The present invention refers to animal feed, specifically to the preparation of fodder with fats and their use in animal feeds. More specifically, the present invention describes a procedure for the production of calcium, sodium or magnesium fatty acid soaps or vegetable or animal soapstocks to be used as nutrients in monogastric animal feeds.
Fats have several nutritional and not strictly nutritional advantages, which makes them suitable for use in fodder. Among the not strictly nutritional uses, are: they control powder formation and improve palatability, consumption, the structure and form of the fodder and moreover, lubricates machinery which improves its performance and useful life. From a nutritional point of view, fats have advantages, such as: they increase the energy content of the fodder, reduce calorie stress and, due to its lower heat increment, improve the energy efficiency per kcal of metabolisable energy.
The key criterion to evaluate a fat is its net energy content. This value basically depends on its gross energy and its intestinal digestibility, which basically depends on its solubilisation capacity and micelle formation in the intestine. Due to the particular digestive characteristics of ruminants (supplementary fat affects the microorganisms in their rumen, and hydrogenates and saturates free fatty acids in the rumen by hydrolysing triglycerides), fat absorption is different to that of monogastric animals, therefore the assessment of the same fat for animal feed will be different depending on whether it is going be used for ruminant or monogastric feeds.
As well as the net energy content, other important criteria when considering the inclusion of a fat in fodder are its availability and price compared to other energy sources. Bearing these criteria in mind, there is growing interest in animal fats,
obtained by processing fats from natural sources for use in feeds. Due to their lower price, among those of note are the by-products of different industries where the raw material is fat and in particular, soapstocks (residues of refined edible fats), lecithins, fried fats, distillates from glycerol production, and others.
In the context of using fats derived from their natural forms, the use of so-called soaps, molecules without glycerol where the fatty acids are saponified, usually by calcium, sodium or magnesium cations, has been extended to animal feeds. Their use has been extended to ruminant feeds in particular. When they are used in monogastric feeds, for economic reasons or ease of use, the results are worse than those obtained with the use of triglycerides, mostly in whole fats, on lacking glycerol, which is considered vital for the formation of micelles, which are only required for good digestibility of the fats by these monogastric animals.
Taking this background into account, the main objective of this invention consists of modifying the process for obtaining these soaps in a way that they can be used in animal feeds in proportions that might improve the production costs of monogastric animal species. This objective is achieved by means of the addition of glycerol and/or emulsifiers, accepted for use in animal feeds by European or international legislation, in the production process of the aforementioned soaps, in proportions that make the use of triglycerides in monogastric animals cheaper and effective.
Thus the use of glycerol, in a variable range that can and must be lower than that contained in triglycerides, added or not to other emulsifiers, will make digestibility easier and improve animal production costs.
The invention describes a procedure for producing calcium, sodium, or magnesium fatty acid soaps present in vegetable or animal soapstocks or in other fats and their use as nutrients in animal feeds. It consists of incorporating into the aforementioned soaps, glycerol, glycerol plus emulsifier or emulsifier only, already widely used in ruminant feeds, with the aim of extending the use of the described soaps to other, monogastric farm animals, for example pigs and fowl. One advantage is
that the aforementioned incorporation is carried out in the same soap production process and most importantly is that the results of the products obtained rival, energy-wise, whole fats (triglycerides), commonly employed in monogastric nutrition, which leads to improved costs in nutrition, at the same time provided in an easily supplied powder or granular form, which has clear advantages over adding fats in the liquid form known in the state of the technique.
The present invention describes a procedure for producing calcium, sodium, or magnesium fatty acid soaps or vegetable or animal soapstocks to which is added a component, glycerol, alone or with emulsifiers in proportions that make them cheaper due to the cost and efficiency of the use of triglycerides in monogastric animals. This compound, glycerol, is bound to fatty acids in molecules, the majority of which are generally in fats of natural origin, triglycerides, while it is lower in the proportion of starting fats used here, the proportion of free fatty acids being much higher that they can give rise to the production of soaps.
The use of glycerol, in a variable range that can and must be less than that contained in triglycerides, adding or not adding emulsifiers, will lead to better digestibility and improve farm animal costs.
One advantage of the present invention is that the addition of glycerol, alone or with authorised emulsifiers, is carried out in the production process of the aforementioned soaps, without added cost or expense to the known procedure.
Another advantage of the present invention is that the products obtained can be competitive, due to their nutritional efficiency, with whole fats commonly used in the nutrition of monogastric animals, which leads to improved costs in nutrition as their use lowers costs.
An additional advantage of the invention is that the products obtained can be supplied in powder or granular form, which is an easier supply form compared to the currently used liquid forms.
