialkyl amine quaternary salts, mono fatty alkyl tertiary amine salts, unsaturated fatty alkyl amine salts, linear alkyl sulfonates, alkyl-benzene sulfonates and trimethyl-3-[(1-oxooctadecyl)amino]propylammonium methyl sulfate.


In an exemplary embodiment, the ionic surfactant may function as a debonder while the non-ionic surfactant functions as a softener. Typically, the debonder operates by breaking bonds between fibers to provide flexibility, however an unwanted side effect is that the overall strength of the tissue can be reduced by excessive exposure to debonder. Typical debonders are quaternary amine compounds such as trimethyl cocoammonium chloride, trymethyloleylammonium chloride, dimethyldi(hydrogenated-tallow)ammonium chloride and trimethylstearylammonium chloride.


After being added to the interior layer, the non-ionic surfactant (functioning as a softener) migrates through the other layers of the tissue while the ionic surfactant (functioning as a debonder) stays relatively fixed within the interior layer. Since the debonder remains substantially within the interior layer of the tissue, softer hardwood fibers (that may have lacked sufficient tensile strength if treated with a debonder) can be used for the exterior layers. Further, because only the interior of the tissue is treated, less debonder is required as compared to when the whole tissue is treated with debonder.


In an exemplary embodiment, the ratio of ionic surfactant to non-ionic surfactant added to the pulp mix for the interior layer of the tissue is between 1:4 and 1:90 parts by weight and preferably about 1:8 parts by weight. In particular, when the ionic surfactant is a quaternary amine debonder, reducing the concentration relative to the amount of non-ionic surfactant can lead to an improved tissue. Excess debonder, particularly when introduced as a wet end additive, can weaken the tissue, while an insufficient amount of debonder may not provide the tissue with sufficient flexibility. Because of the migration of the non-ionic surfactant to the exterior layers of the tissue, the ratio of ionic surfactant to non-ionic surfactant in the core layer may be significantly lower in the actual tissue compared to the pulp mix.


In an exemplary embodiment, a dry strength additive is added to the thick stock mix for at least one of the exterior layers. The dry strength additive may be, for example, amphoteric starch, added in a range of about 1 to 40 kg/ton. In another exemplary embodiment, a wet strength additive is added to the thick stock mix for at least one of the exterior layers. The wet strength additive may be, for example, glyoxalated polyacrylamide, commonly known as GPAM, added in a range of about 0.25 to 5 kg/ton. In a further exemplary embodiment, both a dry strength additive, preferably amphoteric starch, and a wet strength additive, preferably GPAM, are added to one of the exterior layers. Without being bound by theory, it is believed that the combination of both amphoteric starch and GPAM in a single layer when added as wet end additives provides a synergistic effect with regard to strength of the finished tissue to reduce linting. Other exemplary temporary wet-strength agents include aldehyde functionalized cationic starch, aldehyde functionalized polyacrylamides, acrolein co-polymers and cis-hydroxyl polysaccharide (guar gum and locust bean gum) used in combination with any of the above mentioned compounds.


In an exemplary embodiment, APAM is added to the thick stock mix for at least one of the exterior layers along with the wet strength additive. The use of APAM allows for the addition of cellulase to the thick stock mix so that mechanical refining can be limited or eliminated.


In addition to amphoteric starch, suitable dry strength additives may include but are not limited to polyvinyl amine, glyoxalated polyacrylamide, cationic starch, carboxy methyl cellulose, guar gum, locust bean gum, cationic polyacrylamide, polyvinyl alcohol, anionic polyacrylamide or a combination thereof.



FIG. 2 is a block diagram of a system for manufacturing tissue, generally designated by reference number 100, according to an exemplary embodiment of the present invention. The system 100 includes an first exterior layer fan pump 102, a core layer fan pump 104, a second exterior layer fan pump 106, a headbox 108, a forming section 110, a drying section 112 and a calendar section 114. The first and second exterior layer fan pumps 102, 106 deliver the pulp mixes of the first and second external layers 2, 4 to the headbox 108, and the core layer fan pump 104 delivers the pulp mix of the core layer 3 to the headbox 108. As is known in the art, the headbox delivers a wet web of pulp onto a forming wire within the forming section 110. The wet web is laid on the forming wire with the core layer 3 disposed between the first and second external layers 2, 4.


