The present invention relates to a method of producing a cleaning member, and a system of producing a cleaning member.
Various types of cleaning members capable of trapping dust, trash, etc., are conventionally known, and methods for producing the various types have been examined from a variety of viewpoints.
For example, Patent Document 1 proposes a method of producing a cleaning member comprising the steps of:
Also, Patent Document 2, for example, proposes a method of producing a cleaning member, wherein
Furthermore, Patent Document 3, for example, proposes a method of producing a cleaning member comprising the steps of:
However, there is currently a need for a novel production method and a production system of producing cleaning members capable of trapping dust, trash, etc., in a more efficient manner. Considering the above circumstance, the present invention was found by the present inventors as a result of intensive and extensive investigation.
Thus, it is an object of the present invention to provide a novel production method and a novel production system that are suitable for producing a cleaning member having excellent cleaning performance and that realize efficient production.
In order to obtain the above objective, the present invention provides a method of producing a cleaning member obtained from a multi-layer web comprising at least a fiber bundle and a belt-shaped nonwoven fabric, wherein the method of producing the cleaning member comprises at least the step of connecting the ends of at least two the fiber bundles.
In accordance with the present invention, a novel production method and a novel production system that are suitable for producing a cleaning member having an excellent cleaning performance and that realize efficient production is provided.
The method of producing the cleaning member of the present invention will now be explained in detail below.
The method of producing a cleaning member according to the present invention is a method of producing a cleaning member obtained from a multi-layer web comprising at least a fiber bundle and a belt-shaped nonwoven fabric,
The method of producing a cleaning member according to the present invention is a novel production method that is suitable for producing a cleaning member having excellent cleaning performance and that realizes efficient production. The method of producing a cleaning member according to the present invention can continuously supply fiber bundles and thus excels in high-speed production and further in continuous production.
In aspect 1, as a step after the step of connecting the ends of at least two fiber bundles, it may be preferable to further comprise the step of opening the at least two fiber bundles (aspect 2). According to aspect 2, after connecting the ends of at least two fiber bundles, at least two fiber bundles are opened, which makes it easy to detect the connected ends without opening them with a phototube.
In aspect 1 or 2, it may be preferable to further comprise a detection step in which the ends of the above connected at least two fiber bundles are detected by a detecting part (aspect 3). The detecting part may preferably be disposed before the step of forming a multi-layer web by stacking fiber bundles described below and the above belt-shaped nonwoven fabric. As the detecting part, for example, a phototube, a camera etc. may be mentioned. In a phototube, a light-emitting part and a light-receiving part are disposed at a predetermined lateral position sandwiching a fiber bundle and a non-contacting fiber bundle, and a detecting means integrated with the light-emitting/light-receiving part is disposed at a predetermined lateral position of a fiber bundle and a non-contacting fiber bundle. The camera detects the position of the ends of fiber bundles by binarizing an image input by the camera using predetermined parameters.
In aspect 3, it may be preferable to further comprise a step of forming a multi-layer web by stacking the above at least two fiber bundles comprising the ends of the above connected at least two fiber bundles, the ends being detected by the above detecting part, and the above belt-shaped nonwoven fabric, and a step of fixing the multi-layer web (aspect 4).
In aspect 4, the step of fixing the multi-layer web may preferably be a melt-bonding step (aspect 5). In another embodiment, the fixing step is a step of fixing by hot-melt.
In aspect 4 or 5, it may be preferable to further comprise a step of cutting the fusion-bonded multi-layer web in the lateral direction, and a step of ejecting the multi-layer web comprising the above ends of the above cut at least two fiber bundles (aspect 6).
In the method of producing a cleaning member according to the present invention, two or more of aspects 1 through 6 can be combined.
The system of producing a cleaning member according to the present invention will now be explained in detail below.
The system of producing a cleaning member according to the present invention is a system of producing a cleaning member that is obtained from a multi-layer web containing a fiber bundle and a belt-shaped nonwoven fabric, the system being at least equipped with a device for connecting the ends of at least two fiber bundles by melt-bonding (aspect 7).
