The present invention relates to a method to produce a liquid which is aromatised with aroma compounds derived from cocoa or cocoa-based products, e.g. aroma compounds derived from cocoa powder, cocoa liquor, or reaction products formed during the production of chocolate and chocolate compound. The resulting aromatised liquid can for example be used to modify or improve the flavour profile of liquid chocolate, a liquid chocolate compound, or an aqueous liquid to be used e.g. in the production of soluble powders for the preparation of instant chocolate drinks.
Aromas are an important part of cocoa liquor and hence of any product containing cocoa or chocolate. The aroma profile depends on variety and origin of the cocoa, but also on the further processing, in particular the conching step, and is very difficult to master. In addition to aromas originating from the cocoa powder or the cocoa liquor, aromas coming from milk powder, which is used as an ingredient in liquid chocolate, and aromas coming from various reaction products generated during the manufacturing of liquid chocolate play an important role for the final aroma or flavour profile of cocoa-based products such as chocolate or chocolate compound (e.g. where cocoa butter is partially/totally replaced by known cocoa butter equivalents (CBE) or cocoa butter substitutes (CBS). For the consumer perception the aroma profile is obviously extremely important. During the usual processing of the chocolate, it can happen that volatiles which would be desirable in the final product are lost.
In the production of soluble coffee it is known to recover coffee aromas which are given off during the processing of the soluble coffee powder and to reincorporate these aromas, e.g. into concentrated coffee extract prior to drying into a soluble coffee powder. The coffee aromas may be recovered at several points during processing, e.g. by aroma stripping of roast and ground coffee prior to extraction. WO 01/13735 discloses a method of recovering coffee aroma from coffee grounds comprising wetting, heating and stripping aroma from coffee grounds exposing the coffee grounds to a decreased pressure. The coffee aroma compounds released by this treatment are then recovered. EP 1069830 (note: GEAR patent) discloses a method comprising providing a slurry of roast and ground coffee and stripping aroma from this slurry by using a gas to provide an aromatised gas. In both methods aroma compounds are released from roast and ground coffee into a gas phase from where it is collected. This gas stream is composed of gases previously trapped in the roast coffee (primarily carbon dioxide), and possibly entrained air or steam. Recovering aroma from the gas is usually achieved by condensation of the aroma at low temperature, e.g. by cryogenic condensation. Cryogenic condensation is expensive and further does not lead to a complete recovery of all highly volatile coffee aroma compounds. There is a need to improve the recovery of high volatile aroma compounds and to reduce cost and complexity without subjecting the aroma containing gas to elevated temperatures that would lead to degradation of aroma compounds.
So far similar methods have not been discussed for the use in chocolate making
The inventors have found that a gas comprising aroma derived from cocoa or cocoa-based products, and water can be condensed to produce a gas phase and a liquid aqueous phase. The gas phase comprising aroma compounds can be pressurised in the presence of an absorption liquid leading to the transfer of aroma compounds from the gas phase to the absorption liquid to produce an aromatised liquid. In this process the temperature increase that would normally happen during a pressurisation is avoided by the cooling effect of the liquid, and the recovery of highly volatile aroma compounds is improved compared to prior art methods.
Therefore, the present invention relates to a method of producing an aromatised liquid, the method comprising: a) providing a gas comprising aroma derived from cocoa or cocoa-based products, and water; b) condensing the aroma and water comprising gas, to provide a liquid aqueous phase and a gas phase; and c) subjecting the gas phase obtained by step b) to pressurisation in the presence of an absorption liquid to produce an aromatised liquid.
The cocoa-based product used to obtain the aromas can for example be liquid chocolate or a liquid chocolate compound, and in this case the aroma may come from various ingredients of the liquid chocolate or chocolate compound, and not necessarily from the cocoa itself.
In the example illustrated in
According to the present invention, in a next step a gas comprising aroma from cocoa or a cocoa based product—for example liquid chocolate or a liquid chocolate compound—and water is provided.
In the following it will only be referred to as “liquid chocolate”, but it should be noted that this covers in the present context liquid chocolate as well as any type of liquid chocolate compounds. It should also be noted that the aroma can also be derived from cocoa directly, e.g. during or after roasting.
In the case where liquid chocolate, a liquid chocolate compound, or other liquid cocoa-based product are used, the aroma may be obtained from the liquid chocolate by any suitable method. Several such methods are well known to the skilled person. Preferably, the gas comprising aroma is obtained by stripping liquid chocolate or other cocoa based product to obtain an aroma containing gas.
This operation can be performed in one or more steps. It can be performed by acting on the pressure, preferably using a pressure lying between 0.1-3 bar, and/or by increasing the liquid—gas contact surface in order to improve the volatiles transfer from the liquid phase to the gas phase. The gas phase can be composed either of: (a) dry air or (b) steam. Dry air can be successfully used to extract water and volatiles from the liquid. Steam can also be used to extract volatiles and can then easily be condensed in a downstream unit. Moreover, using steam can prevent oxidation of some sensitive compounds. As a separation unit any machine which creates a higher gas-liquid contact surface, thus improving the volatiles mass transfer, can be used.
The aroma and water comprising gas is condensed to provide a liquid aqueous phase and a gas phase. Condensation can be achieved by any suitable means, but will usually be achieved by lowering the temperature of the gas so that a liquid aqueous phase condenses from the aroma and water comprising gas. The temperature used will e.g. depend on the pressure in the system and the moisture content of the aroma and water comprising gas. Usually, the aroma and water comprising gas will be condensed at a temperature between 0 to 90° C., such as between 0 and 40° C., such as between 5 and 30° C., or between 5 and 20° C. The pressure will usually be between 0.1 and 3 bar absolute pressure, such as between 0.2 and 2 bar absolute pressure, or between 0.3 and 1 bar absolute pressure. Any suitable condenser known in the art may be used. In a preferred embodiment of the invention, the aroma and water containing gas is not subjected to conditions of temperature and pressure whereat water will be in the solid phase (ice). In a further preferred embodiment, the aroma and water comprising gas is subjected to a minimum temperature above 0° C. during the process.