In a first aspect, the invention refers to a discontinuous procedure, which can be automated, improved by preparing mixtures that contain glycerol and/or emulsifiers and alkaline or alkaline earth salts elements and saturated or unsaturated fatty acids, which includes the following steps:
(1) heat a fat or a source rich in fatty acids acceptable for animal feed to a temperature that is at least slightly higher than the solidifying temperature of the aforementioned fat;
(2) proceed to add glycerol or an emulsifying agent or combination of the same;
(3) add, or simultaneously with the addition of the glycerol and/or other emulsifying agent, or after that addition, a source of alkaline or alkaline earth ions, which can be an oxide, hydroxide or a salt of the same or one of their mixtures;
(4) homogenise the mixture;
(5) add water;
(6) allow to stand for sufficient time for the fatty acids to saponify;
(7) evaporate the water until almost dry.
In a preferred realisation of the invention, the evaporation of the water is produced either in a container different from the reaction container or over another surface or on a conveyor belt, preferably in a tray, over which the contents of the reaction container are unloaded before there is complete saponification. The aforementioned tray or chosen support, are preferably at ambient (room) temperature and the reaction mixture remains in it until the reaction is completed and when the water has evaporated, until there is a residual content between 2% and 5%.
In this way, a dry and powdery product is obtained, which is cooled and is eventually milled in case there are lumps. Once this product is obtained, it can easily be used for animal feeds as it is, or mixed with any fodder.
An advantage of this discontinuous application option of the invention procedure is that the loading and unloading from the reaction container itself, as well as from the tray where the reaction batch is unloaded so that it continues reacting, can be automated, thus achieving an easy to control, very low cost automated production.
The reaction container is preferably provided with a stirrer and open to the atmosphere. The stirring speed is in the range of 1000 to 5000 rpm.
The amount of water to add will differ according to conditions, depending on factors such as the amount of free fatty acids or the cation source used, but to be able to guarantee the reaction, it will normally vary between 11.5% and 23.5%.
The temperature to which the fat or fatty acid source is heated will be at least higher than the solidifying temperature of the aforementioned fat, in such a way that it may saponify, so that the normal working range is between 45° C. and 100° C. The temperature will, preferably, be such that the fat is in viscous liquid form, capable of being pumped and stirred, without having required an excessive energy cost to heat it up, therefore temperatures in the range of 60° C. to 85° C. are preferred.
The glycerol and/or other emulsifier can be added simultaneously along with the alkaline or alkaline earth ion source compound or before the addition of this compound. It is preferred that the addition of glycerol and/or emulsifying agent is simultaneous with the alkaline or alkaline earth ion source compound as the process may be faster. In any case, the glycerol and/or other emulsifier must be added before adding water, so that the glycerol is already present at the time of saponification and remains homogeneously distributed and incorporated. In this way, a perfect mixture with the oily fraction is obtained in the shortest time.
Glycerol is a by-product obtained from triglyceride refining, which may or may not be subjected to further refining to produce glycerine. In the procedure of this invention the use of unrefined glycerol is preferred. The glycerol proportion will vary depending on the amount of free fatty acids present in the source fat and whether there is an optional emulsifier present, but will vary between 4% and 12%.
The emulsifier may be any of these present in Table 1, which shows a list approved by the European Union for use in animal feed. The proportion to add in each case will vary according to criteria, which includes their emulsifying ability and cost.
Acacia (gum arabic)
Pseudomonas
elodea
Cassia gum
The soaps obtained will preferably be calcium, sodium or magnesium soaps. To obtain them, the compounds preferred as a cation source are CaO, NaOH and MgO or combinations of the same. These compounds are added in a stoichiometric or slightly higher quantity to that required, so that all, or almost all, of the free fatty acids present in the fat used form salts.
Calcium oxide (lime) is a basic oxide that is preferentially used as it costs less than magnesium oxide and caustic soda. The source of calcium oxide is mainly burnt limestone which contains around 96% in weight of CaO and around 4% of other oxides. Similarly, the source of MgO is calcined magnesite and the source of caustic soda is NaOH. It is within the scope of the invention to use a mixture of calcium oxide and magnesium oxide in any proportion. The preferable size of the CaO and/or MgO particles is from 30 to 120 micrometres.
The starting fat that can be used in the invention procedure will be any suitable for animal feed that contains mainly free saturated and/or unsaturated fatty acids with 14 to 20 carbon atoms. The fatty acids commonly found in the domestic animal diet are shown in Table 2:
In general, the most important fatty acids found in fats of natural origin are those shown in Table 3:
Among the fats of vegetable origin that can be used, cottonseed, soya, sunflower, rapeseed, corn, olive, palm, coconut, palm kernel, linseed and peanut oil, soya lecithins refined from residues or any of these or their mixtures used in the industry, can be mentioned. These fats contain from around 5% by weight to around 42.5% by weight of palmitic acid; from trace amounts to less than 1% by weight of palmitoleic acid; from around 2% by weight to around 5% by weight of stearic acid; from around 7% by weight to 80% by weight of oleic acid; from around 1% by weight to 62% by weight of linoleic acid, and from trace amounts to around 51% (in linseed oil) of linoleic acid.