After formation in the forming section 110, the partially dewatered web is transferred to the drying section 112, Within the drying the section 112, the tissue of the present invention may be dried using conventional through air drying processes. In an exemplary embodiment, the tissue of the present invention is dried to a humidity of about 7 to 20% using a through air drier manufactured by Metso Corporation, of Helsinki, Finland. In another exemplary embodiment of the invention, two or more through air drying stages are used in series. Without being bound by theory, it is believed that the use of multiple drying stages improves uniformity in the tissue, thus reducing tears.


In an exemplary embodiment, the tissue of the present invention is patterned during the through air drying process. Such patterning can be achieved through the use of a TAD fabric, such as a G-weave (Prolux 003) or M-weave (Prolux 005) TAD fabric.


After the through air drying stage, the tissue of the present invention may be further dried in a second phase using a Yankee drying drum. In an exemplary embodiment, a creping adhesive is applied to the drum prior to the tissue contacting the drum. A creping blade is then used to remove the tissue from the Yankee drying drum. The tissue may then be calendered in a subsequent stage within the calendar section 114. According to an exemplary embodiment, calendaring may be accomplished using a number of calendar rolls (not shown) that deliver a calendering pressure in the range of 0-100 pounds per linear inch (PLI). In general, increased calendering pressure is associated with reduced caliper and a smoother tissue surface.


According to an exemplary embodiment of the invention, a ceramic coated creping blade is used to remove the tissue from the Yankee drying drum. Ceramic coated creping blades result in reduced adhesive build up and aid in achieving higher run speeds. Without being bound by theory, it is believed that the ceramic coating of the creping blades provides a less adhesive surface than metal creping blades and is more resistant to edge wear that can lead to localized spots of adhesive accumulation. The ceramic creping blades allow for a greater amount of creping adhesive to be used which in turn provides improved sheet integrity and faster run speeds.


In addition to the use of wet end additives, the tissue of the present invention may also be treated with topical or surface deposited additives. Examples of surface deposited additives include softeners for increasing fiber softness and skin lotions. Examples of topical softeners include but are not limited to quaternary ammonium compounds, including, but not limited to, the dialkyldimethylammonium salts (e.g. ditallowdimethylammonium chloride, ditallowdimethylammonium methyl sulfate, di(hydrogenated tallow)dimethyl ammonium chloride, etc.). Another class of chemical softening agents include the well-known organo-reactive polydimethyl siloxane ingredients, including amino functional polydimethyl siloxane. zinc stearate, aluminum stearate, sodium stearate, calcium stearate, magnesium stearate, spermaceti, and steryl oil.


After the tissue basesheet is produced a laminate, composed of two webs/plies are laminated together in a face-to face relationship using an aqueous adhesive. The adhesives used to laminate the plies of absorbent structure can be water soluble of the group consisting of polyvinyl alcohol, polyvinyl acetate, starch based or mixtures thereof. The mixture is comprised of 1% to 10% by weight of the adhesives. Additionally; the mixture can contain up 10% by weight of a water soluble cationic resin selected from the group consisting of polyamide-epichlorohydrin resins, glyoxalated polyacrylamide resins, polyethyleneimine resins, polyethylenimine resins, or mixtures thereof. The remainder of the mixture is composed of water. This mixture is heated and maintained to a temperature between 90 deg F. to 150 deg F., preferably to 120 F.


The adhesive is heated and maintained at temperature utilizing an insulated stainless steel tank with heating elements uniformly distributed throughout the interior heating surface. The large amount of surface area heated provides uniform heating controlled by an adjustable thermostat. The tank is designed with an agitator that to ensure proper mixing and heat transfer.


The adhesive is applied using an applicator roll, aligned in an axially parallel arrangement with one of the two embossing rolls forming a nip therewith, such that the adhesive applicator roll is upstream of the nip formed between the two embossing rolls. The adhesive applicator roll transfers adhesive to the embossed webs on the embossing roll at the crests of the embossing knobs. The crests of the embossing knobs typically do not touch the perimeter of the opposing roll at the nip formed there between necessitating the addition of a marrying roll to apply pressure for lamination. The marrying roll forms a nip with the same embossing roll forming the nip with the adhesive applicator roll, downstream of the nip formed between the two embossing rolls.