The system of producing a cleaning member according to the present invention is a novel production system that is suitable for producing a cleaning member having an excellent cleaning performance and that realizes efficient production. The system of producing a cleaning member according to the present invention can continuously supply fiber bundles, and thus excels in high-speed production and further in continuous production.
In aspect 7, it may be preferable to be further equipped with a device for opening at least two fiber bundles after connecting the ends of the at least two fiber bundles (aspect 8). According to aspect 8, the at least two fiber bundles are opened after the ends of the at least two fiber bundles were connected, and thus it becomes easier to detect the connected ends without opening the bundles with a phototube, etc.
In aspect 7 or 8, it may be preferable to be further equipped with a device for detecting the ends of the connected at least two fiber bundles by the detecting part (aspect 9). The detecting part may preferably be disposed before the step of forming a multi-layer web by stacking fiber bundles described below and the above belt-shaped nonwoven fabric. As the detecting part, for example, a phototube, a camera etc. may be mentioned. In a phototube, a light-emitting part and a light-receiving part are disposed at a predetermined lateral position sandwiching a fiber bundle and a non-contacting fiber bundle, and a detecting means integrated with the light-emitting/light-receiving part is disposed at a predetermined lateral position of a fiber bundle and a non-contacting fiber bundle. The camera detects the position of the ends of fiber bundles by binarizing an image input by the camera using predetermined parameters.
In aspect 9, it may be preferable to be further equipped with a device for forming a multi-layer web by stacking the above at least two fiber bundles comprising the ends of the above connected at least two fiber bundles, the ends being detected by the above detecting part, and the above belt-shaped nonwoven fabric, and a device of melt-bonding the multi-layer web (aspect 10).
In aspect 10, it may be preferable to be further equipped with a device for cutting the fusion-bonded multi-layer web in the lateral direction, and a device for ejecting the multi-layer web comprising the above ends of the above cut at least two fiber bundles (aspect 11).
In the system of producing a cleaning member according to the present invention, two or more of aspects 7 through 11 can be combined.
Embodiments of the method and the system of producing a cleaning member according to the present invention are explained in more detail with reference to
First, a cleaning member 1 will be explained with reference to
As shown in
As shown in
As shown in
The first through fourth fibrous members 3 through 6 are fiber bundles to which an oil solution is attached, and thus is a dust adhering agent (for example, an oil solution comprising liquid paraffin as an active ingredient) having an effect of promoting the adherence of dust, trash, etc.
A fiber bundle is, for example, a tow, preferably an opened tow. As described in JIS L 0204-3:1998, 3.1.24, “tow” indicates a bundle of an extremely large number of filaments.
A fiber bundle may be a bundle of slit fibers (fibers made by cutting a film into reed-shaped part and then stretching them), split fiber (fibers made by subdividing reed-shaped parts of film into a network structure), etc.
As fiber bundles, there can be mentioned, for example, fiber bundles consisting of or comprising thermoplastic fibers, etc. As raw materials constituting fiber bundles, there can be mentioned, for example, polyethylene, polypropylene, polyethylene terephthalate, nylon, rayon, etc., and the type of fibers constituting fiber bundles include, for example, single fibers, composite fibers (for example, core-in-sheath composite fibers, side-by-side composite fibers), etc. From the viewpoint of thermal bondability, composite fibers may preferably be core-sheath type composite fibers, and more preferably core-sheath type composite fibers in which the melting point of the core is higher than that of the sheath.
As a preferred core-in-sheath composite fiber, there can be mentioned core-sheath type composite fibers in which the core consists of polypropylene or polyethylene terephthalate and the sheath consists of polyethylene, and more preferably core-sheath type composite fibers in which the core consists of polyethylene terephthalate and the sheath consists of polyethylene.
The purity of a fiber constituting fiber bundles may preferably be 1-500 dtex, more preferably 2-10 dtex. Fiber bundles may comprise a plurality of fibers having the same purity, or a single fiber or a plurality of fibers having a different purity.
