Method of producing high strength, high stiffness and high ductility titanium alloys

Information

  • Patent Application
  • 20070286761
  • Publication Number
    20070286761
  • Date Filed
    June 07, 2006
    18 years ago
  • Date Published
    December 13, 2007
    16 years ago
Abstract
A method of producing a high strength, high stiffness and high ductility titanium alloy, comprising combining the titanium alloy with boron so that the boron concentration in the boron-modified titanium alloy does not exceed the eutectic limit. The carbon concentration of the boron-modified titanium alloy is maintained below a predetermined limit to avoid embrittlement. The boron-modified alloy is heated to a temperature above the beta transus temperature to eliminate any supersaturated excess boron. The boron-modified titanium alloy is deformed at a speed slow enough to prevent microstructural damage and reduced ductility.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a binary titanium-boron phase diagram;



FIG. 2(
a) is an electron micrograph of coarse primary TiB particles in a titanium alloy composition (Ti-6Al-4V-1.7B) above the eutectic limit;



FIG. 2(
b) is a fractograph of a tensile specimen showing preferential crack initiation at coarse primary TiB particles;



FIG. 3(
a) is a graph of ductility versus temperature in as-compacted Ti-6Al-4V-1B alloy with different carbon concentrations;



FIG. 3(
b) is a graph of ductility versus temperature in an extruded Ti-6Al-4V-1B alloy with different carbon concentrations;



FIG. 4(
a) is a backscattered electron micrograph of a Ti-6Al-4V-1B alloy compacted at 1750° F. (below the beta transus);



FIG. 4(
b) is a backscattered electron micrograph of a Ti-6Al-4V-1B alloy compacted at 1980° F. (above the beta transus);



FIG. 5(
a)) is a backscattered electron micrograph of a Ti-6Al-4V-1B-0.1C alloy extruded at a ram speed of 100 inch/min., taken along the extrusion direction;



FIG. 5(
b) is a backscattered electron micrograph of a Ti-6Al-4V-1B-0.1C alloy extruded at a ram speed of 100 inch/min., taken along the transverse direction;



FIG. 5(
c) is a backscattered electron micrograph of a Ti-6Al-4V-1B-0.1C alloy extruded at a ram speed of 15 inch/min., taken along the extrusion direction;



FIG. 5(
d) is a backscattered electron micrograph of a Ti-6Al-4V-1B-0.1C alloy extruded at a ram speed of 15 inch/min., taken along the transverse direction; and



FIG. 6 is a graph showing the tensile properties of a slow speed extruded Ti-6Al-4V-1B alloy as compared with a typical Ti-6Al-4V alloy





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a novel method of increasing the strength and stiffness while maintaining the ductility of titanium alloys by the addition of boron and controlled processing. This new and improved method causes the natural evolution of fine and uniform microstructural features. Although the description hereinafter is specific to a powder metallurgy processing technique, the invention is equally applicable to other metallurgical processing techniques.


In the pre-alloyed powder metallurgy approach, the boron is added to the molten titanium alloy and the melt is atomized to obtain boron-containing titanium alloy powder. The powder may be consolidated and/or formed via conventional techniques such as hot isostatic pressing, forging, extrusion and rolling.


The method of the present invention includes four important elements which are described hereinafter.


