The present invention relates to a transformer containing an iron core composed of an amorphous alloy thin band and a winding, and particularly to an amorphous transformer for electric power supply characterized by the material of the iron core and the annealing treatment of the iron core.
Conventionally, an amorphous transformer using an amorphous alloy as the material of the iron core is known. In this amorphous transformer, amorphous alloy foil bands are laminated and bent in a U-shape, and both ends of the amorphous alloy foil bands are butted or overlapped to provide a wound iron core, and the iron loss can be smaller than that of transformers using conventional electromagnetic steel sheets.
However, in the wound iron core structure, stress to worsen the magnetic properties occurs when the material is bent. Therefore, it is necessary to subject the iron core to annealing treatment in a magnetic field to release the stress in order to improve the above magnetic properties. By performing annealing treatment, recrystallization starts inside the material to lead to embrittlement. This applies not only to amorphous alloys but also to electromagnetic steel sheets. At this time, the annealing conditions have a connection with the composition of the alloy, and for Metglas® 2605SA1 of a conventional material, annealing is performed at a temperature of more than 330° C. for 30 minutes or more. Also, in Patent Document 1, the annealing conditions are decided using an original formula.
Patent Document 1: JP-A-58-34162
An amorphous alloy having a composition different from that of conventional common materials wherein the amorphous ally can provide a high saturation magnetic flux density and a lower loss has been developed by one of the applicants of this application, and this invention has been filed as the patent application (Japanese Patent Application No. 2005-62187). In the patent application for this new material, the composition is mainly described, and detail annealing conditions are not described. However, the composition of the new material is different from that of the conventional common materials. In the circumstances, there is a possibility that the annealing treatment of the above amorphous alloy is different from conventional annealing treatments.
Therefore, it is an object of the present invention to select the optimal annealing conditions for the new material and provide an amorphous transformer for electric power supply having lower loss than transformers using conventional amorphous alloys.
The present invention is an amorphous transformer for electric power supply containing an iron core composed of an amorphous alloy thin band and a winding, wherein the iron core has been subjected to annealing treatment in which the temperature of the center portion of the iron core during annealing after the iron core is formed and shaped is 300 to 340° C. and the holding time is 0.5 hr or more.
Also, in the amorphous transformer for electric power supply, the magnetic field strength of the iron core of the present invention during annealing after the iron core is formed and shaped is 800 A/m or more.
Further, the amorphous alloy thin band of the present invention preferably contains an amorphous alloy composed of an alloy composition expressed by FeaSibBcCd (Fe: iron, Si: silicon, B: boron, and C: carbon) in which 80≦a≦83%, 0<b≦5%, 12≦c≦18%, and 0.01≦d≦3% in atomic % and an unavoidable impurity. The amorphous alloy thin band having this composition has a high Bs (i.e. saturation magnetic flux density) and an excellent squareness property, so that even if the annealing temperature is low, a magnetic core having properties superior to those of conventional materials can be provided. An amorphous alloy thin band, in which when the concentration distribution of C is measured from the free surface and roll surface of the amorphous alloy thin band to the inside, the peak value of the concentration distribution of C is at a depth in the range of 2 to 20 nm, is preferable as the amorphous alloy thin band for the amorphous transformer for electric power supply.
The reasons for limiting the composition will be described below. Hereinafter, the symbol described as expresses atomic %.
If the symbol “a” representing the amount of Fe is less than 80%, saturation magnetic flux density sufficient as the iron core material is not obtained. Also, if “a” is more than 83%, the thermal stability decreases, and therefore a stable amorphous alloy thin band cannot be manufactured. In view of the circumstances, 80≦a≦83% is preferable. Further, 50% or less of the amount of Fe may be substituted by one or two of Co and Ni. The substitution amount is preferably 40% or less for Co and 10% or less for Ni to obtain a high saturation magnetic flux density.
Regarding the symbol “b” representing the amount of Si which is an element that contributes to an amorphous forming ability, it is preferably 5% or less to improve a saturation magnetic flux density.
