According to the invention, such a lamp 1 is provided with a coating 10 as shown in
These holes 11 are produced by setting specific process parameters during the coating operation or in a post-treatment process following the coating operation, wherein the surface density and/or average size are precisely defined by selecting suitable parameters.
In both cases, these are multilayer coatings with alternating Si and SiO2 layers. The layers have in each case been applied in a so-called MicroDyn sputtering process. This process is a sputtering process in which the plasma is produced not by particle bombardment but rather by microwaves. As a result, even higher densities and higher refractive indices can be achieved than in the conventional ion-assisted vapor-deposition of layers. In particular, there is no diffusion between the individual layers. These lamps coated in this way have then been exposed to a defined thermal post-treatment process.
The process of producing such a lamp 1 is shown once again in
In the examples of embodiments shown in
For most use purposes, it is sufficient to produce a uniform density distribution and average size as shown in
It has been found that the thermal post-treatment of the coating does not have any negative effects on the reflection spectrum. The filter edge is merely shifted towards lower wavelengths.
The coating should therefore preferably be built up such that the filter edge of the coating lies in the range from 830 to 880 nm at an operating temperature of the lamp. The number and size of the holes made is then sufficient to compensate the residual red light in the run-up phase of the lamp. Preferably, the filter edge should lie in the range from 730 to 780 nm in the “cold” state of the lamp. The coating on the lamp reaches a temperature of 600-700° C. approximately three minutes after switch-on. In the process, the filter edge is shifted by 100 nm into the desired range of 830 to 880 nm.
The IR light IR exiting from the infrared lamp 1 according to the invention is emitted via the reflector 14 out of the headlamp 15 in the emission direction A into the traffic space and strikes any object O located in said traffic space. This object O reflects the IR radiation. The reflected IR radiation IRR is detected by an infrared-sensitive camera system 16 which is located in the vehicle 13 for example at the top behind the windscreen. In principle, the IR-sensitive detector used may be a normal CCD or CMOS camera. Such cameras are IR-sensitive anyway, and for use in normal cameras have an IR filter which need only be removed for use in a night vision system. Preferably, a camera system 16 comprising two cameras at a distance from one another may be used in order to be better able to detect spatial information. After suitable processing, the images recorded by the IR camera system 16 can then be displayed to the driver of the motor vehicle 13 on a display (not shown). Automatic evaluation of the data is also possible, so that the driver is notified about objects O located on the road for example by means of acoustic signals or light signals.
In one particularly preferred example of embodiment, in such a motor vehicle night vision system use is made of a lamp 1—as shown in FIG. 2—which does not have any coating in the pinch area 8 and in the region of the sealed tip 9 but is provided with the coating 10 on all of the rest of its surface, said coating having the holes 11 according to the invention. The average surface density of the irregularly occurring holes and the average size thereof are set such that the visible light passing through the holes and the pinch and the sealed tip, together with the amount of visible red light passing through the infrared-transmitting coating, has a spectrum which essentially has a color in the ECE white region. Moreover, the hole size and hole density and the regions left free of the coating in the pinch area and at the sealed tip are selected such that the white light L emitted into the traffic space in the emission direction A is less than 60 candela, particularly preferably less than 50 candela.
Finally, it should be pointed out once again that the methods and lamps shown in the figures and in the description are merely examples of embodiments which can be widely varied by the person skilled in the art without departing from the scope of the invention. For example, further method steps may be added to the method sequence described in detail. Moreover, it should be pointed out for the sake of completeness that the use of the indefinite article “a” or “an” does not rule out the fact that the relevant features may also be present a number of times and that the use of the term “comprise” does not rule out the existence of further elements or steps.
Number | Date | Country | Kind |
---|---|---|---|
04103275.6 | Jul 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/52081 | 6/24/2005 | WO | 00 | 1/9/2007 |