Method of producing hot water soluble garments and like fabrics

Information

  • Patent Grant
  • 5871679
  • Patent Number
    5,871,679
  • Date Filed
    Friday, November 14, 1997
    26 years ago
  • Date Issued
    Tuesday, February 16, 1999
    25 years ago
Abstract
A method of disposing of garments after use. The garments, linens, drapes, towels and other useful articles are provided as woven, non-woven, knitted or otherwise formed fabric of thermoplastic polyvinyl alcohol polymer fiber, the fiber being water soluble only at temperatures above approximately 37.degree. C. and preferably above 50.degree. C. After use, the fabric is subjected to water at a sufficient temperature to substantially dissolve the fabric whereupon the water and dissolved fabric are subjected to disposal.
Description

TECHNICAL FIELD OF THE INVENTION
The present invention involves a method of producing thermoplastic materials capable of being disposed after use. Specifically, garments produced according to this invention are composed of non-woven, woven, knitted or otherwise formed film or fabric of thermoplastic polymer or fiber which are water soluble at temperatures only above approximately normal human body temperature (37.degree. C.).
BACKGROUND OF THE INVENTION
Hospital patient care generates considerable quantities of infectious medical waste in primary and acute care facilities. There has been a general conversion from reusable, cleanable items, to disposable items over the last three decades. These conversions were made to promote antiseptic techniques in patient care and to decrease the potential for cross-infections between patients, staff and the general public. Recent federal and state government regulations such as the Medical Waste Tracking Act of 1988 and OSHA Medical Facility rules have resulted in a substantial increase in medical waste that must be classified as "infectious."
When a patient is admitted to a hospital, the patient produces approximately 55 pounds of medical waste per day. Approximately 20% of this waste is infectious. The current stated objective of the American Hospital Association and the Centers for Disease Control is to treat medical waste as soon as it is generated. Both organizations recognize that medical waste is primarily an occupational hazard for health care workers and not an environmental problem. The best way to deal with infectious medical waste is to disinfect it at the point of generation and dispose of the treated medical waste with minimum handling and storage on premises.
The need for an effective way to dispose of medical waste has been highlighted by the amendment made to 29 C.F.R. .sctn.1910.1030 which provides for the federal regulation under the Occupational Safety And Health Act, 29 U.S.C. 655, 657 to control bloodborne pathogens. Specifically, the Act calls for the establishment of an exposure control plan, the containment of specimens of blood or other potentially infectious materials and the general tightening of precautionary measures to minimize the spread of disease. A safe and effective way to dispose of hospital waste in the form of soiled garments and apparel would greatly facilitate compliance with the above-referenced Act.
As a result, consumption of medical disposable woven or non-woven products has been growing at a rate of approximately 10% a year. In 1988, sales totaled approximately 1.155 Billion Dollars. It is projected that by 1992, sales of medical disposable non-woven products will reach 1.54 Billion Dollars.
Disposable medical fabrics are generally currently composed of thermoplastic fibers such as polyethylene, polypropylene, polyesters, polyamides and acrylics. These fabrics can also include mixtures of thermoset fibers such as polyamides, polyarimids and cellulosics. They are typically 10-100 grams per square yard in weight and can be woven, knitted or otherwise formed by methods well known to those in the textile arts while the non-wovens can be thermobonded, hydroentangled, wet laid or needle punched and films can be formed by blow or cast extrusion or by solution casting.
Although there is clearly a benefit in the use of disposables in the medical arts by avoiding the necessity of human contact with medical waste which is necessary in the cleaning of comparable reusables, non-biodegradable disposables are posing a problem which is only now being recognized. Landfill sites are becoming increasingly burdened with disposables which do not biodegrade for hundreds of years, if ever. As landfill sites become fully exploited, new sites must be found which are rightfully opposed by residents located proximate to proposed site locations.
It is clear that others have produced useful articles which at least break down or are caused to change their physical confirmation when subjected to hot aqueous solutions. For example, U.S. Pat. No. 3,314,809 teaches the production of transparent flexible films from hydroxypropyl cellulose which is taught to be "insoluble in water until the water reaches a temperature of about 60.degree. C." However, hydroxypropyl cellulose, unlike polyvinyl alcohol, does not solubilize in water but simply breaks down forming a cellulose derivative residue.