Regarding the symbol “c” representing the amount of B, it most contributes to an amorphous forming ability. If “c” is less than 8%, the thermal stability decreases. Even if “c” is more than 18%, no improvement effect such as an amorphous forming ability is seen. Also, “c” is preferably 12% or more to maintain the thermal stability of the amorphous having a high saturation magnetic flux density.
C is effective for improving squareness and saturation magnetic flux density. However, if symbol “d” representing the amount of C is less than 0.01%, the effect is little. If “d” is more than 3%, the embrittlement occurs, and the thermal stability decreases.
Also, 0.01 to 5% of one or more elements of Cr, Mo, Zr, Hf, and Nb may be included, and 0.50% or less of at least one or more elements from Mn, S, P, Sn, Cu, Al, and Ti may be contained as an unavoidable impurity.
Further, in the amorphous transformer for electric power supply, the symbol “b” representing the amount of Si in atomic % and the symbol “d” representing the amount of C satisfy the relation of b≦(0.5×a−36)×d1/3 in the amorphous alloy thin band of the present invention.
Also, the present invention is the amorphous transformer for electric power supply wherein a saturation magnetic flux density of the amorphous alloy thin band after annealing is 1.60 T or more.
The present invention is the amorphous transformer for electric power supply wherein the magnetic flux density of the iron core at an external magnetic field of 80 A/m after annealing is 1.55 T or more.
Further, the present invention is the amorphous transformer for electric power supply wherein the magnetic flux density of the iron core after annealing is 1.4 T, and the iron loss W14/50 of a toroidal sample of the iron core at a frequency of 50 Hz is 0.28 W/kg or less.
Also, the present invention is the amorphous transformer for electric power supply wherein the fracture strain ε of the iron core after annealing is 0.020 or more.
According to the present invention, for an amorphous alloy having a composition of FeSiBC (Fe: iron, Si: silicon, B: boron, and C: carbon) different from that of conventional common materials wherein the amorphous alloy has a high saturation magnetic flux density and a lower loss, an amorphous transformer for electric power supply containing a magnetic core with properties superior to those of conventional materials even if the annealing temperature is low can be provided.
The best mode for carrying out the present invention will be described.
The examples of amorphous transformers for electric power supply according to the present invention will be described using the drawings.
Example 1 will be described. An amorphous transformer for electric power supply according to this example contains an iron core, in which amorphous alloy foil bands are laminated and bent in a U-shape and both ends of the amorphous alloy foil bands are butted or overlapped, and a winding.
An amorphous alloy thin band used for the iron core of this example contains an amorphous alloy composed of an alloy composition expressed by FeaSibBcCd (Fe: iron, Si: silicon, B: boron, and C: carbon) in which 80≦a≦83%, 0<b≦5%, 12≦c≦18%, and 0.01≦d≦3% in atomic % and an unavoidable impurity. When the concentration distribution of C is measured from the free surface and roll surface of the amorphous alloy thin band to the inside, the peak value of the concentration distribution of C is at a depth in the range of 2 to 20 nm. Annealing has been performed, with the temperature of the center portion of the iron core during annealing after the iron core is formed and shaped being 320±5° C. and the holding time being 60±10 minutes. The magnetic field strength during annealing after the iron core is formed and shaped is 800 A/m or more.
In the amorphous alloy thin band of this example, “b” representing the amount of Si in atomic % and “d” representing the amount of C preferably satisfy the relation of b≦(0.5×a−36)×d1/3. As shown in
The magnetic flux density of the iron core of this example at an external magnetic field of 80 A/m after annealing is 1.55 T or more. Also, the magnetic flux density of the iron core of this example after annealing is 1.4 T, and the iron loss W14/50 of a toroidal sample of the iron core of this example at a frequency of 50 Hz is 0.28 W/kg or less. The fracture strain ε of the iron core of this example after annealing is 0.020 or more.