FIG. 3 shows an apparatus for manufacturing a laminate of two plies of an absorbent product that are joined to each other, in a face-to-face relationship, in accordance with an exemplary embodiment of the present invention to form an absorbent product, such as a paper towel. As shown in the figure, two webs 200, 201 of single ply tissue, which may be manufactured, for example, according to a method described above, are fed to respective pairs of mated pressure rolls 203, 205 and substantially axially parallel embossing rolls 204, 206. A first web 200 is thus fed through a nip 202a formed by pressure roll 203 and embossing roll 204 (also known as a pattern roll) and a second web 201 is likewise fed through a nip 202b between pressure roll 205 and embossing roll 206. The embossing rolls 204, 206, which rotate in the illustrated directions, impress an embossment pattern onto the webs as they pass through nip 202a and 202b. After being embossed, each ply may have a plurality of embossments protruding outwardly from the plane of the ply towards the adjacent ply. The adjacent ply likewise may have opposing protuberances protruding towards the first ply. If a three ply product is produced by adding a third pair of mated pressure and embossing rolls, the central ply may have embossments extending outwardly in both directions.


To perform the embossments at nips 202a and 202b, the embossing rolls 204, 206 have embossing tips or embossing knobs that extend radially outward from the rolls to make the embossments. In the illustrated embodiment, embossing is performed by nested embossing in which the crests of the embossing knobs on one embossing roll intermesh with the embossing knobs on the opposing embossing roll and a nip is formed between the embossing rolls. As the web is fed through nips 202a and 202b, a pattern is produced on the surface of the web by the interconnectivity of the knobs on an embossing roll with the open spaces of the respective pressure roll.


An adhesive applicator roll 212 is positioned upstream of the nip 213 formed between the two embossing rolls and is aligned in an axially parallel arrangement with one of the two embossing rolls to form a nip therewith. The heated adhesive is fed from an adhesive tank 207 via a conduit 210 to applicator roll 212. The applicator roll 212 transfers heated adhesive to an interior side of embossed ply 200 to adhere the at least two plies 200, 201 together, wherein the interior side is the side of ply 200 that comes into a face-to-face relationship with ply 201 for lamination. The adhesive is applied to the ply at the crests of the embossing knobs 205 on embossing roll 204.


Notably, in the present invention, the adhesive is heated and maintained at a desired temperature utilizing, in embodiments, an adhesive tank 207, which is an insulated stainless steel tank that may have heating elements 208 that are substantially uniformly distributed throughout the interior heating surface. In this manner, a large amount of surface area may be heated relatively uniformly. Generally, an adjustable thermostat may be used to control the temperature of the adhesive tank 207. It has been found advantageous to maintain the temperature of the adhesive at between approximately 32 degrees C. (90 degrees F.) to 66 degrees C. (150 degrees F.), and preferably to around 49 degrees C. (120 degrees F.). In addition, in embodiments, the tank has an agitator 209 to ensure proper mixing and heat transfer.


The webs are then fed through the nip 213 where the embossing patterns on each embossing roll 204, 206 mesh with one another.


In nested embossing, the crests of the embossing knobs typically do not touch the perimeter of the opposing roll at the nip formed therebetween. Therefore, after the application of the embossments and the adhesive, a marrying roll 214 is used to apply pressure for lamination. The marrying roll 214 forms a nip with the same embossing roll 204 that forms the nip with the adhesive applicator roll 212, downstream of the nip formed between the two embossing rolls 204, 206. The marrying roll 214 is generally needed because the crests of the nested embossing knobs 205 typically do not touch the perimeter of the opposing roll 206 at the nip 213 formed therebetween.


The specific pattern that is embossed on the absorbent products is significant for achieving the enhanced scrubbing resistance of the present invention. In particular, it has been found that the embossed area on any ply should cover between approximately 5 to 15% of the surface area. Moreover, the size of each embossment should be between approximately 0.04 to 0.08 square centimeters. The depth of the embossment should be within the range of between approximately 0.28 and 0.43 centimeters (0.110 and 0.170 inches) in depth.



FIG. 4 shows a sample pattern embossed on the absorbent product according to an embodiment of the present invention. In the illustrated pattern, the embossed area covers approximately 13% of the surface, the embossment depth is approximately 0.34 centimeters (0.135 inches) deep, and the embossment diameter is approximately 0.92 centimeters (0.115 inches) across.


The following testing procedures were followed in determining the various attributes of the Examples and Comparative Examples discussed herein.