The prior art has recognized uses for polyvinyl alcohol compositions in the manufacture of water soluble useful articles. For example, U.S. Pat. No. 3,413,229 teaches the production of water soluble bags or pouches from which packets or the like are produced containing such materials as detergents, bleaches, insecticides, medicinals, chemicals, dyes, pigments, industrial additives and other materials. It is taught that the contents of the packets are dispersed merely by dropping the packets into water whereupon the bags dissolve and release their contents into aqueous dispersions. However, the referenced patent teaches the production of such films which are both hot and cold water soluble.
Additional references, such as U.S. Pat. No. 3,859,125 teach the production of layered articles which include coatings of polyvinyl alcohol. The subject reference teaches coating polyvinyl alcohol on a paper membrane whereby it is taught that the coated paper is soluble in either high or low temperature water. Again, it is incorrect to believe that a cellulose sheet material would be "soluble" in an aqueous solution. At best, cellulose merely disperses. Similarly, U.S. Pat. No. 4,343,133 teaches the coating of polyvinyl alcohol onto a non-woven fiber sheet impregnated with latices of polyvinyl acetate in the manufacture of a premoistened towelette which can be disposed of by flushing in plain water without danger of clogging a plumbing system.
There has been the teaching of various medical related products which are generally in the form of articles coated with polyvinyl alcohol employed to enhance disposal. For example, European Patent Application No. 87310534.0 (Publication No. 0272816) teaches the production of an ostomy pouch which can be disposed of in a toilet bowel. The pouch is constructed from laminants of water swellable cold water insoluble films and water-resistant tissue paper. Similarly, U.K. Patent Application No. 2211088 teaches the production of a liner for a bed pan or urine bottle made of polyvinyl alcohol. It is taught that the liner may be disposed of by treatment with water at a temperature above that which it dissolves.
Both U.K. Patent No. 1,187,690 and Japanese Patent No. 72041741 teach the production of stand alone polyvinyl alcohol films which are water soluble. The U.K. patent teaches the production of hospital bags and packing material for such products as detergents and agricultural chemicals while the Japanese patent teaches the use of polyvinyl alcohol films to make laundry bags which dissolve releasing soiled garments contained therein. However, neither reference teaches the unique films of the present invention which can be configured into useful garments and like materials and which are soluble in aqueous solutions only above a threshold value.
It is thus an object of the present invention to provide a method of disposing of garments, linens, drapes, towels and other useful articles after use while avoiding additional burdens being placed upon landfill disposal sites.
It is yet a further object of the present invention to provide a method of disposing of garments, linens, drapes, towels and other useful articles after use such that the garment can be solubilized and medical waste substantially sterilized in a single operation.
These and further objects will be more readily appreciated while considering the following disclosure and appended claims.
SUMMARY OF THE INVENTION
The present invention involves a method of producing garments, films and fibers which can be disposed of after use which comprises providing the garments as sheets or as woven, non-woven, knitted or otherwise formed fabric of thermoplastic polymer or fiber. The polymer or fabric garments are water soluble only at temperatures above approximately the normal body temperature (37.degree. C.). The garments, linens, drapes, towels and other useful articles composed of said polymer formulation are subjected to water at a sufficient temperature to substantially dissolve the garments whereupon the water and dissolved polymer are subjected to disposal.





DETAILED DESCRIPTION OF THE INVENTION
The present invention deals with the manufacture of garments, films and fibers configured into such articles as drapes, towels, covers, overwraps, gowns, head coverings, face masks, shoe coverings, CSR wraps, sponges, dressings, tapes, underpads, diapers, wash cloths, sheets, pillow covers, napkins and woven, non-woven, or otherwise formed fabric. Such products are generally employed in the medical industry both in hospitals, outpatient facilities and home environments.
Many of these products generally come into contact with human bodily fluids and their disposal and disinfection has become a matter of major concern in light of the lack of biodegradability of prior products and the potential spread of human fluid-born diseases such as hepatitis B and AIDS.
In order to cope with these difficulties, it is proposed that polymer or fabric employed in the manufacture of such items be composed of polymer films and/or fibers which are soluble in hot aqueous baths, including water, either alone or with the addition of surfactants, salts and bleaches above 37.degree. C. and preferably above 50.degree. C. Such fibers or sheets would be insoluble in cold to warm baths below 37.degree. C., the average temperature of the human body. Ideally, the polymer or fabric would be soluble in baths only above 50.degree. C., and, most preferably the polymer or fabric garments would be soluble only in aqueous media between 80.degree. C. to 90.degree. C.
