Method of producing dinitrile compounds

Information

  • Patent Grant
  • 8373001
  • Patent Number
    8,373,001
  • Date Filed
    Thursday, January 22, 2004
    21 years ago
  • Date Issued
    Tuesday, February 12, 2013
    11 years ago
Abstract
The present invention relates to a process for the manufacture of compounds comprising two nitrile functional groups. It relates more particularly to a process for the manufacture of dinitrile compounds from compounds comprising a nitrile functional group and an ethylenic unsaturation in the presence of a catalytic system comprising an organometallic complex and a cocatalyst of the Lewis acid type. The process of the invention comprises a stage of treatment of the reaction medium resulting from the hydrocyanation which makes it possible to extract and recover the metal element of the Lewis acid.
Description

This application is an application under 35 U.S.C. Section 371 of International Application Number PCT/FR2004/000143 filed on Jan. 22, 2004.


The present invention relates to a process for the manufacture of compounds comprising two nitrile functional groups.


It relates more particularly to a process for the manufacture of dinitrile compounds from compounds comprising a nitrile functional group and an ethylenic unsaturation.


Dinitrile compounds, in particular adiponitrile, are important chemical intermediates in the synthesis of numerous compounds. Thus, adiponitrile is used in the manufacture of hexamethylenediamine, one of the monomers of polyamides. It can also be used in the manufacture of aminocapronitrile or caprolactam, monomers important in the production of various polyamides.


Among the processes provided for the synthesis of adiponitrile, the process using butadiene as starting material and the hydrocyanation reaction with hydrogen cyanide is the most extensively used industrially.


This process consists, in a first stage, in carrying out the hydrocyanation of an olefin, such as butadiene, to produce compounds comprising a nitrile functional group and an ethylenic unsaturation. This stage is generally carried out in the presence of a catalytic system comprising an organometallic complex formed by a metal, such as nickel, and an organophosphorus ligand.


After separation of the unsaturated mononitrile compounds and optionally purification, the latter are converted to dinitrile compounds by a second hydrocyanation reaction also carried out in the presence of a catalytic system comprising an organo-metallic complex formed by a metal, such as nickel, and an organophosphorus ligand. Furthermore, the catalytic system comprises a cocatalyst generally composed of a Lewis acid.


The term “Lewis acid” is understood to mean, according to the usual definition, compounds which accept electron pairs. Lewis acids are generally salts of metal elements, as is described below.


In the current processes, the Lewis acid is maintained in the reaction medium, in particular during the stage of extraction of the nitrites. The Lewis acid is subsequently removed with the distillation bottoms, in particular when it is not separated from the medium in conjunction with the organometallic complex used as catalytic system.


The presence of the Lewis acid during the distillation of the dinitrile can promote the generation of impurities in the medium, which impurities may be present in the distilled dinitrile. In addition, the removal of the Lewis acid and its discharge as effluent can be harmful to the economics of the process and to the environment. One of the aims of the present invention is to provide a process for the manufacture of dinitrile compounds which does not comprise these disadvantages.


To this end, the invention provides a process for the manufacture of dinitrile compounds by hydrocyanation with hydrogen cyanide of compounds comprising a nitrile functional group and an ethylenic unsaturation in the presence of a catalytic system comprising an organo-metallic complex and a cocatalyst formed by a metal compound.


According to the invention, the process comprises the following successive stages, after having carried out the hydrocyanation stage:

    • I. treating the reaction medium El obtained after the stage of hydrocyanation of the unsaturated nitrile compounds in order to extract at least the organometallic complex from said medium and to obtain a second medium E2;
    • II. treating the said second medium E2 by passing over an ion-exchange resin in order to extract at least the metal forming the cocatalyst and to obtain a third medium E3, and
    • III. separating the dinitriles formed from the said medium E3,
      • and in that the order of stages II) and III) can be reversed.


According to a preferred characteristic of the invention, the cocatalyst is a Lewis acid. More specifically, the Lewis acids mentioned in the work edited by G. A. Olah, “Friedel-Crafts and Related Reactions”, Volume 1, pages 191 to 197 (1953), are suitable for the invention.


The Lewis acids which can be employed as cocatalysts in the present process are chosen from compounds of the elements from Groups Ib, IIb, IIIa, IIIb, IVa, IVb, Va, Vb, VIb, VIIb and VIII of the Periodic Table of the Elements. These compounds are generally salts, in particular halides, such as chlorides or bromides, sulphates, sulphonates, haloalkylsulphonates, perhaloalkylsulphonates, in particular fluoroalkylsulphonates or perfluoroalkylsulphonates, haloacetates, perhaloacetates, carboxylates and phosphates.


Mention may be made, as non-limiting examples of such Lewis acids, of zinc chloride, zinc bromide, zinc iodide, manganese chloride, manganese bromide, cadmium chloride, cadmium bromide, stannous chloride, stannous bromide, stannous sulphate, stannous tartrate, indium chloride, indium trifluoromethylsulphonate, indium trifluoroacetate, the chlorides or bromides of rare earth elements, such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, hafnium, erbium, thallium, ytterbium and lutetium, cobalt chloride, ferrous chloride or yttrium chloride.


Use may also be made, as Lewis acid, of compounds such as triphenylborane or titanium isopropoxide.


It is possible, of course, to employ mixtures of several Lewis acids.


Preference is very particularly given, among Lewis acids, to zinc chloride, zinc bromide, stannous chloride, stannous bromide, triphenylborane, indium trifluoromethylsulphonate, indium trifluoroacetate and zinc chloride/stannous chloride mixtures.


The Lewis acid cocatalyst employed generally represents from 0.01 to 50 mol per mole of transition metal compound, more particularly of nickel compound.


According to a preferred embodiment of the invention, stage II) of treatment over ion-exchange resins is carried out before the separation of the dinitrile compounds from the medium E3.


This is because the separation of the dinitrile compounds is generally carried out by distillation and thus by heating the medium E3 comprising these compounds. It is advantageous to remove the metal elements present in the medium E3 before carrying out such a heating in order to prevent these metal elements from promoting side reactions or decomposition of the dinitriles. These side or decomposition reactions generate by-products with a structure similar to that of the dinitriles which are difficult to separate from the latter.


Thus, in the case of adiponitrile, certain impurities, such as 1-imino-2-cyanocyclopentane (ICCP), can be produced. These impurities are reencountered in part in the distilled adiponitrile. The impurities and their hydrogenation products can also be reencountered in the hexamethylenediamine (HMD) obtained by hydrogenation of this adiponitrile and even in the polyamide obtained from the HMD.


Thus, these impurities can produce defects in the processes for forming these polyamides, in particular in spinning processes (increase in the number of breakages of the yarns) or with regard to the stability and the colour of the polyamide.


According to a preferred characteristic of the invention, the organometallic complex forming the catalytic system is generally a coordination complex between a metal element chosen from transition metals and ligands, generally organophosphorus ligands.