1) Boron Level at or Below the Eutectic Limit

While boron is fully soluble in liquid titanium, its solubility in the solid phase is negligible. The binary Titanium-Boron phase diagram shown in FIG. 1 illustrates that there exists an eutectic reaction at a temperature of 2804° F. (1540° C.) and boron concentration of 2 wt. %. Similar eutectic reactions are expected in other titanium alloys modified with boron with a change in the eutectic temperature and boron concentration. When alloys with compositions that contain boron concentrations above the eutectic limit are solidified, very coarse primary TiB particles grow in the two phase (liquid plus TiB) region and are retained in the fully solidified microstructure. Although these particles provide significant strength and stiffness improvements, drastic reduction in ductility occurs. An example of the effect of the coarse primary TiB particles is illustrated in FIG. 2 for a Ti-6Al-4V-1.7B (all concentrations expressed in weight percent) alloy which is above the eutectic composition for this titanium alloy. The presence of coarse TiB particles larger than 200 μm is seen in FIG. 2(a) and the preferential initiation of fracture at these particles in a tensile specimen causing premature failure (ductility of ˜3%) is recorded in FIG. 2(b). Therefore, the present invention is applicable to any conventional titanium alloy that contains boron concentration below the eutectic limit and that does not possess any of the coarse primary TiB particles.


2) Carbon Level Below a Critical Limit

It has been discovered that the carbon concentration also significantly influences the ductility of boron-modified titanium alloys and it is important to keep the carbon level below below a critical limit to avoid an unacceptable loss of ductility. Unlike boron, the solid solubility of carbon in titanium is high (up to 0.5 weight %) and carbon in titanium could cause embrittlement. The carbon concentration, therefore, should be controlled depending on the alloy composition and processing parameters to achieve acceptable ductility values. For example, FIG. 3 shows results from a study of a Ti-6Al-4V-1B alloy with varying carbon concentrations from 0.05 to 0.35% in as-compacted (FIG. 3a) and extruded (FIG. 3b) conditions. For the selected process conditions, these variations illustrate that the ductility significantly drops to below 4% for carbon concentrations above 0.1%.


3) Thermal Exposure Above the Beta Transus

Owing to negligible solid solubility of boron in titanium, excess boron is trapped (supersaturated) inside the lattice of titanium under non-equilibrium solidification conditions (e.g. powder manufacture via rapid solidification techniques such as gas atomization). Titanium alloy with supersaturated boron is inherently brittle and possesses low ductility values. It has been discovered that the supersaturated boron can be forced out via thermal exposure at a high temperature. Experiments to determine the optimum temperature for eliminating the supersaturation are illustrated in FIG. 3. From these experiments, it is concluded that the material should be exposed above the beta transus temperature (temperature at which the titanium alloy transforms fully to high temperature body-centered cubic beta phase) to completely force out the supersaturated boron. Thermal exposure also influences microstructural parameters such as size, distribution, and inter-particle spacing of TiB particles, and grain size and morphology of the titanium phases. These microstructural parameters significantly influence the mechanical properties.


Thermal exposure at lower temperatures results in close inter-particle spacing which restricts the ductility. Exposure above the beta transus increases the inter-particle spacing which improves the ductility. The rate at which the material is cooled after thermal exposure alters the grain size and morphology, both of which also significantly influence the ductility. Controlled slow cooling from above the beta transus produces fine-grained equiaxed alpha-beta microstructure due to the influence of TiB particles on the phase transformation reaction of high temperature beta to room temperature alpha. The beta transus varies with the composition of principal alloying elements in conventional titanium alloys, and, e.g., is 1850±50° F. for Ti-6Al-4V. Thermal exposure may be applied via hot isostatic pressing, extrusion, or another suitable consolidation method, or by thermal treatment before or after consolidation, or thermo-mechanical processing. The effects of thermal treatments in HIP compacts and extrusions are shown in FIG. 3. Microstructures of Ti-6Al-4V-1B powder compacted below and above the beta transus are shown in FIG. 4, which clearly demonstrates the influence of thermal exposure temperature on the microstructural evolution.