Garments which are soluble in aqueous media below 37.degree. C. are useless as inadvertent secretion of bodily fluids such as blood and urine would cause the polymer to solubilize. Working with polymer which dissolves only at higher temperatures such as above 50.degree. C. or, ideally between 80.degree. C. and 90.degree. C. would prevent inadvertent solubilization yet remain ideal in practicing the present invention. It is contemplated that disposal in a hot water bath such as a washing machine at or near the boiling point of water dedicated solely to solubilizing garments, linens, drapes, towels and other useful articles produced herein would also be an effective disinfecting media. As such, two objectives would be accomplished, namely, that the polymer or sheets would be disinfected and would be solubilized for disposal through the sewer system. Not only would this lessen the burden now being imposed upon current landfill sites but liquid sewer disposal would prove a comparative low cost technique in ridding the user of such used garments.
Polymer or sheet materials useful in practicing the present method comprise polyvinyl alcohol with or without acetyl groups, cross-linked or uncross-linked. The garments are comprised of polyvinyl alcohol homopolymer that has been highly crystallized by post drawing or heat annealing. Ideal for use in the present invention would be a highly crystallized, at least approximately 98% saponified polyvinyl acetate. Commercially, polyvinyl alcohol sold under the trademark Vinex 1003.TM. and 1002.TM. by Air Products could be used herein. Useful fibers are typically 0.5 denier to 5.0 denier and are preferably from 1.0-2.0 denier and most preferably sized at 1.2-1.5 denier. A commercially available product for use in the present invention is either type T-B (VEE 1290) or type T-5 (VPB 101) which are each available from Kuralon as its PVA fiber. This material is sold in 44 mm lengths. The T-B product is sized at 1.2 denier while the T-5 product is sold in 38 mm staple lengths of 1.5 denier.
The fabric useful in practicing the present invention can be constructed by any well known technique for making woven, non-woven, knitted or otherwise formed fabric. Such non-woven techniques useful in practicing the present invention include spun bonding, melt blowing or wet laying, hydroentangling with cold water and/or thermally bonding with 30-70% of the surface melted to form, for example, a diamond pattern. When products, such as diapers, are configured of sheets of suitable thermoplastic material, the sheets are approximately 1 to 6 mils in thickness and more preferably 1 to 3 mils in thickness and most preferably approximately 1.5 mils in thickness. Suitable non-woven fabric or sheets are approximately from 15 g/yd.sup.2 to 200 g/yd.sup.2 in weight and more preferably from 20 g/yd.sup.2 to 70 g/.sup.2 and most preferably from 25 g/yd.sup.2 to 80 g/yd.sup.2. Knitted or woven fabrics are approximately 50% heavier as needed for binding tapes, cuffs and related appendages.
As noted in U.K. Patent No. 1,187,690, it is desirable to maintain a minimum level of moisture content of polyvinyl alcohol pellets prior to melt extrusion. The reference teaches that if moisture content of a film composition exceeds two percent by weight, steam evolves during the melt extrusion leading to the formation of fine holes or cavities in the film.
However, while the present invention also contemplates drying to a level of approximately 0.5% (wt.) water or less the polyvinyl alcohol pellets before extrusion and, subsequent to the film formation, moisture is reintroduced back into the film to prevent brittleness and maintain usefulness. It is contemplated that the final PVA film have between 1.5 to 15% (wt.), preferably 5 to 10% (wt.) and most preferably approximately 7.5% (wt.) moisture content.
In order to further enhance the usability of sheet material produced principally of polyvinyl alcohol, it is contemplated that an anti-blocking agent be employed to reduce hydrogen bonding between adjacent hydroxyl groups on separate sheets. Suitable anti-blocking agents are members selected from the group consisting of silicon dioxide (SiO.sub.2) polymer, talc, calcium carbonate and fumed hydrophilic SiO.sub.2. Such material should be employed between 0.1 to 5.0% (wt.) and most preferably between 2 to 3% (wt.) based upon the weight of the polyvinyl alcohol.
As noted previously, polymer or sheet material useful in practicing the present invention is comprised of polyvinyl alcohol with or without acetyl groups, cross-linked or uncross-linked. It is proposed that the polyvinyl alcohol be substantially fully hydrolyzed, that is, having 98% or greater hydrolyzed acetyl groups.
For the sake of adequate mechanical strength, polyvinyl alcohol-based sheet material should have a degree of polymerization of at least 700 and no greater than approximately 1500. Ideally, such materials should have a degree of polymerization of approximately 900 and be substantially crystallized.
It is also noted that in producing polyvinyl alcohol resins from the saponification of polyvinyl acetate, impurities such as sodium acetate and sodium sulfate are found in the resin. To provide a suitable film material, such impurities must be kept below 1/2% (wt.) and preferably below 1/4% (wt.) of the polyvinyl alcohol resin. This can be accomplished with a methanol water rinse or extraction.