Such organometallic complexes are disclosed in numerous publications and numerous patents, such as U.S. Pat. No. 3,496,215, DE19953058, FR 1 529 134, FR 2 069 411, U.S. Pat. No. 3,631,191, U.S. Pat. No. 3,766,231, FR 2 523 974, WO 99/06355, WO 99/06356, WO 99/06357, WO 99/06358, WO 99/52632, WO 99/65506, WO 99/62855, U.S. Pat. No. 5,693,843, WO 96/1182, WO 96/22968, U.S. Pat. No. 5,981,772, WO 01/36429, WO 99/64155 or WO 02/13964.


The metal elements are generally chosen from the group consisting of nickel, cobalt, iron, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, zinc, cadmium and mercury. Among these metals, nickel is the preferred metal.


In these metal complexes, the metal is encountered in a specific oxidation state, in particular zero for nickel, for example.


During the hydrocyanation reaction, a portion of the metal element (for example nickel) can be oxidized to a higher oxidation state, for example state 1 or 2, and may thus no longer be extractable from the reaction medium E1 during stage I) of the process of the invention. Its presence in the reaction media E2 or E3 can result in disadvantages similar to those of the metal elements originating from the cocatalyst.


This disadvantage is overcome by the process of the invention, which makes it possible, according to a preferred characteristic, to coextract these metal elements during the stage II) of treatment over ion-exchange resins by choosing an appropriate resin and appropriate extraction conditions. It is also possible, without departing from the scope of the present invention, to use two or more resins in combination or successively in order to make possible the concomitant or successive extraction of these metal elements.


Mention may be made, as organometallic complexes suitable for the invention, of those obtained from nickel compounds and from organophosphorus compounds belonging to the families of the monodentate or polydentate organophosphites, organophosphinites, organophosphonites and organophosphines. It is also possible to use organometallic complexes obtained from stilbene or arsine in combination with nickel or one of the metals mentioned above. Examples of organophosphorus compounds are disclosed in numerous publications and numerous patents. Mention may be made, for example, as examples of monodentate compounds, of triphenyl phosphite, tritolyl phosphite, trithymyl phosphite, phenyl diphenylphosphinite, tolyl ditolylphosphinite, thymyl dithymylphosphinite, diphenyl phenylphosphonite, ditolyl tolylphosphonite, dithymyl thymylphosphonite, triphenylphosphine, tritolylphosphine or trithymylphosphine.


Mention may be made, as bidentate compounds, by way of examples, of the following structures, in which Ph indicates phenyl:




embedded image


embedded image


More generally, all organophosphorus ligands are suitable for the invention.


Mention may also be made, by way of examples, of the catalytic systems and ligands disclosed in patents WO 95/30680, WO 96/11182, WO 99/06358, WO 99/13983, WO 99/64155, WO 01/21579 and WO 01/21580.


The organometallic complexes can be prepared before their addition to the reaction medium or in situ.


The organometallic complexes can be prepared by bringing a compound of the chosen metal into contact with a solution of an organophosphorus compound.


The compound of the metal can be dissolved in a solvent.


The metal can be present in the compound employed either in the oxidation state which it will have in the organometallic complex or in a higher oxidation state.


By way of examples, it may be indicated that, in the organometallic complexes of the invention, rhodium is in the oxidation state (I), ruthenium is in the oxidation state (II), platinum is in the oxidation state (0), palladium is in the oxidation state (0), osmium is in the oxidation state (II), iridium is in the oxidation state (I) and nickel is in the oxidation state (0).


If, during the preparation of the organometallic complex, the metal is employed in a higher oxidation state, it can be reduced in situ.


Mention may be made, as nonlimiting examples of metal compounds used in the preparation of these complexes, of metal powders, such as nickel powder, and the following compounds:

    • compounds in which the nickel is in the zero oxidation state, such as potassium tetracyanonickelate K4[Ni(CN)4], bis(acrylonitrile)nickel(0), bis(1,5-cyclooctadiene)nickel (also known as Ni(cod)2) and the derivatives comprising ligands, such as tetrakis-(triphenylphosphine)nickel(0),
    • nickel compounds, such as the carboxylates (in particular the acetate), carbonate, bicarbonate, borate, bromide, chloride, citrate, thiocyanate, cyanide, formate, hydroxide, hydrophosphite, phosphate, phosphate and derivatives, iodide, nitrate, sulphate, sulphite, arylsulphonates and alkylsulphonates.


When the nickel compound used corresponds to an oxidation state of the nickel of greater than 0, a reducing agent for the nickel is added to the reaction medium, which reducing agent preferably reacts with the nickel under the conditions of the reaction. This reducing agent can be organic or inorganic. Mention may be made, as nonlimiting examples, of borohydrides, such as NaBH4 or KBH4, Zn powder, magnesium or hydrogen.


When the nickel compound used corresponds to the 0 oxidation state of the nickel, a reducing agent of the type of those mentioned above can also be added but this addition is not essential.


When an iron compound is used, the same reducing agents are suitable.


In the case of palladium, the reducing agents can, in addition, be components of the reaction medium (phosphine, solvent, olefin).


The cocatalyst or Lewis acid is present in the catalytic system according to an amount of between 0.01 and 50 mol of Lewis acid per mole of metal element of the organometallic complex, such as nickel, for example, and preferably between 0.05 and 10 mol/mol. The Lewis acid can be added directly to the reaction medium or with the organometallic complex.


The hydrocyanation reaction is generally carried out at a temperature of between 10° C. and 200° C., preferably between 30° C. and 120° C.


The hydrocyanation reaction can be carried out without solvent but it can be advantageous to add an inert organic solvent. This solvent can be a solvent for the catalytic system which is miscible with the phase or with the medium comprising the compound to be hydrocyanated, at least at the hydrocyanation temperature.


This reaction and the process of the invention can be carried out continuously or batchwise.


This reaction can also be carried out in the presence of a two-phase system comprising in particular an aqueous phase in which the organometallic complex is soluble. In this embodiment, the aqueous phase is separated with most of the organometallic complex at the end of the reaction. The organic phase comprising the dinitriles and the unreacted unsaturated nitriles is the medium E1 within the meaning of the present invention. This is because it is advantageous to treat this organic phase according to the process of the invention in order to extract the small portion of organic complex and of Lewis acid present in the said phase.


The reaction medium E1 obtained at the outlet of the hydrocyanation reactor is, according to a preferred embodiment of the invention, fed to a stage I) for extraction of the organometallic complex.


This stage can consist of an extraction of the said complex by a solvent in a liquid/liquid extraction plant. Mention may be made, by way of examples, as extraction solvent, of alkanes comprising from 5 to 9 carbon atoms, such as pentane, hexane or heptane, cycloalkanes comprising from 5 to 8 carbon atoms, such as cyclohexane, methylcyclohexane or cyclooctane, halogenated hydrocarbons comprising from 1 to 5 carbon atoms, such as chloroform, dichloroethane, carbon tetrachloride, chloropropane or dichloromethane, or substituted or unsubstituted aromatic compounds comprising from 6 to 9 carbon atoms, such as benzene, toluene, xylene, ethylbenzene or isopropylbenzene.


This separation can also be brought about by distillation of the unsaturated nitriles and the production of a two-phase medium, one of the phases of which comprises the organometallic complex, the other phase of which comprising mainly the dinitriles. The latter can be subjected to liquid/liquid extraction with the solvents described above in order to extract the traces of organometallic complex.