Among the fats of animal origin that could be used in the procedure of the invention are suet and lard, which contain around 25% of palmitic acid and 40% oleic acid by weight. As regards stearic acid in these two sources, the percentages are around 20% for suet and around 15% for lard.
In a preferred realisation of the invention the raw material used as a source of fatty acids is a soapstock derived from palm oil refining known as “palm fatty acid distillate” internationally know by its acronym PFAD. This commercial product is obtained industrially by vacuum distilling the fatty acids present in natural palm oil. This soapstock is preferred as it is cheap and accessible and for its good ability to be adapted to the procedure of the invention, among other reasons, as it generally contains a higher percentage of free fatty acids than other soapstocks, 90-95% PFAD compared to the usual 50-60%. Tables 4 and 5 give details of its usual composition, as well as the different physicochemical parameters it exhibits.
The melting point of this soapstock is between 40° C.-41° C., therefore, to work with it, the correct temperature would be at least above 45° C., approximately 70° C. being preferable to work with.
Calcium soaps of fatty acids mixed with glycerol are prepared from this soapstock according to the procedure of the invention to include them in fodder. Productive yield tests will be carried out with these fodders on monogastric animals where these fodders have been included in their diet, against control monogastric animals. The comparison tests described below in the corresponding examples show that the products of the invention not only can be used as a substitute for other sources without a loss in yield, but also, in some cases, an increase in growth in the animals can even be observed.
To determine the effect of including PFAD with glycerol calcium soaps in the diet compared with including PFAD calcium soaps on the productive parameters (average daily consumption, daily weight and conversion index) and the carcass quality of broiler chickens.
A total of 390 Ross male chickens were used, housed according to the experimental treatment.
Designed to randomise 2 treatments based on 2 feeding schedules according to the fat source (Table 6). In the 0 to 21 day diet (0-21 d) 2 fat sources were used: PFAD calcium soap and PFAD calcium soap+glycerol. Each treatment was replicated 5 times and each replicate was made up of 39 chickens housed in the same pen.
The experimental diets were formulated according to the FEDNA raw materials composition tables (1999). All the diets covered or exceeded the USA National Research Council (NRC, 1994) requirements for broilers of this age. All the animals were kept on an ad libitum experimental diet, that is, with free access to food at all times, so they ate as much as they wanted. The diets were in granular form. The quantitative composition and calculated analysis of the experimental diets are shown in Table 7, where, besides the apparent metabolisable energy (AME), the ether extract values (EE), crude protein (CP), available lysine (AL), the available joint methionine-cysteine value (Meth+Cys availability), total phosphorous (P) and available phosphorous (available P), can be observed. The experimental feeds were analysed to determine, moisture, ash content, crude protein (CP), ether extract (after acid hydrolysis) (CF) and crude fibre (CFi), which gave the results presented in Table 8.
1Analysis calculated according to the FEDNA raw materials composition tables (1999).
The analysis of the feed, did not show any differences that might affect the results.
Productive parameters and death per replicate (mean daily gain, mean daily consumption and conversion index) at 21 and 42 days.
The data were analysed using the SAS GLM procedure version 6.12 (SAS Institute, 1990) for random designs. The initial weight as covariable and the diet were included in the model for analysing the productive parameters.
Significant differences and trends were observed between 0 and 21 days of life. The animals that consumed SCa+ glycerol, grew more than those who only consumed SCa as a fat source. This higher growth was associated with a significant increase in consumption, which led to a slight drop in the conversion index.
No significant differences were seen for any of the productive parameters during the fattening phase, from 21 to 42 days. A general numerical improvement, in weight gain, consumption and conversion index was observed when they consumed the SCa+glycerol diet.
There were no differences between treatments, over the total period, but the higher growth and consumption was maintained.
The results are presented in Tables 9, 10, 11, and show the live weight on days 0 (LW0), 21 (LW21), and 42 (LW42), the mean daily consumption (MDC), mean daily gain (MDG), the conversion index (CI) and the coefficient of variation, and pointing out the probability where there are differences using Pr>F values. Significant differences (P<0.05) between pairs of values are indicated by letters (a, b) next to these values, while “x” and “e” next to a pair of values indicates a trend (P<0.1).
To determine the effect of including SCa+glycerol as a replacement for soya oil on the productive parameters (mean daily gain, mean daily consumption and conversion index) of recently weaned piglets.
A total of 84 weaned 28 day old piglets (Duroc x Landrace*Large White), with an initial mean weight of 8.4±1.0 kg, were used. The piglets were grouped taking into account the initial live weight. At the beginning all the animals were individually crimped.