Ball Burst Testing


Ball Burst of a 2-ply tissue web was determined using a Tissue Softness Analyzer (TSA), available from EMTECH Electronic GmbH of Leipzig, Germany using A ball burst head and holder. A punch was used to cut out five 100 cm2 round samples from the web. One of the samples was loaded into the TSA, with the embossed surface facing down, over the holder and held into place using the ring. The ball burst algorithm was selected from the list of available softness testing algorithms displayed by the TSA. The ball burst head was then pushed by the EMTECH through the sample until the web ruptured and calculated the grams force required for the rupture to occur. The test process was repeated for the remaining samples and the results for all the samples were averaged.


Stretch & MD, CD, and Wet CD Tensile Strength Testing


An Instron 3343 tensile tester, manufactured by Instron of Norwood, Mass., with a 100N load cell and 25.4 mm rubber coated jaw faces was used for tensile strength measurement. Prior to measurement, the Instron 3343 tensile tester was calibrated. After calibration, 8 strips of 2-ply product, each one inch by four inches, were provided as samples for each test. When testing MD, the strips are cut in the MD direction and in the CD direction when testing CD. One of the sample strips was placed in between the upper jaw faces and clamp, and then between the lower jaw faces and clamp with a gap of 2 inches between the clamps. A test was run on the sample strip to obtain tensile and stretch. The test procedure was repeated until all the samples were tested. The values obtained for the eight sample strips were averaged to determine the tensile strength of the tissue. When testing CD wet tensile, the strips are placed in an oven at 105 deg Celsius. for 5 minutes and saturated with 75 microliters of deionized water immediately prior to pulling the sample.


Basis Weight


Using a dye and press, six 76.2 mm by 76.2 mm square samples were cut from a 2-ply product being careful to avoid any web perforations. The samples were placed in an oven at 105 deg C. for 5 minutes before being weighed on an analytical balance to the fourth decimal point. The weight of the sample in grams is divided by (0.0762 m)2 to determine the basis weight in grams/m2.


Caliper Testing


A Thwing-Albert ProGage 100 Thickness Tester, manufactured by Thwing Albert of West Berlin, using a 2″ diameter pressure foot with a preset loading of 0.93 grams/square inch NJ was used for the caliper test. Eight 100 mm×100 mm square samples were cut from a 2-ply product. The samples were then tested individually and the results were averaged to obtain a caliper result for the base sheet.


Softness Testing


Softness of a 2-ply tissue web was determined using a Tissue Softness Analyzer (TSA), available from EMTEC Electronic GmbH of Leipzig, Germany. The TSA comprises a rotor with vertical blades which rotate on the test piece applying a defined contact pressure. Contact between the vertical blades and the test piece creates vibrations which are sensed by a vibration sensor. The sensor then transmits a signal to a PC for processing and display. The frequency analysis in the range of approximately 200 to 1000 Hz represents the surface smoothness or texture of the test piece and is referred to as the TS750 value. A further peak in the frequency range between 6 and 7 kHz represents the bulk softness of the test piece and is referred to as the TS7 value. Both TS7 and TS750 values are expressed as dB V2 rms. The stiffness of the sample is also calculated as the device measures deformation of the sample under a defined load. The stiffness value (D) is expressed as mm/N. The device also calculates a Hand Feel (HF) number with the higher the number corresponding to a higher softness as perceived when someone touches a tissue sample by hand. The HF number is a combination of the TS750, TS7, and stiffness of the sample measured by the TSA and calculated using an algorithm which also requires the caliper and basis weight of the sample. Different algorithms can be selected for different facial, toilet, and towel paper products. Before testing, a calibration check should be performed using “TSA Leaflet Collection No. 9” available from EMTECH dated 2016 May 10. If the calibration check demonstrates a calibration is necessary, follow “TSA Leaflet Collection No. 10” for the calibration procedure available from EMTECH dated 2015 Sep. 9.


A punch was used to cut out five 100 cm2 round samples from the web. One of the samples was loaded into the TSA, clamped into place (outward facing or embossed ply facing upward), and the TPII algorithm was selected from the list of available softness testing algorithms displayed by the TSA. After inputting parameters for the sample (including caliper and basis weight), the TSA measurement program was run. The test process was repeated for the remaining samples and the results for all the samples were averaged and the average HF number recorded.