The organometallic complex thus extracted can be recycled in a hydrocyanation reaction.


At the end of stage I), a reaction medium E2 no longer comprising organometallic complex is obtained. The term “no longer comprises” should be understood as meaning that the maximum amount of the organometallic complex has been extracted but traces of the said complex may remain in the medium without, however, departing from the scope of the invention.


This reaction medium E2 comprises the dinitriles formed and also the Lewis acid and optionally compounds of the metal element originating from the organometallic complex which may or may not have undergone oxidation.


According to the preferred embodiment of the invention, this reaction medium E2 is subjected to a treatment over ion-exchange resins which makes it possible to fix and extract the metal ions of the Lewis acid and optionally the oxidized metal ions which originate from the organometalllc complex and which are found in the said medium E2.


Suitable ion-exchange resins of the present invention are chosen according to the nature of the metal elements to be extracted. Thus, these resins can be one of those belonging to the group consisting of strong or weak cationic resins, adsorbent resins, chelating resins and catalytic resins. Mention may be made, as examples of resins, of sulphonic resins, carboxylic resins, iminodiacetic resins or resins sold under the tradenames AMBERLITE® and AMBERLYST® by Rohm & Haas, DOWEX® by Dow and LEVATITE® and IONAC® by Bayer.


This stage II) can be carried out in any device known to a person skilled in the art. Thus, use may be made of columns comprising these resins in the form of a fixed bed or of a fluidized bed or membrane systems formed by the said resin.


After treatment on a resin, a reaction medium E3 is obtained which comprises essentially the dinitrile organic compounds formed. These various compounds will advantageously be separated in a distillation stage III). However, other separation processes can be used without, however, departing from the scope of the invention.


Furthermore, the stage II) of treatment with the resins also comprises a stage of elution of the resins laden with the extracted metal elements in order thus to regenerate the resins and to recover these metal elements.


This elution is a conventional and standard stage for processes for treatment on ion-exchange resins. It can be carried out in particular using strong acids, such as sulphuric acid or hydrochloric acid, or strong organic acids and preferably the acid corresponding to the anion of the Lewis acid to be regenerated.


In the context of the present invention, this elution stage can make it possible to recover and regenerate the Lewis acid and can thus make possible its reuse in a hydrocyanation stage. This possibility is of great advantage in making possible economical operation of the process and respect for the environment, in particular when the compound used as Lewis acid is expensive and/or exhibits a toxic nature with respect to the environment.


The process of the invention applies in particular to aliphatic nitriles comprising an ethylenic unsaturation and more particularly to linear pentenenitriles, such as 3-pentenenitrile or 4-pentenenitrile.


These pentenenitriles can comprise minor amounts of other compounds, such as 2-methyl-3-butenenitrile, 2-methyl-2-butenenitrile, 2-pentenenitrile, valero-nitrile, adiponitrile, 2-methylglutaronitrile or 2-ethylsuccinonitrile. These compounds are present in the pentenenitriles, in particular when the latter originate from a first stage of hydrocyanation of butadiene to give unsaturated mononitriles.


This first stage is generally carried out in the presence of a catalyst comprising an organometallic complex but in the absence of cocatalyst. The organo-metallic complex used in this first stage can be different from or identical to that used in the process of the invention. In the case where it is identical, the organometallic complex recovered in stage I) of the process of the invention can be recycled in the hydrocyanation reactor for the first stage of hydrocyanation of butadiene.


The mononitriles introduced in the process of the invention can also originate from an isomerization stage, generally in association with the first stage above, which consists in maintaining the compounds obtained in the first stage above in the presence of a catalytic system comprising an organometallic complex, advantageously identical to that of the first stage, in the absence of hydrogen cyanide.


This object of this isomerization stage is to improve the selectivity of the process for linear unsaturated mononitriles.


Other advantages and details of the invention will become more clearly apparent in the light of the examples given below solely by way of indication and of illustration.







EXAMPLE 1

A solution of indium trifluoroacetate (0.5 g, 1.10 mmol) in a mixture of 3-pentenenitrile (36.4 g, 448 mmol) and adiponitrile (63.6 g, 588 mmol) is prepared. The composition of the medium is determined by elemental analysis.


4 ml fractions of this solution are brought into contact with 2 ml of each of the following resins sold by Rohm & Haas under the tradenames indicated below:

    • a sulphonic resin (AMBERLITE® 252H),
    • a chelating resin (IRC 748),
    • an adsorbent resin (AMBERLITE® XAD7)
    • and a cationic resin (IRC 50).


Each of the media is stirred at ambient temperature (20° C.) for 4 h. The resin is separated by filtration and the composition of the filtrate is determined by elemental analysis.


The compositions of the starting media and of the filtrates are given in Table I below:

















In (ppm)




















Composition of the

1190



starting medium





Composition of the
AMBERLITE ™ 252H
Undetectable



filtrate
Sulphonic resin





IRC 748
Undetectable




Chelating resin





AMBERLITE ™ XAD7
Undetectable




Adsorbent resin





IRC 50
Undetectable




Cationic resin










EXAMPLE 2

A glass column is filled with 100 ml of sulphonic resin (AMBERLITE® 252H). A solution of 3-pentenenitrile and of adiponitrile (30/70 in moles) comprising indium trifluoroacetate with a concentration, expressed as indium element, of 3300 ppm is fed continuously via the top of the column at a flow rate of 340 g/h. Samples are withdrawn every 10 minutes at the column outlet. The concentration of indium in the samples is measured by elemental analysis.


During the three hours of operation of the separating column, the concentration of resin in the samples was always less than 20 ppm.


EXAMPLE 3

A solution of zinc chloride (0.1 g, 0.73 mmol) in a mixture of 3-pentenenitrile (36.4 g, 448 mmol) and of adiponitrile (63.6 g, 588 mmol) is prepared. The composition of the medium is determined by elemental analysis.


4 ml of this solution are stirred at ambient temperature (20° C.) for 4 h in the presence of 2 ml of sulphonic resin (AMBERLITE® 252H). Analysis of the solution before and after treatment over resin indicates that the concentration of zinc in the solution changes from 480 ppm to 8 ppm.


EXAMPLE 4

The reaction for the hydrocyanation of 3-pentenenitrile to give adiponitrile, catalyzed by the Ni(0)/organophosphorus ligand/Lewis (In) acid system, is carried out. The organophosphorus ligand is the compound with the following formula:




embedded image



3 ml fractions of this reaction medium are stirred at ambient temperature (approximately 20° C.) for 4 hours in the presence of 3 ml of one of the following resins:

    • a sulphonic resin (AMBERLITE® 252H),
    • a chelating resin (IRC 748),
    • an adsorbent resin (AMBERLITE® XAD7).


The composition of the reaction medium before and after treatment over resin is given in Table II below:
















Resin ref.
% Ni
% In


















Starting
/
0.459
1.0


composition





Composition after
AMBERLITE ™ 252H
0.46
<0.02


treatment
AMBERLITE ™ XAD-7
0.28
0.42



IRC 748
<0.008
<0.17









These tests show that it is possible to extract the indium originating from the Lewis acid but also, under certain conditions, the oxidized nickel originating from the organometallic complex used as catalyst.