In the present embodiment, each fiber constituting fiber bundles is composed of curled fibers. By allowing each fiber to be composed of curled fibers, fiber bundles can be made bulky and can be made a structure that permits easy trapping of dust etc. at the curled parts. In another embodiment, there can be mentioned an embodiment in which each fiber constituting fiber bundles is composed of noncurled fibers.
Similarly to the base sheet 12 and the holding sheet 13, as described below, the sheet with slits 7 is composed of a nonwoven fabric consisting of a thermoplastic fiber (a thermally fusion-bondable fiber) or a nonwoven fabric comprising a thermoplastic fiber, and is formed in a rectangular shape of the same width and the same length as those of the base sheet 12. In the sheet with slits 7, saw-edged cuts (not shown) are made at a given distance along the entire sheet with slits 7, and with the cuts, saw-edged reed-shaped parts (not shown) are formed over the entire length along both lateral ends of the sheet with slits 7.
As shown in
As shown in
The base sheet 12 and the holding sheet 13 are made of a nonwoven fabric consisting of a thermoplastic fiber (thermally fusion-bondable fiber) or a nonwoven fabric comprising a thermoplastic fiber. As thermoplastic fibers, for example, a polyethylene fiber, a polypropylene fiber, a polyethylene terephthalate fiber, a composite fiber of polyethylene and polyethylene terephthalate, and a composite fiber of polyethylene and polypropylene, such as core-sheath type composite fibers in which the core is composed of polyethylene terephthalate and the sheath is composed of polyethylene can be mentioned. As the type of nonwoven fabric, for example, a thermal bond nonwoven fabric, a spunbonded nonwoven fabric, a spunlace nonwoven fabric and the like can be mentioned.
In another embodiment, there can be mentioned an embodiment in which the base sheet and the holding sheet are made of a thermoplastic resin film such as a polyethylene film and a polypropylene film, and in still another embodiment, the base sheet and the holding sheet are made of a laminate sheet comprising a nonwoven fabric and a resin film.
The base sheet 12 and the holding sheet 13 are integrally fusion-bonded to all the layers (the first fibrous member 3, the second fibrous member 4, the third fibrous member 5, the fourth fibrous member 6, and the sheet with slits 7) of the brush sheet 2 through a first melt bonded part forming device 158 described below, and in the cleaning member 1, a first melt-bonding part 8 longitudinally extending in the central part is formed as shown in
The base sheet 12 and the holding sheet 13 are fusion-bonded to all the layers (the first fibrous member 3, the second fibrous member 4, the third fibrous member 5, the fourth fibrous member 6, and the sheet with slits 7) of the brush sheet 2 in the first melt-bonding part 8, and are fusion-bonded to the first fibrous member 3 of the brush sheet 2 in two second melt-bonding parts 11. This results in the formation of a pair of receiving parts 14, which extends in the longitudinal direction of the base sheet 12 and the holding sheet 13 and which is a saclike space opening on both longitudinal ends, compartmentalized by the first melt-bonding part 8 and two second melt-bonding parts 11, thereby enabling the insertion part 16 of the holding tool 15 to be inserted into the receiving part 14.
The base sheet 12 and the holding sheet 13 are fusion-bonded to the first fibrous member 3 of the brush sheet 2 at the central part thereof through a second melt bonded part forming device 134 described below, and in the cleaning member 1, a pair of melt-bonding lines 18 are formed at a predetermined distance in the lateral direction of the base sheet 12 and the holding sheet 13, as shown in
As shown in
As shown in
As shown in
By inserting both insertion parts 16 of the holding tool 15 into both insertion parts 14 of the cleaning member 1, and engaging the protrusions 16a with two second melt-bonding parts 11, the cleaning member 1 can be mounted to the holding tool 15. By holding the holder part 17 of the holding tool 15, and allowing the brush sheet 2 to come into contact with a target cleaning site to move it in the desired direction, dust, etc., at the target cleaning site are trapped by the brush sheet 2, resulting in the cleaning of the target cleaning site.
The cleaning member shown in
Next, an embodiment of a method and a device for producing a cleaning member 1 will be explained with reference to
In the present embodiment, the method of producing the cleaning member 1 comprises the following step 1 and step 2.
[Step 1] A step of opening a fiber bundle—a step of conveying it.