Absorbency


Absorbency of a 2-ply product was tested using an M/K GATS Liquid Absorption Tester (available from MK Systems, Inc., Peabody, Mass., USA), following the procedure shown in FIG. 4.


The following examples illustrate the advantages provided by exemplary embodiments of the present invention.


Comparative Example 1

Paper towel was produced on a wet-laid asset with a three layer headbox using the through air dried method. The three layers of the single ply of towel were labeled as air, core and Yankee. The air layer was the outer layer that was placed on the structuring fabric, the dryer layer was the outer layer that was closest to the surface of the Yankee dryer, and the core was the center section of the towel.


The towel was produced using 50% eucalyptus and 50% northern bleached softwood kraft (NBSK) fibers prepared individually. The NBSK was refined at 90 kwh/ton with 12 kg/ton polyamine polyamide-epichlorohydrin resin, named Kymene 821 from Solenis (500 Hercules Road, Wilmington Del., 19808), added at the discharge of the refiner. The NBSK and eucalyptus fibers were then mixed together with 4.0 kg/ton of CMC. The pulp was then split fed evenly to three layers with a dry strength additive, Redibond 2038 (Corn Products, 10 Finderne Avenue, Bridgewater, N.J. 08807), added to the core layer and 1.5 kg/ton Hercobond 6950, a polyvinyl amine retention aid from Solenis, added to all three layers. The fiber and chemical mixtures were diluted to a solids of 0.5% consistency at the suction of three fan pumps which delivered the slurry to a triple layered headbox.


The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and inner forming wire where the wires were running at a speed of 1272 m/min. The slurry was drained through the outer wire, which was a KT194-P design supplied by Asten Johnson (4399 Corporate Rd, Charleston, S.C. (843) 747-7800)), to aid with drainage, fiber support, and web formation. When the fabrics separated, the web followed the inner forming wire and was dried to approximately 27% solids using a series of vacuum boxes and a steam box at 30 kpa pressure and 145 deg C.


The web was then transferred to a structuring fabric running at 1200 m/min with the aid of a vacuum box to facilitate fiber penetration into the structuring fabric to enhance bulk softness and web imprinting. The structuring fabric was the Prolux 646 supplied by Albany (216 Airport Drive Rochester, N.H. 03867 USA Tel: +1.603.330.5850). The fabric was a 10 shed design with 12.0 yarn/cm Mesh and Count, a 0.35 mm warp monofilament, a 0.50 mm weft monofilament, a 1.29 mm caliper, with a 670 cfm and a knuckle surface that was sanded to impart 12% contact area with the Yankee dryer. The web was then dried with the aid of two TAD hot air impingement drums to 80% moisture before transfer to the Yankee dryer. The web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 300 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 125 deg C. The web was creped from the Yankee at 1% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


The towel was then plied together using the method described above with reference to FIG. 3, using a steel emboss roll with the pattern shown in FIG. 4 and 7% polyvinyl alcohol based adhesive heated to 120 deg F. The rolled 2-ply product had 150 sheets, a roll diameter of 148 mm, with sheets a length of 6.0 inches and width of 11 inches. The 2-ply tissue product further had the following product attributes: Basis Weight 42.7 g/m2, Caliper 0.891 mm, MD tensile of 512 N/m, CD tensile of 492 N/m, a ball burst of 1329 grams force, an MD stretch of 10.7%, a CD stretch of 11.0%, a CD wet tensile of 145.4 N/m, an absorbency of 697 gsm, a HF softness of 45.1, a TS7 of 24.56, a TS750 of 63.84 and a D value of 2.04 mm/N. The CD wet tensile was 30% the value of the CD dry tensile.


Comparative Example 2

Paper towel was produced on a wet-laid asset with a three layer headbox using the through air dried method. The three layers of the single ply of towel were labeled as air, core and Yankee. The air layer was the outer layer that was placed on the structuring fabric, the dryer layer was the outer layer that was closest to the surface of the Yankee dryer, and the core was the center section of the towel.