Claims
  • 1. A process for the manufacture of dinitrile compounds by hydrocyanation of mononitrile compounds comprising an ethylenic unsaturation by reaction with hydrogen cyanide in the presence of a catalytic system comprising an organometallic complex and a cocatalyst comprising metal ions, said process comprising the following successive steps: I) separating the organometallic complex from a liquid reaction medium E1 obtained after hydrocyanation of unsaturated nitrile compounds and obtaining a second liquid medium E2 comprising dinitriles and metal ions originating from the cocatalyst,II) extracting from the second liquid medium E2 metal ions originating from the cocatalyst with an ion-exchange resin and obtaining a third medium E3 comprising dinitriles, andIII) separating the dinitriles from the third medium E3.
  • 2. The process according to claim 1, wherein the cocatalyst is a Lewis acid.
  • 3. The process according to claim 1, wherein the metal ions extracted in step II) are recovered by elution from the resin.
  • 4. The process according to claim 3, wherein the metal ions recovered are recycled in order to form the cocatalyst of the catalytic system of the hydrocyanation stage.
  • 5. The process according to claim 2, wherein the Lewis acid is a compound of a metal element belonging to Group Ib, IIb, IIIa, IIIb, IVa, IVb, Va, Vb, VIb, VIIb or VIII of the Periodic Table of the Elements.
  • 6. The process according to claim 2, wherein the Lewis acid is selected from the group consisting of halides, sulphates, sulphonates, haloalkylsulphonates, perhaloalkylsulphonates, haloacetates, perhaloacetates, carboxylates and phosphates of the metal elements.
  • 7. The process according to claim 6, wherein the Lewis acid is selected from the group consisting of chlorides, bromides, fluoroalkylsulphonates and perfluoroalkylsulphonates.
  • 8. The process according to claim 2, wherein the Lewis acid is zinc chloride, zinc bromide, zinc iodide, manganese chloride, manganese bromide, cadmium chloride, cadmium bromide, stannous chloride, stannous bromide, stannous sulphate, stannous tartrate, indium chloride, indium trifluoromethylsulphonate, indium trifluoroacetate, cobalt chloride, ferrous chloride or yttrium chloride.
  • 9. The process according to claim 2, wherein the Lewis acid is a chloride or a bromide of a rare earth element selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, hafnium, erbium, thallium, ytterbium and lutetium.
  • 10. The process according to claim 1, wherein the resin for extraction of the metal ions used in step II) is a weak cationic resin, a strong cationic resin, an adsorbent resin, a chelating resin or a catalytic resin.
  • 11. The process according to claim 10, wherein the ion-exchange resin is a sulphonic resin, carboxylic resin or iminodiacetic resin.
  • 12. The process according to claim 1, wherein the separation of the organometallic complex in step I) is carried out by liquid/liquid extraction with an extraction solvent chosen from the group consisting of alkanes comprising from 5 to 9 carbon atoms, cycloalkanes comprising from 5 to 8 carbon atoms, halogenated hydrocarbons comprising from 1 to 5 carbon atoms, substituted aromatic compounds comprising from 6 to 9 carbon atoms and or unsubstituted aromatic compounds comprising from 6 to 9 carbon atoms.
  • 13. The process according to claim 1, wherein the separation of the dinitriles in step III) is carried out by distillation of said dinitriles.
  • 14. The process according to claim 1, wherein said process is for the manufacture of adiponitrile, and wherein the unsaturated mononitrile compounds are pentenenitriles.
  • 15. The process according to claim 14, wherein the pentenenitriles are obtained by hydrocyanation of butadiene.
  • 16. The process according to claim 1, wherein said organometallic complex is an organometallic phosphite complex.
  • 17. The process according to claim 1, wherein said extraction step II) is carried out at ambient temperature.
  • 18. A process for the manufacture of dinitrile compounds by hydrocyanation of mononitrile compounds comprising an ethylenic unsaturation by reaction with hydrogen cyanide in the presence of a catalytic system comprising an organometallic complex and a cocatalyst comprising metal ions, said process comprising the following successive steps: I) separating the organometallic complex from a liquid reaction medium E1 obtained after hydrocyanation of unsaturated nitrile compounds and obtaining a second liquid medium E2 comprising dinitriles and metal ions originating from the cocatalyst,IIa) separating the dinitriles by distillation from the second liquid medium E2, wherein the distillation bottoms comprise said metal ions originating from the cocatalyst, andIII a) extracting from the distillation bottoms of step IIa) metal ions originating from the cocatalyst with an ion-exchange resin.