[Step 2] A step of producing a multi-layer web using fiber bundles and excising (cutting out) the cleaning member 1 from the multi-layer web.
Hereinbelow, step 1 will be explained.
In the present embodiment, step 1 comprises the following step 1a and step 1b.
[Step 1a] A step of opening a first fiber bundle F1 through a fourth fiber bundle F4.
[Step 1b] A step of conveying the first fiber bundle F1 through the fourth fiber bundle F4.
According to the present embodiment, while step 1 comprises step 1a, the presence or absence of step 1a can be selected as appropriate depending on the type etc. of the fiber bundle used. In another embodiment, an embodiment in which step 1a is omitted can be mentioned. For example, when fiber bundles are composed of a noncurled fiber, step 1a can be omitted.
[Step 1a]
Hereinbelow, step 1a will be explained with reference to a step of opening the first fiber bundle F1 by way of example, and steps of opening other fiber bundles can be carried out in a similar manner.
The first fiber bundle F1 composed of a curled fiber is continuously extracted from a housing container (not shown), and conveyed to first nip rolls 102a and 102b revolving at a constant peripheral velocity V1. The first fiber bundle F1 that passed through the first nip rolls 102a and 102b passes through a plurality of tension rolls 104, and is conveyed to second nip rolls 106a and 106b revolving at a peripheral velocity V2.
The peripheral velocity V2 of the second nip rolls 106a and 106b is faster than the peripheral velocity V1 of the first nip rolls 102a and 102b. Due to the difference in the rim speed, tension is imparted to the first fiber bundle F1 between the first nip rolls 102a and 102b and the second nip rolls 106a and 106b, resulting in the opening of the first fiber bundle F1.
Each tension roll 104 is formed, for example, of a solid steel, and the weight has been adjusted to require a significant degree of force for revolving. Thus, during the movement of the first fiber bundle F1, while rotating each tension roll 104, from the first nip rolls 102a and 102b toward the second nip rolls 106a and 106b, the moving speed of the first fiber bundle F1 has been adjusted not to increase abruptly.
In order to attain the gradual opening of the first fiber bundle F1, each tension roll 104 has been disposed so as to lengthen the distance between the first nip rolls 102a and 102b and the second nip rolls 106a and 106b.
The first fiber bundle F1 that passed through the second nip rolls 106a and 106b passes through an air supplier 108 and is conveyed to third nip rolls 112a and 112b. The peripheral velocity V3 of the third nip rolls 112a and 112b is slower than the peripheral velocity V2 of the second nip rolls 106a and 106b. Due to the difference in the rim speed, tension of the first fiber bundle F1 is relieved between the second nip rolls 106a and 106b and the third nip rolls 112a and 112b, resulting in the opening of the first fiber bundle F1 as well as the widening of the width of the first fiber bundle F1.
On the first fiber bundle F1 that is conveyed from the second nip rolls 106a and 106b to the third nip rolls 112a and 112b, air is blown from the air supplier 108, resulting in the further opening of the first fiber bundle F1.
According to the present embodiment, while the first fiber bundle F1 is opened using the application and release of tension and air blowing, the method of opening can be changed as appropriate. In another embodiment, there can be mentioned an embodiment in which either of the application and release of tension or air blowing is used, and in still another embodiment, there can be mentioned an embodiment in which another method of opening is used in addition to the application and release of tension and air blowing. Also in the present embodiment, while the first through third nip rolls are used in the application and release of tension, the number of nip rolls can be changed as appropriate. In another embodiment, there can be mentioned an embodiment in which additional nip rolls are used for the application and release of tension in addition to the first through third nip rolls.
An oil solution is contained in an oil solution tank 114. In the present embodiment, the oil solution contained in the oil solution tank 114 is a dust-adhering oil solution (such as an oil solution comprising liquid paraffin as an active ingredient) having an effect of promoting the adsorption of dust etc.
[Step 1b]
Hereinbelow, step 1b will be explained with reference to a step of conveying the first fiber bundle F1 by way of example, and a step of conveying other fiber bundles can be carried out in a similar manner.