To enhance the manufacture of suitable polyvinyl alcohol resin-based film materials, suitable quantities of a plasticizer are necessary. It is contemplated that up to 15% (wt.) of a suitable plasticizer such as glycerine or polyethylene glycol be employed to assist in providing a smooth melt extrusion from the polyvinyl alcohol-based pellets.
As examples the following fabric samples were manufactured on conventional thermal bonding equipment.
______________________________________I.D. TL-0079.0 79.1 79.2 080.0 0080.1______________________________________Fibre Kuralon T-5 PVA (1.5 denier, 38 mm staple length)Pattern No. 2 2 2 1 1Fabric Wt. 27 44 47 35 43(gms/sq. yd)Thickness (mil) 15 12 17 14 16Tensiles-(Grab-lbs)Dry MD 8.3 11.7 16.6 13.8 16.1Wet MD 3.2 4.8 4.6 3.1 6.0Dry CD 2.0 2.3 4.3 3.8 5.2Wet CD 1.0 1.5 1.7 1.3 2.3Elongation (%)Dry MD 11 10 12 12 11Dry CD 48 30 38 19 22Mullen Burst(psi)Dry 11 15 19 13 16Wet 10 14 19 13 15Hanle-O-Meter 84 244 432 173 244(gms)Trap Tear-MD 1.7 2.1 3.5 2.7 2.9CD 0.4 0.4 0.8 0.6 0.7______________________________________
It was found that the above-manufactured fabric displayed nearly identical physical properties similar to fabric manufactured from polyester and polypropylene. However, the fabric manufactured above was unaffected by cool or warm water (23.degree.-37.degree. C.) but when exposed to hot water (80.degree.-90.degree. C.), immediately dissolved.
It is oftentimes desirable that the film be colored with pigments or dyes such as azo or anthraquinone molecules. Useful dyes include acids, basics, disperse, reactives and vats. The pigments and dyes should be employed in an amount between approximately 0.25 to 3.0% (wt.) based upon the weight of the polymeric polyvinyl alcohol.
Surprisingly, it has been found that the incorporation of a water repellent within the polyvinyl alcohol film or fabric is quite a useful adjunct to minimize surface attack by liquid moisture at a temperature lower than that at which solubility occurs. It has been found that even with polyvinyl alcohol films and fabrics which become water soluble only at elevated temperatures, when exposed to water, the surface of such material tends to take on a slick "feel" and the use of water repellents tends to minimize this effect. Suitable repellents include fluorocarbons offered by the Minnesota Mining and Manufacturing Co. sold under its trademarks FC 824 and 808. These materials are useful in the range of between 0.1 to 2.0% (wt.) based upon the weight of the polyvinyl alcohol polymer.
Claims
  • 1. A method of producing thermoplastic polymer film of polyvinyl alcohol in the form of articles comprising at least one member selected from the group consisting of drapes, towels, covers, overwraps, gowns, head covers, face masks, shoe coverings, CSR wraps, sponges, dressings, tapes, underpads, diapers, washcloths, sheets, pillow covers and napkins,
  • said thermoplastic polymer film of polyvinyl alcohol being soluble only at temperatures above 37.degree. C., said thermoplastic polymer film being produced from pellets of polyvinyl alcohol, said pellets having an initial water content,
  • said method comprising the steps of:
  • reducing said initial water content of said pellets to a level no greater than approximately 0.5% (wt.) prior to melt extrusion;
  • melt extruding pellets of polyvinyl alcohol to produce a film of polyvinyl alcohol;
  • incorporating within said pellets an anti-blocking agent in an amount between approximately 0.1 to 5.0% (wt.); and,
  • subsequent to said melt extrusion, increasing the water content of said film of polyvinyl alcohol to a level between approximately 5-10% (wt.).
  • 2. The method of claim 1 wherein said film of polyvinyl alcohol is made from a process selected from the group consisting of blow extrusion, cast extrusion and solution casting.
  • 3. The method of claim 1 wherein said polyvinyl alcohol film includes a water repellent agent.
  • 4. The method of claim 3 wherein said water repellent agent is contained within said polymeric film in an amount between approximately 0.1 to 2.0% (wt.).