  • 19. The process according to claim 18, wherein the metal ions extracted in step IIIa) are recovered by elution from the resin.
  • 20. The process according to claim 18, wherein said extraction step IIIa) is carried out at ambient temperature, and wherein said organometallic complex is an organometallic phosphite complex.
Priority Claims (1)
Number Date Country Kind
03 01529 Feb 2003 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/FR2004/000143 1/22/2004 WO 00 4/27/2006
Publishing Document Publishing Date Country Kind
WO2004/080924 9/23/2004 WO A
US Referenced Citations (245)
Number Name Date Kind
2402873 Coffman et al. Jun 1946 A
2570199 Brown Oct 1951 A
2583984 Arthur, Jr. Jan 1952 A
2666780 Arthur, Jr. Jan 1954 A
2768132 Halliwell Oct 1956 A
3282981 Davis Nov 1966 A
3297742 Monroe, Jr. Jan 1967 A
3328443 Clark Jun 1967 A
3340207 Baker Sep 1967 A
3370082 Eisfeld et al. Feb 1968 A
3496210 Drinkard, Jr. Feb 1970 A
3496215 Drinkard et al. Feb 1970 A
3496217 Drinkard, Jr. et al. Feb 1970 A
3496218 Drinkard, Jr. Feb 1970 A
3522288 Drinkard, Jr. et al. Jul 1970 A
3526654 Hildebrand Sep 1970 A
3536748 Drinkard, Jr. et al. Oct 1970 A
3538142 Drinkard, Jr. Nov 1970 A
3542847 Drinkard, Jr. Nov 1970 A
3547972 Drinkard, Jr. Dec 1970 A
3551474 Drinkard et al. Dec 1970 A
3563698 Rushmere Feb 1971 A
3564040 Downing et al. Feb 1971 A
3579560 Drinkard et al. May 1971 A
3631191 Kane Dec 1971 A
3641107 Breda Feb 1972 A
3651146 Schriltz Mar 1972 A
3652641 Druliner Mar 1972 A
3655723 Drinkard, Jr. et al. Apr 1972 A
3676475 Drinkard, Jr. Jul 1972 A
3676481 Chia Jul 1972 A
3694485 Drinkard, Jr. et al. Sep 1972 A
3739011 Drinkard Jun 1973 A
3752839 Drinkard, Jr. et al. Aug 1973 A
3766231 Gosser et al. Oct 1973 A
3766237 Chia et al. Oct 1973 A
3766241 Drinkard, Jr. et al. Oct 1973 A
3773809 Walter Nov 1973 A
3775461 Drinkard, Jr. et al. Nov 1973 A
3798256 King et al. Mar 1974 A
3818067 Downing et al. Jun 1974 A
3818068 Wells Jun 1974 A
3846461 Shook Nov 1974 A
3846474 Mok Nov 1974 A
3847959 Shook Nov 1974 A
3849472 Waddan Nov 1974 A
3850973 Seidel et al. Nov 1974 A
3852325 King Dec 1974 A
3852327 Druliner Dec 1974 A
3852328 Chia Dec 1974 A
3852329 Tomlinson Dec 1974 A
3853754 Gosser Dec 1974 A
3853948 Drinkard, Jr. et al. Dec 1974 A
3859327 Wells Jan 1975 A
3864380 King et al. Feb 1975 A
3865865 Musser Feb 1975 A
3869501 Waddan Mar 1975 A
3884997 Shook, Jr. May 1975 A
3903120 Shook, Jr. Sep 1975 A
3920721 Gosser Nov 1975 A
3925445 King Dec 1975 A
3927056 Gosser Dec 1975 A
3947487 Crooks Mar 1976 A
3983011 Wiggill Sep 1976 A
3997579 Jesson Dec 1976 A
4045495 Nazarenko et al. Aug 1977 A
4046815 Nazarenko Sep 1977 A
4076756 Nazarenko et al. Feb 1978 A
4080374 Corn Mar 1978 A
4082811 Shook, Jr. Apr 1978 A
4087452 Kuntz May 1978 A
4123379 Gates et al. Oct 1978 A
4134923 Reimer Jan 1979 A
4146555 Kershaw Mar 1979 A
4147717 Kershaw Apr 1979 A
4177215 Seidel Dec 1979 A
4210558 Crooks Jul 1980 A
4230634 Benzie et al. Oct 1980 A
4240976 Benzie et al. Dec 1980 A
4251468 Nazarenko Feb 1981 A
4298546 Mc Gill Nov 1981 A
4328172 Rapoport May 1982 A
4330483 Rapoport May 1982 A
4336110 Reimer Jun 1982 A
4339395 Barnette et al. Jul 1982 A
4347193 Shook, Jr. Aug 1982 A
4371474 Rapoport Feb 1983 A
4382038 McGill May 1983 A
4385007 Shook, Jr. May 1983 A
4387056 Stowe Jun 1983 A
4394321 Cone Jul 1983 A
4416824 Reimer et al. Nov 1983 A
4416825 Ostermaier Nov 1983 A
4434316 Barnette Feb 1984 A
4510327 Peet Apr 1985 A
4521628 Ostermaier Jun 1985 A
4539302 Leyendecker et al. Sep 1985 A
4705881 Rapoport Nov 1987 A
4714773 Rapoport Dec 1987 A
4749801 Beatty et al. Jun 1988 A
4774353 Hall et al. Sep 1988 A
4783546 Burke Nov 1988 A
4810815 Bryndza Mar 1989 A
4874884 McKinney et al. Oct 1989 A
4990645 Back et al. Feb 1991 A
5087723 Mc Kinney Feb 1992 A
5107012 Grunewald Apr 1992 A
5143873 Bryndza Sep 1992 A
5175335 Casalnuovo Dec 1992 A
5302756 McKinney Apr 1994 A
5312957 Casalnuovo May 1994 A
5312959 Sieja et al. May 1994 A
5382697 Casalnuovo Jan 1995 A
5440067 Druliner Aug 1995 A
5449807 Druliner Sep 1995 A
5484902 Casalnuovo Jan 1996 A
5488129 Huser et al. Jan 1996 A
5510470 Casalnuovo Apr 1996 A
5512695 Kreutzer et al. Apr 1996 A
5512696 Kreutzer et al. Apr 1996 A
5523453 Breikss Jun 1996 A
5543536 Tam Aug 1996 A
5663369 Kreutzer et al. Sep 1997 A
5688986 Tam et al. Nov 1997 A
5693843 Breikss Dec 1997 A
5696280 Shapiro Dec 1997 A
5709841 Reimer Jan 1998 A
5723641 Tam et al. Mar 1998 A
5773637 Cicha et al. Jun 1998 A
5821378 Foo et al. Oct 1998 A
5847191 Bunel et al. Dec 1998 A
5856555 Huser et al. Jan 1999 A
5908805 Huser et al. Jun 1999 A
5959135 Garner et al. Sep 1999 A
5981772 Foo Nov 1999 A
6020516 Foo Feb 2000 A
6031120 Tam Feb 2000 A
6048996 Clarkson Apr 2000 A
6069267 Tam May 2000 A
6077979 Qiu Jun 2000 A
6090987 Billig et al. Jul 2000 A
6120700 Foo Sep 2000 A