After passing through the third nip rolls 112a and 112b, the first fiber bundle F1 passes through a first phototube 181, and proceeds to a merging part 132. Similarly, the second through the fourth fiber bundles F2 through F4, after passing through the third nip rolls (not shown), pass through a second phototube 182, a third phototube 183 and a fourth phototube 184, and proceeds to merging parts 136, 138 and 140, respectively.
Hereinbelow, step 2 will be explained.
In the present embodiment, step 2 comprises the following step 2a through step 2c.
[Step 2a] A step of stacking a fiber bundle that underwent through step 1b and another member (a belt-shaped nonwoven fabric in the present embodiment) to form a multi-layer web.
[Step 2b] A step of fixing the fiber bundle and another member contained in the multi-layer web.
[Step 2c] A step of excising individual cleaning members 1 from the multi-layer web.
[Step 2a]
Hereinbelow, step 2a will be explained.
In the present embodiment, the other members that are stacked with the fiber bundles that underwent the step 1b are belt-shaped nonwoven fabrics 121, 123 and 151. In another embodiment, one or two of these belt-shaped nonwoven fabrics are stacked with the fiber bundles that underwent the step 1b, and in still another embodiment, another belt-shaped nonwoven fabric, in addition to these belt-shaped nonwoven fabrics, is stacked with the fiber bundles that underwent the step 1b. In any of the embodiments, the order of stacking is not limited, but preferably stacking may be carried out so that the belt-shaped nonwoven fabric is positioned at the outermost layer.
The belt-shaped nonwoven fabrics 121 and 123 correspond to the base sheet 12 and the holding sheet 13, respectively, of the cleaning member 1. The belt-shaped nonwoven fabric 121 is continuously curled out from an nonwoven fabric roll 120, and is conveyed intermittently by passing through a dancer roll 124 comprising a plurality of rolls provided in two vertical stages wherein a roll located at the lower stage fluctuates vertically. Similarly, the belt-shaped nonwoven fabric 123 is continuously curled out from an nonwoven fabric roll 122, and is conveyed intermittently by passing through a dancer roll 126 comprising a plurality of rolls provided in two vertical stages wherein a roll located at the lower stage fluctuates vertically. As used herein “is conveyed intermittently” means that the belt-shaped nonwoven fabrics 121 and 123 are conveyed by repeating the steps of proceeding by a given distance (for example, roughly the lateral length of the cleaning member 1) and then stopping conveying for a certain period of time. Thus, by the intermittent conveyance of the belt-shaped nonwoven fabrics 121 and 123, the time required to fusion-bond the constituent elements of the multi-layer web described below can be secured.
The belt-shaped nonwoven fabrics 121 and 123 form a multi-layer web S1 at a merging part 128, and the multi-layer web S1 passes through a gather cutter 130 in which saw-edged blades (not shown) are intermittently formed on the surface thereof in a circumferential direction. This results in the formation of cuts corresponding to cuts 20a (see
At the merging part 132, the multi-layer web S1 merges with the first fiber bundle F1 that underwent the step 1, and the first fiber bundle F1 is stacked on the multi-layer web S1 to form a multi-layer web S2. The first fiber bundle F1 is configured to become loosened slightly in between the third nip rolls 112a and 112b and the merging part 132, and thus fulfills the same function as a dancer roll provided between them would do.
At merging parts 136, 138 and 140, the multi-layer web S2 merges sequentially with the second fiber bundle F2 through the fourth fiber bundle F4 that underwent the step 1, and the second fiber bundle F2 through the fourth fiber bundle F4 are stacked sequentially on the multi-layer web S2 to form a multi-layer web S3.
A belt-shaped nonwoven fabric 151 corresponds to the sheet with slits 7 of the cleaning member 1. The belt-shaped nonwoven fabric 151 is continuously curled out from the nonwoven fabric roll 150, and is intermittently conveyed by passing through a dancer roll 152, and then passes through a gather roll 154. The gather roll 154 has saw-edged blades (not shown) continuously formed on the surface of the roll in a circumferential direction, which results in the formation of saw-edged cuts (not shown) on the belt-shaped nonwoven fabric 151 that passed through the gather roll 154.