The towel was produced using 50% eucalyptus and 50% northern bleached softwood kraft (NBSK) fibers prepared individually. The NBSK was refined at 100 kwh/ton with 12 kg/ton polyamine polyamide-epichlorohydrin resin, named Kymene 821 from Solenis (500 Hercules Road, Wilmington Del., 19808), added at the discharge of the refiner. The NBSK and eucalyptus fibers were then mixed together with 6.0 kg/ton of Hercobond 2800, an anionic polyacrylamide from Solenis. The pulp was then split fed evenly to three layers with 2.0 kg/ton of glyoxylated polyacrylamide, named Fennorez 1000 from Kemira, (1000 Parkwood Circle, Suite 500 GA 30339 Atlanta Tel. +1 770 436 1542), added to the Yankee and air layer and 0.5 kg/ton of Hercobond 6950 polyvinyl amine from Solenis added to the core layer. The fiber and chemical mixtures were diluted to a solids of 0.5% consistency at the suction of three fan pumps which delivered the slurry to a triple layered headbox.


The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and inner forming wire where the wires were running at a speed of 1272 m/min. The slurry was drained through the outer wire, which was a KT194-P design supplied by Asten Johnson (4399 Corporate Rd, Charleston, S.C. (843) 747-7800)), to aid with drainage, fiber support, and web formation. When the fabrics separated, the web followed the inner forming wire and was dried to approximately 27% solids using a series of vacuum boxes and a steam box at 30 kpa pressure and 145 deg C.


The web was then transferred to a structuring fabric running at 1200 m/min with the aid of a vacuum box to facilitate fiber penetration into the structuring fabric to enhance bulk softness and web imprinting. The structuring fabric was the Prolux 646 supplied by Albany (216 Airport Drive Rochester, N.H. 03867 USA Tel: +1.603.330.5850). The fabric was a 10 shed design with 12.0 yarn/cm Mesh and Count, a 0.35 mm warp monofilament, a 0.50 mm weft monofilament, a 1.29 mm caliper, with a 670 cfm and a knuckle surface that was sanded to impart 12% contact area with the Yankee dryer. The web was then dried with the aid of two TAD hot air impingement drums to 80% moisture before transfer to the Yankee dryer. The web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 300 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 125 deg C. The web was creped from the Yankee at 1% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


The towel was then plied together using the method described above with reference to FIG. 3, using a steel emboss roll with the pattern shown in FIGS. 4 and 7% polyvinyl alcohol based adhesive heated to 120 deg F. The rolled 2-ply product had 150 sheets, a roll diameter of 148 mm, with sheets a length of 6.0 inches and width of 11 inches. The 2-ply tissue product had the following product attributes: Basis Weight 41.76 g/m2, Caliper 0.889 mm, MD tensile of 441 N/m, CD tensile of 390 N/m, a ball burst of 1131 grams force, an MD stretch of 10.9%, a CD stretch of 11.0%, a CD wet tensile of 96.35 N/m, an absorbency of 714 gsm, and a HF softness of 44.7, a TS7 of 22.52, a TS750 of 76.77, and a D value of 2.21 mm/N. The CD wet tensile was 25% of the value of the CD dry tensile.


Example 1

Paper towel was produced in the same way as described in Comparative Example 2 with the exception of mixing of 350 ppm of Hercobond 8922, a multicomponent (more than one) exocellulase enzyme from Solenis, with the NBSK in a virgin pulper for 1 hr before refining.


The rolled 2-ply product had 150 sheets, a roll diameter of 148 mm, with sheets a length of 6.0 inches and width of 11 inches. The 2-ply tissue product had the following product attributes: Basis Weight 41.54 g/m2, Caliper 0.881 mm, MD tensile of 515 N/m, CD tensile of 395 N/m, a ball burst of 1223 grams force, an MD stretch of 10.7%, a CD stretch of 10.7%, a CD wet tensile of 150.6 N/m, an absorbency of 700 gsm, a HF softness of 47.1, a TS7 of 22.93, a TS750 of 59.51, and a D value of 2.17 mm/N. The CD wet tensile was 38% of the value of the CD dry tensile.