6121184 Druliner et al. Sep 2000 A
6127567 Garner Oct 2000 A
6147247 Voit et al. Nov 2000 A
6169198 Fischer et al. Jan 2001 B1
6171996 Garner et al. Jan 2001 B1
6171997 Foo Jan 2001 B1
6197992 Fischer et al. Mar 2001 B1
6207851 Bassler et al. Mar 2001 B1
6242633 Fischer et al. Jun 2001 B1
6284865 Tam et al. Sep 2001 B1
6307109 Kanel et al. Oct 2001 B1
6355833 Fischer et al. Mar 2002 B2
6362354 Bunel Mar 2002 B1
6372147 Reimer Apr 2002 B1
6380421 Lu Apr 2002 B1
6399534 Bunel Jun 2002 B2
6420611 Tam Jul 2002 B1
6461481 Barnette et al. Oct 2002 B1
6469194 Burattin et al. Oct 2002 B2
6489517 Shapiro Dec 2002 B1
6521778 Fischer et al. Feb 2003 B1
6555718 Shapiro Apr 2003 B1
6646148 Kreutzer Nov 2003 B1
6660876 Gagne Dec 2003 B2
6660877 Lenges et al. Dec 2003 B2
6737539 Lenges et al. May 2004 B2
6753440 Druliner et al. Jun 2004 B2
6770770 Baumann et al. Aug 2004 B1
6812352 Kreutzer Nov 2004 B2
6844289 Jackson Jan 2005 B2
6846945 Lenges et al. Jan 2005 B2
6852199 Jungkamp et al. Feb 2005 B2
6855799 Tam et al. Feb 2005 B2
6893996 Chu May 2005 B2
6897329 Jackson et al. May 2005 B2
6906218 Allgeier Jun 2005 B2
6924345 Gagne Aug 2005 B2
6936171 Jackson Aug 2005 B2
6984604 Cobb et al. Jan 2006 B2
7022866 Bartsch et al. Apr 2006 B2
7067685 Bartsch et al. Jun 2006 B2
7071365 Lu Jul 2006 B2
7084293 Rosier et al. Aug 2006 B2
7084294 Jungkamp et al. Aug 2006 B2
7098358 Burattin et al. Aug 2006 B2
7105696 Burattin et al. Sep 2006 B2
7253298 Galland et al. Aug 2007 B2
7345006 Bartsch et al. Mar 2008 B2
7381845 Weiskopf et al. Jun 2008 B2
7439381 Jungkamp et al. Oct 2008 B2
7442825 Galland et al. Oct 2008 B2
7470805 Rosier et al. Dec 2008 B2
7521575 Bartsch et al. Apr 2009 B2
7528275 Bartsch et al. May 2009 B2
7538240 Jungkamp et al. May 2009 B2
7541486 Scheidel et al. Jun 2009 B2
7700795 Haderlein et al. Apr 2010 B2
20030100802 Shapiro May 2003 A1
20030135014 Radu et al. Jul 2003 A1
20030212298 Brasse et al. Nov 2003 A1
20040063991 Burattin et al. Apr 2004 A1
20040106815 Ritter Jun 2004 A1
20040176622 Bartsch et al. Sep 2004 A1
20040235648 Bartsch et al. Nov 2004 A1
20040260112 Basset et al. Dec 2004 A1
20050059737 Allgeier Mar 2005 A1
20050090677 Bartsch et al. Apr 2005 A1
20050090678 Bartsch et al. Apr 2005 A1
20050159614 Allgeier Jul 2005 A1
20050247624 Jungkamp et al. Nov 2005 A1
20060142609 Bourgeois et al. Jun 2006 A1
20060175189 Gerber et al. Aug 2006 A1
20060252955 Rosier et al. Nov 2006 A1
20060258873 Rosier et al. Nov 2006 A1
20060258874 Bartsch et al. Nov 2006 A1
20060264651 Bartsch et al. Nov 2006 A1
20070060766 Bartsch et al. Mar 2007 A1
20070073071 Haderlein et al. Mar 2007 A1
20070083057 Haderlein et al. Apr 2007 A1
20070088173 Haderlein et al. Apr 2007 A1
20070112215 Jungkamp et al. May 2007 A1
20070155977 Jungkamp et al. Jul 2007 A1
20070155978 Jungkamp et al. Jul 2007 A1
20070155980 Scheidel et al. Jul 2007 A1
20070219386 Ritter Sep 2007 A1
20080015378 Foo et al. Jan 2008 A1
20080015379 Garner Jan 2008 A1
20080015380 Foo et al. Jan 2008 A1
20080015381 Foo et al. Jan 2008 A1
20080015382 Foo et al. Jan 2008 A1
20080071105 Bartsch et al. Mar 2008 A1
20080076944 Bartsch et al. Mar 2008 A1
20080083607 Deckert et al. Apr 2008 A1
20080221351 Bartsch et al. Sep 2008 A1
20080227214 Jungkamp et al. Sep 2008 A1
20080227998 Scheidel et al. Sep 2008 A1
20080242883 Jungkamp et al. Oct 2008 A1
20080242885 Jungkamp et al. Oct 2008 A1
20080242886 Bartsch et al. Oct 2008 A1
20080275266 Bartsch et al. Nov 2008 A1
20080281119 Scheidel et al. Nov 2008 A1
20080281120 Jungkamp et al. Nov 2008 A1
20090054671 Haderlein et al. Feb 2009 A1
Foreign Referenced Citations (479)
Number Date Country
6522096 Feb 1997 AU
199665220 Feb 1997 AU
1324613 Nov 1993 CA
2462720 Apr 2003 CA
2552862 Aug 2005 CA
1113854 Dec 1995 CN
1145531 Mar 1997 CN
1146166 Mar 1997 CN
1146762 Apr 1997 CN
1159106 Sep 1997 CN
1159799 Sep 1997 CN
1163606 Oct 1997 CN
1169143 Dec 1997 CN
1173935 Feb 1998 CN
1179147 Apr 1998 CN
1198151 Nov 1998 CN
1204111 Jan 1999 CN
1206357 Jan 1999 CN
1211931 Mar 1999 CN
1045591 Oct 1999 CN
1236355 Nov 1999 CN
1047163 Dec 1999 CN
1245489 Feb 2000 CN
1247102 Mar 2000 CN
1052718 May 2000 CN
1265094 Aug 2000 CN
1266424 Sep 2000 CN
1270543 Oct 2000 CN
1068307 Jul 2001 CN
1304334 Jul 2001 CN
1069310 Aug 2001 CN
1072980 Oct 2001 CN
1076342 Dec 2001 CN
1327881 Dec 2001 CN
1331843 Jan 2002 CN
1333745 Jan 2002 CN
1082946 Apr 2002 CN
1344180 Apr 2002 CN
1356335 Jul 2002 CN
1387534 Dec 2002 CN
1099912 Jan 2003 CN
1390241 Jan 2003 CN
1103613 Mar 2003 CN
1106218 Apr 2003 CN
1108643 May 2003 CN
1427807 Jul 2003 CN
1449400 Oct 2003 CN
1461295 Dec 2003 CN
1471510 Jan 2004 CN
1141285 Mar 2004 CN
1142224 Mar 2004 CN
1144781 Apr 2004 CN
1487917 Apr 2004 CN
1152855 Jun 2004 CN
1535179 Oct 2004 CN
1564807 Jan 2005 CN
1568225 Jan 2005 CN
1568226 Jan 2005 CN
1617892 May 2005 CN
1617900 May 2005 CN
1212293 Jul 2005 CN
1639176 Jul 2005 CN
1213051 Aug 2005 CN