  • 5. A method of producing thermoplastic polymer fabric of polyvinyl alcohol which is water soluble only at temperatures above 37.degree. C., said fabric being produced from pellets of polyvinyl alcohol, said pellets having an initial water content,
  • said method comprising the steps of melt extruding said pellets of polyvinyl alcohol to produce fabric of polyvinyl alcohol only after said water content has been reduced to a level no greater than approximately 0.5% (wt.), said pellets incorporating an anti-blocking agent in an amount between approximately 0.1 to 5.0% (wt.);
  • and subsequent to said melt extrusion, increasing the water content of said fabric to a level between approximately 5 to 10% (wt.).
  • 6. The method of claim 5 wherein said polyvinyl alcohol fabric includes a water repellent agent.
  • 7. The method of claim 6 wherein said water repellent agent is contained within said polymeric fabric in an amount between approximately 0.1 to 2.0% (wt.).
  • 8. The method of claim 5 wherein said water repellent agent is contained within said polymeric fiber in an amount between approximately 0.1 to 2.0% (wt.).
Parent Case Info

The present application is a continuation of applicant's application Ser. No. 08/618,008 filed Mar. 18, 1996 abandoned, which is a continuation of application Ser. No. 08/299,760, filed Sep. 1, 1994 pending, which is a continuation of application Ser. No. 08/055,083, filed Apr. 29, 1993 abandoned, which is a continuation-in-part of application Ser. No. 07/881,685, filed May 12, 1992, U.S. Pat. No. 5,207,837 which is a continuation-in-part of application Ser. No. 07/683,290, filed Apr. 10, 1991 abandoned.

US Referenced Citations (51)
Number Name Date Kind
2340866 Dangelmajer Feb 1944
2395616 Dangelmajer Feb 1946
2408377 Dangelmajer Oct 1946
2430949 Porter et al. Nov 1947
2909502 Matsumoto et al. Oct 1959
3089493 Galindo May 1963
3314809 Klug Apr 1967
3372311 Lobur Mar 1968
3413229 Bianco et al. Nov 1968
3484874 Bickenheuser Dec 1969
3578619 Reeder May 1971
3607812 Takigawa et al. Sep 1971
3637657 Morii et al. Jan 1972
3762454 Wilkins Oct 1973
3790067 Scheier Feb 1974
3859125 Miller et al. Jan 1975
3865918 Mitchell et al. Feb 1975
3886112 Watson et al. May 1975
3886610 Shelden Jun 1975
3930086 Harmon Dec 1975
3931088 Sakurada et al. Jan 1976
4073733 Yamauchi et al. Feb 1978
4079036 Ohmori et al. Mar 1978
4258849 Miller Mar 1981
4279752 Sueoka et al. Jul 1981
4295850 Haberli et al. Oct 1981
4309494 Stocken Jan 1982
4343133 Daniels et al. Aug 1982
4478971 Ballard Oct 1984
4536532 Miller et al. Aug 1985
4568341 Mitchell et al. Feb 1986
4612157 Genba et al. Sep 1986
4619793 Lee Oct 1986
4620999 Holmes Nov 1986
4651725 Kifune et al. Mar 1987
4863779 Damponte Sep 1989
4952550 Wallach et al. Aug 1990
4959341 Wallach Sep 1990
4959464 Yeh Sep 1990
4971861 Watanabe et al. Nov 1990
5051222 Marten et al. Sep 1991
5106890 Maruhashi et al. Apr 1992
5181966 Honeycutt et al. Jan 1993
5181967 Honeycutt Jan 1993
5183571 Hanel et al. Feb 1993
5207837 Honeycutt May 1993
5208104 Uda et al. May 1993
5225120 Graiver et al. Jul 1993
5252340 Honeycutt Oct 1993
5268222 Honeycutt Dec 1993
5620786 Honeycutt et al. Apr 1997
Foreign Referenced Citations (17)
Number Date Country
8902229 Jan 1990 BRX
010171 Apr 1980 EPX
0050288 Apr 1982 EPX
0107576 May 1984 EPX
0176316 Apr 1986 EPX
0272816 Jun 1988 EPX
0320895 Dec 1988 EPX
15 19 530 Jan 1963 DEX
30 17 246 Nov 1981 DEX
386161 Jan 1933 GBX
743165 Jan 1956 GBX
1187690 Apr 1970 GBX
1271424 Apr 1972 GBX
1312370 Apr 1973 GBX
1374199 Nov 1974 GBX
1451619 Oct 1976 GBX
2083762 Mar 1982 GBX
Continuations (3)
Number Date Country
Parent 618008 Mar 1996
Parent 299760 Sep 1994
Parent 55083 Apr 1993
Continuation in Parts (2)
Number Date Country
Parent 881685 May 1992
Parent 683290 Apr 1991