The condensate can either simply be stored for further use, or it can optionally be treated to eliminate unwanted aroma compounds (additional process step not shown in
The gas phase obtained by the condensation of the aroma and water comprising gas is subjected to pressurisation in the presence of an absorption liquid to produce an aromatised aqueous liquid (step 3) in
Pressurisation can be performed in one or more stages. Having several stages with different temperature/pressure values, and/or using different absorption liquids allows Several aromatized liquids containing different aroma compounds can thereby be obtained from this pressurization stage. These can then for example be selectively re-introduced into the initial liquid chocolate or into another food product.
The pressurisation may be performed in any suitable container or apparatus. The contact surface between the gas phase and the aqueous liquid and the contact time should be sufficient to allow effective transfer of aroma compounds from the gas phase to the liquid aqueous phase and to allow the temperature to be kept within the desired range. The temperature during the pressurisation may e.g. be kept at a desired level by circulating the aqueous liquid through a cooling device to remove heat generated by the pressurisation of the gas phase. As already mentioned, the absorption liquid present during pressurisation may be any suitable liquid, such as e.g. water or cocoa butter. In a preferred embodiment the liquid present during the pressurisation comprises all or a part of the aqueous liquid phase obtained by the condensation of the aroma and water comprising gas. In this way the condensed aqueous liquid phase which may already comprise low and medium volatile chocolate aroma components that were condensed together with water during the condensation step, may be further aromatised by transferring highly volatile aroma compounds to it from the gas phase, such that both aroma condensed during the condensation step and aroma transferred from the gas phase during the pressurisation step may be utilised.
In a preferred embodiment, the pressurisation in presence of an absorption liquid is performed in a liquid ring compressor. A liquid ring compressor compresses gas by rotating a vaned impeller eccentric to a cylindrical casing. The absorption liquid is fed into the pump and, by centrifugal acceleration, forms a moving cylindrical ring against the inside of the casing. This liquid ring creates a series of seals in the space between the impeller vanes, which form compression chambers. The eccentricity between the impeller's axis of rotation and the casing geometric axis results in a cyclic variation of the volume enclosed by the vanes and the ring of aqueous liquid. The gas phase is drawn into the pump via an inlet port in one end of the casing where the volume of the compression chambers formed by the impeller vanes and the liquid ring is largest and the gas is trapped in the compression chambers. The reduction in volume caused by the impeller rotation compresses the gas, and the compressed gas leaves the compressor at a discharge port in the other end of the casing where the volume of the compression chambers is smallest. The function of a liquid ring compressor is illustrated in
As schematically shown in
In the case where the liquid which has been used as an absorption liquid is not or at least partly not desired in the end product, it has to be separated from the aromatised liquid obtained in an additional process step (cf. step 5) in
The aromatized liquid obtained, or selected aroma components thereof in the case of additional cleaning or separation steps as discussed above, can be used immediately, e.g. by mixing it with the initial liquid chocolate or liquid chocolate compound, as shown in
If not used immediately, the aromatised aqueous liquid may preferably be stored under pressure until used. Any suitable pressure may be used, e.g. in the range between 1 and 20 bar absolute pressure. Preferably the storage pressure is the same as the pressure in the compressor.
The method of the present invention may be utilised in the production of chocolate, chocolate compound or any food products based on or containing chocolate. It can also be used in food products containing a cocoa or chocolate aroma such as powdered beverages, ice-cream or other confectionery products.
It allows to provide a final product with the desired characteristics of flavour in a controllable and efficient manner.
The invention is further illustrated by the following non-limiting examples:
A cocoa liquor feedstream, heated to a temperature of about 115±2° C., was stripped with air in a mixing chamber under vacuum, at a pressure of 0.80 bar absolute, to generate a gas stream containing chocolate aroma compounds and moisture. The gas stream was drawn off the mixing chamber and fed to a condenser operating at about 10° C. to obtain an aromatised liquid phase and a gas phase. The gas phase obtained from the condenser was then fed to a liquid ring compressor. The pressure in the liquid ring compressor was increased to about 1.03 bar absolute, at a temperature of about 28° C. Water was used to form the liquid in the liquid ring compressor. The gas leaving the liquid ring compressor was discarded. The recovery of key aroma compounds in the aromatised liquid exiting the liquid ring compressor was analysed by GC-MS:
Samples of the liquid (4 g) were weighed into 20 ml screw-top headspace vials. Each vial was equilibrated for 60 minutes at 55° C. and the headspace volatiles adsorbed onto a PDMS-DVB SPME fibre for 30 minutes also at 55° C. The volatiles were desorbed for 5 minutes at 220° C. in the injector of an Agilent 7890A Gas Chromatograph operating in splitless mode, and separated on a 60 m×0.25 mm internal diameter×0.25 μm film DB-Wax column (Agilent). The GC oven was programmed from 40° C. (5 min) to 220° C. at 3° C./min and eluting compounds fragmented by electron impact ionisation in an Agilent 5975C mass spectrometer. The components were identified by comparing their fragmentation patterns to those contained in a spectral library (reference spectral library NIST08).
The resultant total ion current chromatogram is shown in
Number | Date | Country | Kind |
---|---|---|---|
11171079.4 | Jun 2011 | EP | regional |
61499778 | Jun 2011 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/061989 | 6/21/2012 | WO | 00 | 12/18/2013 |