1665776 Sep 2005 CN
1670139 Sep 2005 CN
1674989 Sep 2005 CN
1675172 Sep 2005 CN
1222358 Oct 2005 CN
1732148 Feb 2006 CN
1735460 Feb 2006 CN
1245489 Mar 2006 CN
1740183 Mar 2006 CN
1745062 Mar 2006 CN
1767895 May 2006 CN
1260009 Jun 2006 CN
1266424 Jul 2006 CN
1270543 Aug 2006 CN
1274671 Sep 2006 CN
1274699 Sep 2006 CN
1835915 Sep 2006 CN
1279088 Oct 2006 CN
1847288 Oct 2006 CN
1283620 Nov 2006 CN
1857775 Nov 2006 CN
1289539 Dec 2006 CN
1293942 Jan 2007 CN
1906150 Jan 2007 CN
1914154 Feb 2007 CN
1914155 Feb 2007 CN
1914156 Feb 2007 CN
1914157 Feb 2007 CN
1914158 Feb 2007 CN
1914159 Feb 2007 CN
1914160 Feb 2007 CN
1914161 Feb 2007 CN
1914162 Feb 2007 CN
1914165 Feb 2007 CN
1914166 Feb 2007 CN
1914167 Feb 2007 CN
1914216 Feb 2007 CN
1307237 Mar 2007 CN
1315790 May 2007 CN
1318432 May 2007 CN
1997624 Jul 2007 CN
1331843 Aug 2007 CN
101020641 Aug 2007 CN
101035799 Sep 2007 CN
101043946 Sep 2007 CN
100348322 Nov 2007 CN
100351227 Nov 2007 CN
100352824 Dec 2007 CN
100361966 Jan 2008 CN
100364666 Jan 2008 CN
1807088 Mar 1960 DE
1807088 Jun 1969 DE
2055747 May 1971 DE
1593277 Aug 1973 DE
1593277 Mar 1974 DE
2700904 Oct 1983 DE
68909466 Mar 1994 DE
10136488 Feb 2003 DE
10150285 Apr 2003 DE
10350999 Jun 2005 DE
102004004696 Aug 2005 DE
0001899 Mar 1982 EP
123438 Jul 1987 EP
160296 Oct 1988 EP
268448 Sep 1991 EP
510689 Oct 1992 EP
248643 Mar 1993 EP
336314 Sep 1993 EP
464691 Dec 1993 EP
675871 Apr 1997 EP
634395 Sep 1997 EP
650959 Sep 1997 EP
784610 Feb 1999 EP
757672 Jun 1999 EP
792259 Aug 1999 EP
804412 Dec 1999 EP
1000019 May 2000 EP
1001928 May 2000 EP
1003716 May 2000 EP
1019190 Jul 2000 EP
755302 Oct 2000 EP
929513 Apr 2001 EP
881924 May 2001 EP
854858 Jun 2001 EP
815073 Jul 2001 EP
1144114 Sep 2001 EP
1091804 Feb 2002 EP
944585 Apr 2002 EP
1000019 Feb 2003 EP
911339 Apr 2003 EP
1216268 Nov 2003 EP
1350788 Nov 2003 EP
1003607 Dec 2003 EP
1003716 Feb 2004 EP
1313743 Mar 2004 EP
1414567 May 2004 EP
1427695 Jun 2004 EP
1438133 Jul 2004 EP
1019190 Dec 2004 EP
1140801 Feb 2005 EP
1395547 Mar 2005 EP
1001928 Apr 2005 EP
1521736 Apr 2005 EP
1521737 Apr 2005 EP
1521738 Apr 2005 EP
1603865 Dec 2005 EP
1324976 Feb 2006 EP
1214975 Mar 2006 EP
1324978 Mar 2006 EP
1648860 Apr 2006 EP
891323 Jun 2006 EP
1226147 Jun 2006 EP
1438317 Jun 2006 EP
1682561 Jul 2006 EP
1448668 Aug 2006 EP
1587621 Aug 2006 EP
1713759 Oct 2006 EP
1713761 Oct 2006 EP
1713762 Oct 2006 EP
1713766 Oct 2006 EP
1716102 Nov 2006 EP
1716103 Nov 2006 EP
1716104 Nov 2006 EP
1716105 Nov 2006 EP
1716106 Nov 2006 EP
1716107 Nov 2006 EP
1716109 Nov 2006 EP
1610893 Mar 2007 EP
1621531 Mar 2007 EP
1438132 Apr 2007 EP
WO2007051374 May 2007 EP
1799697 Jun 2007 EP
1713764 Aug 2007 EP
1713816 Aug 2007 EP
1825914 Aug 2007 EP
1448620 Jun 2008 EP
1817108 Jun 2008 EP
1713760 Jul 2008 EP
1571172 Oct 2008 EP
1988998 Nov 2008 EP
1265832 May 2009 EP
1592659 Jul 2009 EP
1586598 Sep 2009 EP
2098106 Sep 2009 EP
1567478 Oct 2009 EP
1682559 Dec 2009 EP
1630166 Feb 2010 EP
154456 Nov 1968 FR
2015115 Apr 1970 FR
1603513 May 1971 FR
2069411 Sep 1971 FR
2845379 Dec 2004 FR
2873696 Feb 2006 FR
2873696 Oct 2006 FR
0219474 Jul 1924 GB
1104140 Feb 1968 GB
1203702 Sep 1970 GB
1213175 Nov 1970 GB
1429169 Mar 1976 GB
1429621 Mar 1976 GB
1436932 May 1976 GB
1458322 Dec 1976 GB
1482909 Aug 1977 GB
2007521 May 1979 GB
1565443 Apr 1980 GB
1594694 Aug 1981 GB
2007521 Jun 1982 GB
2 212 155 Jul 1989 GB
1025950 Jul 2003 HK
1026383 Jul 2004 HK
1052364 May 2007 HK
48028423 Aug 1973 JP
48028423 Sep 1973 JP
49043924 Dec 1974 JP
50059324 Jun 1975 JP
50059326 Jun 1975 JP
51007649 Mar 1976 JP
52012698 Apr 1977 JP
1013127 Sep 1980 JP
55047031 Nov 1980 JP
57156454 Oct 1982 JP
57156455 Oct 1982 JP
57179144 Nov 1982 JP
1136333 Feb 1983 JP
58067658 May 1983 JP
58126892 Aug 1983 JP
1170710 Oct 1983 JP
58159452 Oct 1983 JP
60044295 Mar 1985 JP
60044295 Oct 1985 JP
62294691 Dec 1987 JP
63135363 Sep 1988 JP
1013127 Apr 1989 JP
1209830 Aug 1989 JP
1136333 Sep 1989 JP
1050220 Oct 1989 JP
1173751 Dec 1989 JP
1565159 Jun 1990 JP
3001298 Jan 1991 JP
1615749 Aug 1991 JP
3205587 Sep 1991 JP
1627124 Nov 1991 JP
1627146 Nov 1991 JP
3069915 Nov 1991 JP
3285878 Dec 1991 JP
1642102 Feb 1992 JP
4012248 Mar 1992 JP
4057050 May 1992 JP
4166155 Jun 1992 JP
4230254 Aug 1992 JP
4057050 Sep 1992 JP
4060532 Sep 1992 JP
4118676 Oct 1992 JP
4128141 Nov 1992 JP
1729140 Jan 1993 JP
1811422 Dec 1993 JP
7025841 Jun 1995 JP
7188144 Jul 1995 JP
2037346 Mar 1996 JP
8504814 May 1996 JP
8157795 Jun 1996 JP
2098106 Oct 1996 JP
02521777 Jan 1997 JP
02623448 Jun 1997 JP
9505586 Jun 1997 JP
9512013 Dec 1997 JP
10505101 May 1998 JP
10506911 Jul 1998 JP
10509954 Sep 1998 JP
02818503 Oct 1998 JP
10512879 Dec 1998 JP
11501660 Feb 1999 JP
11504262 Apr 1999 JP
02911608 Jun 1999 JP
11507297 Jun 1999 JP
03001298 Jan 2000 JP
03069915 Jul 2000 JP
2001500135 Jan 2001 JP
2001506250 May 2001 JP
2001512097 Aug 2001 JP
03205587 Sep 2001 JP