The design randomised 2 treatments (Table 12), based including two fat sources (soya oil and SCa+glycerol). For the analysis of the productive parameters and faecal digestibility, each treatment was replicates 6 times and each experimental unit was made up of 7 piglets (50% males and 50% females) housed together. The study was divided into two periods: prestarter: from 28 to 41 days old, and starter: from 41 to 61 days old.
Start of the study: 11th Mar. 2004
End of the study: 13th Apr. 2004
The experimental diets (Table 13) were designed according to the FEDNA raw materials composition tables (2003). The diets contained 0.5% diatomaceous earth as an indigestible marker for calculating the faecal digestibility of the ether extract. The diets were formulated to be isonutritive, according to NRC requirements (1998) for piglets of this age. The diets were presented in granules and provided ad libitum throughout the experiment.
1Provided per kilogram of diet: 12,500 UI vit A; 1,800 UI vit D3; 40.0 mg vit E; 1.5 mg vit K3, 5.0 mg vit B2; 2.5 mg vit B6; 25.0 μg vit B12; 30 mg nicotinic acid; 15.0 mg pantothenic acid; 0.5 mg folic acid; 1.3 mg de vit B1; 1.0 mg iodine; 100 mg iron; 45 mg manganese; 0.3 mg selenium; 120 mg zinc; 0.1 mg cobalt; 160 mg copper.
2Based on FEDNA values (2003).
The calculated fatty acid composition in the different diets is shown in Table 14.
1Calculated fatty acid composition of the experimental diets.
1Based on FEDNA values (2003).
Before preparing the diets representative samples were taken of the calcium soaps used in the trial and the fatty acid profile was analysed1 following the method used by Soares and López-Bote (2002). The results are shown in Table 15. 1Norel, S. A. Ctra. Pla Santa Maria, km 2,5. Poligono Industrial de Valls. 43800 Valls. Tarragona
Before starting the study the following were analysed2: moisture, ash, crude protein (Kjeldahl), ether extract (Soxhlet after acid hydrolysis), crude fibre (Weende), starch and calcium content in the experimental feeds. The chemical analysis is shown in Table 16. 2Laboratorio de Mouriscade: 36515 Vilanova-Lalin, Pontevedra. Responsable: Maria Hermida.
Before starting the study:
The faecal digestibility of the fatty acids to 41 days old was calculated by the insoluble in acid ash method described by Vogtmann et al. (1975). Given that the marker (diatomaceous earth) is indigestible, it is taken that, for the marker:
Ingested=excreted
The digestibility of the nutrient X will be:
The fatty acids were analysed according to the methods used by Soares and López-Bote (2002).
The data were analysed using the SAS GLM version 6.12. (SAS Institute) procedure, for designs with random clusters. The data are presented as corrected least squares means. The model included the percentage of males per replicate, the cluster (pen) and treatment as main variables, and the initial weight was included as a covariable. The mortality was analysed by the SAS CATMOD procedure.
The weights of the animals at the beginning of the study (28 days old) and at the end of the prestarter period (41 days old) and starter period (61 days old) are shown in Table 18. The animal weights progressed similarly but there were no significant differences between treatments throughout the experimental period. But there was a tendency for the live weight at 42 days of life to be higher in animals who consumed SCa+glycerol.
1Standard Error of the Mean (N = 6).
2Significance: different letters in the same column indicate tendency (P < .1).
The effects of vegetable fat soaps on the productive parameters are shown in Table 19. There were significant differences between treatments for the consumption and a numeric improvement in weight gain in the prestarter period. No differences were seen in the starter period. The animals with SCa with glycerol had the same result as those who consumed soya oil.
1Standard Error of the Mean (N = 6).
2Significance: different letters in the same column indicate significant differences (P < 0.05).
The effects of the different treatments on the productive parameters of the animals for the whole period of the study (28-61 days old) are shown in Table 20. No significant differences were seen in weight gain, mean daily consumption or the conversion index in the total study period. However, the use of SCa+glycerol in piglet diets, is an alternative to the consumption of soya oil.
1SEM = Standard Error of the Mean (N = 6).
The effects of treatment on the faecal digestibility (%) of the fatty acids are shown in Table 21.
1SEM = Standard Error of the Mean (N = 6).
2Significance level: different letters in the same column indicate significant differences (P < .05).
A significant improvement, in absolute values, was observed in the digestibility of all the fatty acids in animals that ate the diet with PFAD calcium soap+Glycerol. This effect can be partly explained by the capacity of the glycerol molecule to re-esterify free fatty acids and, therefore, it helps in the formation of easily absorbable micelles in the intestine.
Taking into account the results and experimental conditions in which the study was carried out, we can conclude that:
Number | Date | Country | Kind |
---|---|---|---|
P200402263 | Sep 2004 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES05/70131 | 9/21/2005 | WO | 00 | 5/28/2009 |