The belt-shaped nonwoven fabric 151 merges with the multi-layer web S3 at a merging part 156, and the belt-shaped nonwoven fabric 151 is stacked on the multi-layer web S3 to form a multi-layer web S4.
[Step 2b]
Hereinbelow, step 2b will be explained.
Before merging with the second fiber bundle F2 through the fourth fiber bundle F4, the multi-layer web S2 passes through a second melt bonded part forming device 134. The second melt bonded part forming device 134 fusion-bonds belt-shaped nonwoven fabrics 121 and 123 contained in the multi-layer web S2 to the first fiber bundle F1 to form two second melt-bonding parts 11 (see
The multi-layer web S4 passes through a first melt bonded part forming device 158. The first melt bonded part forming device 158 fusion-bonds the entire hole multi-layer web S4 to form a first melt-bonding part 8 (see
[Step 2c]
Hereinbelow, step 2c will be explained. The multi-layer web S4 that passed through the first melt bonded part forming device 158 is cut by a cutting device 160, so that individual cleaning members 1 are excised. As described above, also, the multi-layer web S4 comprising the ends of the above connected at least two unopened fiber bundles, the ends being detected by the four phototubes (181 through 184), is ejected by an ejecting device 190. Since the distance from the detection point to the ejection point is constant, the number (N) of products present in the distance can be calculated by distance÷length of the product. When a shortage in the width is detected by the detecting part, a detection signal for width shortage is input into a programmable logic controller (PLC), in which the counting part of the PLC starts to add the number of sheets. When the number reaches a predetermined number, the ejecting device of the ejecting part is started to eject products having defective width. If a product having a Nth product number is only ejected, no defective product will enter into the finished products. In order to carry out secure ejection, products having a product number in the range of N±2 (N−2, N−1, N, N+1, N+2), or products having a product number in the range of N±1 (N−1, N, N+1) can be ejected.
The cleaning member 1 produced according to the present embodiment contains the sheet with slits 7, whereas a cleaning member produced by another embodiment does not contain the sheet with slits 7. In the cleaning member 1 produced by the present embodiment, the receiving part 14 is disposed on the face of the cleaning member 1, whereas in a cleaning member produced by another embodiment, the receiving part 14 is disposed in between any of adjacent fibrous members 3 through 6 by changing the order of stacking the base sheet 12 and the holding sheet 13 and the fibrous members 3 through 6. This makes it possible to use both faces of the cleaning member 1 in cleaning. At this time, in order to facilitate the insertion of the insertion part 16 into the receiving part 14, the longitudinal dimension (vertical dimension in
The present application claims the benefit of the following patent applications, the entire disclosures of which are incorporated herein by reference:
1: cleaning member; 2: brush sheet (shaggy brush sheet); 3: first fibrous member; 4: second fibrous member; 5: third fibrous member; 6: fourth fibrous member; 7: sheet with slits; 8: first melt-bonding part; 11: second melt-bonding part; 12: base sheet; 13: holding sheet; 14: receiving part; 15: holding tool; 16: insertion part; 16a: protrusion; 17: holder part; 18: melt-bonding line; 20: reed-shaped part; 20a: slit; 100: cleaning member-producing device; 102a and b: first nip rolls; 104: tension roll; 106a and b: second nip rolls; 108: air supplier; 110: transcription roll; 112a and b: third nip rolls; 113: blade member; 114: oil solution tank; 120, 122 and 150: nonwoven fabric rolls; 121, 123 and 151: belt-shaped nonwoven fabrics; 124, 126 and 152: dancer rolls; 128, 132, 136, 138, 140 and 156: merging parts; 130: gather cutter; 134: second melt bonded part forming device; 154: gather roll; 158: first melt bonded part forming device; 160: cutting device; 181: first phototube; 182: second phototube; 183: third phototube; 184: fourth phototube; 190: ejecting device; 201: housing container; 202: housing container 2; 301: first non-revolving bar; 202: second non-revolving bar; 401: fiber bundle-holding roll.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2012-289188 | Dec 2012 | JP | national |