2001516640 Oct 2001 JP
03285878 May 2002 JP
2002517473 Jun 2002 JP
03320424 Sep 2002 JP
2002533321 Oct 2002 JP
03380543 Feb 2003 JP
2003510385 Mar 2003 JP
2003526688 Sep 2003 JP
03478399 Dec 2003 JP
2004501058 Jan 2004 JP
2004507550 Mar 2004 JP
03519410 Apr 2004 JP
03535172 Jun 2004 JP
03553952 Aug 2004 JP
2004534032 Nov 2004 JP
2004535929 Dec 2004 JP
03621133 Feb 2005 JP
2005503410 Feb 2005 JP
2005505610 Feb 2005 JP
2005505611 Feb 2005 JP
2005510588 Apr 2005 JP
2005510605 Apr 2005 JP
2004509942X Oct 2005 JP
2005533095 Nov 2005 JP
2005533096 Nov 2005 JP
2005538075 Dec 2005 JP
03739404 Jan 2006 JP
2004534032X Jan 2006 JP
2004535929X Jan 2006 JP
2006000451 Jan 2006 JP
2006511591 Apr 2006 JP
2006519797 Aug 2006 JP
2006528616 Dec 2006 JP
2007083057 Apr 2007 JP
2007509885 Apr 2007 JP
2007509886 Apr 2007 JP
2007509887 Apr 2007 JP
2007519516 Jul 2007 JP
2007519663 Jul 2007 JP
2007519664 Jul 2007 JP
2007519666 Jul 2007 JP
2007519667 Jul 2007 JP
2007519670 Jul 2007 JP
2007519671 Jul 2007 JP
2007519672 Jul 2007 JP
2007519673 Jul 2007 JP
2007519674 Jul 2007 JP
2007519675 Jul 2007 JP
2007519677 Jul 2007 JP
2007522122 Aug 2007 JP
04012248 Nov 2007 JP
2006515323X Feb 2008 JP
04057050 Mar 2008 JP
04060532 Mar 2008 JP
2006512918X Mar 2008 JP
2008515831 May 2008 JP
20085169907 May 2008 JP
04118676 Jul 2008 JP
04128141 Jul 2008 JP
04166155 Oct 2008 JP
04230254 Feb 2009 JP
198802621 Jul 1988 KR
198802296 Oct 1988 KR
198802296 Oct 1988 KR
199003458 May 1990 KR
19908166 Nov 1990 KR
199104132 Jun 1991 KR
199205087 Jul 1992 KR
2006132885 Dec 2006 KR
2004PA002764 Jun 2004 MX
197700262 Jul 1977 NL
188158 Apr 1992 NL
677650 Jul 1979 SU
387874 Apr 2000 TW
400249 Aug 2000 TW
453983 Sep 2001 TW
453985 Sep 2001 TW
455576 Sep 2001 TW
457244 Oct 2001 TW
458959 Oct 2001 TW
519496 Feb 2003 TW
527340 Apr 2003 TW
576837 Feb 2004 TW
580489 Mar 2004 TW
580490 Mar 2004 TW
584623 Apr 2004 TW
592821 Jun 2004 TW
226345 Jan 2005 TW
233438 Jun 2005 TW
245780 Dec 2005 TW
266650 Nov 2006 TW
WO7900193 Apr 1979 WO
WO9414752 Jul 1994 WO
WO9514659 Jun 1995 WO
WO9528228 Oct 1995 WO
WO9529153 Nov 1995 WO
WO9611182 Apr 1996 WO
WO9616022 May 1996 WO
WO9622968 Aug 1996 WO
WO9629303 Sep 1996 WO
WO9703040 Jan 1997 WO
WO9712857 Apr 1997 WO
WO9724183 Jul 1997 WO
WO9736855 Oct 1997 WO
WO9811051 Mar 1998 WO
WO9827054 Jun 1998 WO
WO 9906356 Feb 1999 WO
WO9906146 Feb 1999 WO
WO9906356 Feb 1999 WO
WO9906359 Feb 1999 WO
WO9913983 Mar 1999 WO
WO9964155 Dec 1999 WO
WO0001485 Jan 2000 WO
WO0037431 Jun 2000 WO
WO0121684 Mar 2001 WO
WO0136429 May 2001 WO
WO0168247 Sep 2001 WO
WO0168247 Sep 2001 WO
WO0211108 Feb 2002 WO
WO0213964 Feb 2002 WO
WO0218392 Mar 2002 WO
WO0226698 Apr 2002 WO
WO0230854 Apr 2002 WO
WO02053527 Jul 2002 WO
WO02092551 Nov 2002 WO
WO03011457 Feb 2003 WO
WO03018540 Mar 2003 WO
WO03024919 Mar 2003 WO
WO03031392 Apr 2003 WO
WO03033141 Apr 2003 WO
WO03033509 Apr 2003 WO
WO03046019 Jun 2003 WO
WO03046049 Jun 2003 WO
WO03068729 Aug 2003 WO
WO03076394 Sep 2003 WO
WO2004007431 Jan 2004 WO
WO2004007432 Jan 2004 WO
WO2004007435 Jan 2004 WO
WO2004007508 Jan 2004 WO
WO2004060855 Jul 2004 WO
WO2004064994 Aug 2004 WO
WO2004065352 Aug 2004 WO
WO2004080924 Sep 2004 WO
WO2004090848 Sep 2004 WO
WO2004087314 Oct 2004 WO
WO2005019160 Mar 2005 WO
WO2005042156 May 2005 WO
WO2005042157 May 2005 WO
WO2005042547 May 2005 WO
WO2005042549 May 2005 WO
WO2005073167 Aug 2005 WO
WO2005073168 Aug 2005 WO
WO2005073169 Aug 2005 WO
WO2005073170 Aug 2005 WO
WO2005073171 Aug 2005 WO
WO2005073172 Aug 2005 WO
WO2005073173 Aug 2005 WO
WO2005073174 Aug 2005 WO
WO2005073175 Aug 2005 WO
WO2005073176 Aug 2005 WO
WO2005073178 Aug 2005 WO
WO2005073179 Aug 2005 WO
WO2005073241 Aug 2005 WO
WO2006040023 Apr 2006 WO
WO2006042675 Apr 2006 WO
WO2005073166 Mar 2007 WO
WO2007096274 Aug 2007 WO
WO 2007115936 Oct 2007 WO
WO2007115936 Oct 2007 WO
WO2008008928 Jan 2008 WO
WO2008008929 Jan 2008 WO
WO2008008930 Jan 2008 WO
WO2008028843 Mar 2008 WO
WO2008062058 May 2008 WO
WO2008008926 Jul 2008 WO
Non-Patent Literature Citations (6)
Entry
Romanovski et al. “Potential Agenst for Removal of Actinides from Waste Solutions” Preprint for the Spectrum '96 International Conference on Nuclear and Hazardous Waste Management Conference Proceedings, 1996, the whole document.
Summary Report: Control and Treatment Technology for the Metal Finishing Industry—Ion Exchange USEPA EPA 625/-81-007 Jun. 1981 pp. 4-10.
Rohm and Haas Company “Ion Exchange Resins for Chemical Processing” 2001.
Croxtall et al. “Separation, recovery and recycling of a fluorous-tagged nickel catalyst using fluorous solid-phase extraction” Chemical Communications, 2003, pp. 2430-2431.
International Search Report for PCT/FR2004/000143 dated Sep. 1, 2004.
Summary Report: Control and Treatment for the Metal Finishing Industry—Ion Exchange USEPA EPA 625/-81-007 Jun. 1981 pp. 11-46.
Related Publications (1)
Number Date Country
20060258873 A1 Nov 2006 US