4) Deformation Rate Control to Avoid Microstructural Damage

The rate at which boron-modified titanium alloy is subjected to deformation also has significant influence on the final microstructure and mechanical properties. Microstructures of Ti-6Al-4V-1B-0.1C material extruded at a fast ram speed (100 inch/mm) and slow speed (15 inch/mm) are shown in FIG. 5. The material extruded at high-speed (FIGS. 5a and 5b) exhibited microstructural damage manifested as TiB particle fracture and cavitation at the ends of TiB, which reduce the ductility. The material extruded at slow-speed (FIGS. 5c and 5d), on the other hand, is completely free from microscopic damage. Although, the demonstrations are made using selected processes and deformation rates, the method of this invention is applicable to the full range of consolidation approaches and thermo-mechanical processes, and covers a broad range of safe deformation rates necessary to avoid damage to the TiB microconstituent.


The properties of slow-speed extruded Ti-64-1B are compared with a typical Ti-6Al-4V alloy [2] in FIG. 6. An increase in stiffness (modulus) by −25% and strength by −35%, while maintaining equivalent ductility level (>10%), is obtained in boron-modified Ti alloy processed under controlled conditions described above.


It will be readily seen, therefore, that the new and improved method of the present invention increases the strength and stiffness of conventional titanium alloys without significant loss in ductility, thus significantly enhancing the structural performance of titanium alloys.


Boron-modified titanium alloys could be produced using traditional processing methods and conventional metalworking (e.g. forging, extrusion, rolling) equipment can be used to perform controlled processing. Therefore, the improved performance with the use of the present method is obtained without any increase in material or processing cost.


Titanium alloys with 25-35% increases in strength and stiffness could replace existing expensive components for high performance and could enable new structural design concepts for weight and cost reduction.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A method of producing a high strength, high stiffness and high ductility titanium alloy, comprising: combining a titanium alloy with boron so that the boron concentration in the boron-modified titanium alloy does not exceed the eutectic limit,maintaining the carbon concentration of the boron-modified titanium alloy below a predetermined limit to avoid embrittlement,heating the boron-modified alloy to a temperature above the beta transus temperature to eliminate any supersaturated excess boron, anddeforming the boron-modified titanium alloy at a speed slow enough to prevent microstructural damage and reduced ductility.
  • 2. The method of claim 1 wherein the boron is added to a molten titanium alloy and the melt is atomized to obtain boron-containing titanium alloy powder.
  • 3. The method of claim 2 wherein the boron-containing titanium alloy powder is consolidated and/or formed by hot isostatic pressing, forging, extrusion or rolling.
  • 4. The method of claim 2 wherein the boron is in liquid or powder form.
  • 5. The method of claim 1 wherein the titanium alloy is selected from the group consisting of Ti-6Al-4V, Ti-5Al-2.5Sn and Ti-6Al-2Sn-4Zr-2Mo-0.1Si.
  • 6. The method of claim 1 wherein the boron-modified alloy heated above the beta transus temperature is cooled at a rate slow enough to prevent reduced ductility.
  • 7. A method of producing a high strength, high stiffness and high ductility titanium alloy, comprising: combining a titanium alloy with boron so that the boron concentration in the boron-modified titanium alloy does not exceed the eutectic limit.
  • 8. The method of claim 7 further comprising maintaining the carbon concentration of the boron-modified titanium alloy below a predetermined limit to avoid embrittlement.
  • 9. The method of claim 8 further comprising heating the boron modified alloy to a temperature above the beta transus temperature to eliminate any supersaturated excess boron.
  • 10. The method of claim 9 wherein the boron-modified alloy heated above the beta transus temperature is cooled at a rate slow enough to prevent reduced ductility.
  • 11. The method of claim 7 further comprising heating the boron-modified alloy to a temperature above the beta transus temperature to eliminate any supersaturated excess boron.
  • 12. The method of claim 11 wherein the boron-modified alloy heated above the beta transus temperature is cooled at a rate slow enough to prevent reduced ductility.
  • 13. The method of claim 7 further comprising deforming the boron-modified titanium alloy at a speed slow enough to prevent microstructural damage and reduced ductility.
  • 14. The method of claim 11 further comprising deforming the boron-modified titanium alloy at a speed slow enough to prevent microstructural damage and reduced ductility.