Example 1, which included the addition of a cellulase enzyme, provided significant improvement in quality attributes as compared to Comparative Example 2. Specifically, the addition of 350 ppm of the cellulase to the NBSK furnish increased Geometric Mean Tensile (square root of the product of MD tensile and CD tensile) by 8.8%, Ball Burst Strength by 8.1%, and wet CD tensile by 56% as compared to Comparative Example 2. The CD wet tensile improved from 25% to 38% of the value of the CD dry tensile. The softness also improved, which was unexpected as softness is typically inversely proportional to tensile strength. Without being bound by theory, it is believed the cellulase enzymes disrupted the crystalline structure of the fiber's cellulose molecules, increasing fiber fibrillation, and exposing more surface area for fiber to fiber bonding and chemical to fiber bonding to occur. This resulted in the improvement in strength properties. The improvement in softness was driven by a reduction in the TS750 parameter measured by the Tissue Softness Analyzer showing an improvement in the surface smoothness of the product. Literature has indicated that cellulase enzyme products degrade fines (by catalyzing the hydrolysis of B-1-4 glycosidic bonds) that collect on the surface of the fibers providing a cleaner fiber surface. Without being bound by theory, it is possible that this cleaner fiber surface improves the smoothness of the product and reduces the TS750 parameter measured by the Tissue Softness Analyzer.


Now that embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be construed broadly and not limited by the foregoing specification.

Claims
  • 1. A method of making an absorbent structure comprising: forming a stock mixture of fibers, a cationic wet strength resin, an anionic polyacrylamide and a cellulase enzyme; andat least partially drying the stock mixture to form a web.
  • 2. The method of claim 1, wherein the step of forming the at least partially dried stock mixture into a web comprises forming two or more webs.
  • 3. The method of claim 2, further comprising plying the two or more webs together to form a multi-ply absorbent structure.
  • 4. The method of claim 1, wherein the web is formed by forming a first web and a second web and layering the first and second webs together so that the web is a multi-layer web.
  • 5. The method of claim 1, wherein the cationic wet strength resin comprises one of a type selected from the group consisting of: polyethyleneimine, polyethylenimine, polyaminoamide-epihalohydrin (preferably epichlorohydrin) polyamine-epichlorohydrin, polyamide, polyvinyl amide wet strength resin and combinations thereof.
  • 6. The method of claim 1, wherein the cellulase enzyme comprises mono-component or multi-component endo-cellulases, exo-cellulases, or cellobiase cellulases.
  • 7. The method of claim 1, further comprising use of a structured fabric to form the web.
RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Application No. 62/380,137, filed Aug. 26, 2016 and entitled METHOD OF PRODUCING ABSORBENT STRUCTURES WITH HIGH WET STRENGTH, ABSORBENCY, AND SOFTNESS, the contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (427)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmalz Jul 1965 A
3224986 Butler et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
4836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositake Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chiu et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 DiPalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Burgess et al. Jun 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Barnholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Sep 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. May 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 VanderTuin et al. Jan 2007 B2
7157389 Branham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 VanderTuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Floding et al. Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842163 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
3034463 Leimbach et al. Oct 2011 A1
3051629 Pazdemik et al. Nov 2011 A1
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980062 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam et al. Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorensson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Elony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Edwards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090218056 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Van Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140174685 Gu et al. Jun 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284011 Krapsch et al. Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150059995 Ramaratnam et al. Mar 2015 A1
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160145810 Miller, IV et al. May 2016 A1
20160159007 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170226698 LeBrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170253422 Anklam et al. Sep 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (42)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
200382550 Oct 2003 WO
200445834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
201500755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Jun 2016 WO
2016108741 Jul 2016 WO
2016122477 Aug 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Non-Patent Literature Citations (27)
Entry
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015.
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016.
Venditti, Richard, Dr., “Enzyme Applications in Pulp and Paper: An Introduction to Applications,” Buckman Laboratories, (Slides courtesy of Phil Hoekstra). Apr. 29, 2009.
International Search Report for PCT/US16/56871 dated Jan. 12, 2017.
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12, 2017.
International Search Report for PCT/US2016/057163 dated Dec. 23, 2016.
Written Opinion of International Searching Authority for PCT/US2016/057163 dated Dec. 23, 2016.
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017.
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017.
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017.
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017.
International Search Report for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US15/63986 dated Mar. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016.
International Search Report for PCT/US15/64284 dated Feb. 11, 2016.
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016.
International Search Report for PCT/US13/53593 dated Dec. 30, 2013.
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013.
International Search Report for PCT/US15/31411 dated Aug. 13, 2015.
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015.
International Search Report for PCT/US15/60398 dated Jan. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016.
International Search Report for PCT/US15/62483 dated May 6, 2016.
International Search Report of PCT/US17/48718 dated Nov. 8, 2017.
Written Opinion of PCT/US17/48718 dated Nov. 8, 2017.
Related Publications (1)
Number Date Country
20180058011 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
62380137 Aug 2016 US