The annealing conditions of the iron core of the amorphous transformer of this example will be described. As the iron core of the example, an amorphous alloy composed of an alloy composition expressed by FeaSibBcCd (Fe: iron, Si: silicon, B: boron, and C: carbon) in which 80≦a≦83%, 0<b≦5%, and 12≦c≦18% in atomic % was used. Also, as a comparative example, an amorphous alloy composed of an alloy composition expressed by FeaSibBcCd (Fe: iron, Si: silicon, B: boron, and C: carbon) in which 76≦a≦81%, 5<b≦12%, 8≦c≦12%, and 0.01≦d≦3% in atomic % and an unavoidable impurity was used.
Annealing treatment was carried out under different conditions. The annealing time was 1 hour. In
Next, Example 2 will be described. The amorphous transformer of this Example 2 differs from Example 1 in the material of the amorphous alloy thin band. The amorphous alloy thin band of Example 2 contains an amorphous alloy composed of an alloy composition expressed by FeaSibBcCd (Fe: iron, Si: silicon, B: boron, and C: carbon) in which 80≦a≦83%, 0<b≦5%, 12≦c≦18%, and 0.01≦d≦3% in atomic % and an unavoidable impurity. The saturation magnetic flux density of the amorphous alloy thin band of Example 2 after annealing is 1.60 T or more. Numerical values other than these are similar to those of Example 1. The magnetic properties and the like corresponding to annealing conditions were also substantially similar to those of Example 1.
Number | Date | Country | Kind |
---|---|---|---|
2006-051754 | Feb 2006 | JP | national |
This is a Divisional Application of U.S. application Ser. No. 12/280,810, filed Aug. 27, 2008, which is a national stage application of international application No. PCT/JP2007/053581, filed Feb. 27, 2007 and claims priority from Japanese application serial No. 2006-051754, filed on Feb. 28, 2006, the contents each of which are hereby incorporated by reference into this application.
Number | Name | Date | Kind |
---|---|---|---|
4249969 | DeCristofaro et al. | Feb 1981 | A |
4409041 | Datta et al. | Oct 1983 | A |
4763030 | Clark et al. | Aug 1988 | A |
5252144 | Martis | Oct 1993 | A |
7425239 | Ogawa et al. | Sep 2008 | B2 |
20060000524 | Ogawa et al. | Jan 2006 | A1 |
20060191602 | Hasegawa et al. | Aug 2006 | A1 |
20090189728 | Fukui et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1520598 | Aug 2004 | CN |
1 615 240 | Jan 2006 | EP |
1 615 241 | Jan 2006 | EP |
58-34162 | Feb 1983 | JP |
S58-42751 | Mar 1983 | JP |
H7-122097 | Feb 1988 | JP |
H04-302114 | Oct 1992 | JP |
H04-306816 | Oct 1992 | JP |
05-114525 | May 1993 | JP |
H05-114525 | May 1993 | JP |
H05-251252 | Sep 1993 | JP |
59-150415 | Aug 1994 | JP |
10-323742 | Dec 1998 | JP |
2002-285304 | Oct 2002 | JP |
2003-338418 | Nov 2003 | JP |
2005-39143 | Feb 2005 | JP |
2006-045662 | Feb 2006 | JP |
2006-241569 | Sep 2006 | JP |
WO 02086921 | Oct 2002 | WO |
WO-2008-136142 | Nov 2008 | WO |
Entry |
---|
DeMaw, M. F., “Ferromagnetic-Core Design and Application Handbook”, Prentice-Hall, Inc., 1981, pp. 2-4. |
U.S. Office Action mailed Jun. 9, 2011, in connection with U.S. Appl. No. 12/280,810, filed Nov. 13, 2008, 14 pages, U.S. Patent and Trademark Office, United States. |
Chinese Office Action dated Jul. 20, 2010. |
EP Office Action of Appln. 07 71 4974 dated Jan. 27, 2010 in English. |
Official Action dated Jan. 29, 2010, Patent Application No. 2006-051754, 3 pages, Japan Patent Office, Japan. |
Decision of Patent Grant dated Jul. 20, 2010, Patent Application No. 2006-051754, 3 pages, Japan Patent Office, Japan. |
Number | Date | Country | |
---|---|---|---|
20110203705 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12280810 | US | |
Child | 13101364 | US |