One preferred embodiment of the present invention will now be described with reference to the accompanying drawings.
As shown in
The male housing 12 receives a number of male terminals 28 therein, and the male terminals 28 are mounted on the board 14, and therefore are fixed to this board 14. The male terminals 28 are electrically connected to printed wiring (provided at the board 14) and electronic elements mounted on the board 14. The male outer cover 16 is fixed to the board support base 18, with the board 14 interposed therebetween, so that the male housing 12 is disposed at an end portion of the male connector 4.
The female inner housing 20 is formed into a square frame-like shape, and is received within the female outer housing 22 slightly larger in size than the female inner housing 20. Pivot shafts 32 are formed on and project respectively from inner surfaces of a pair of opposed plates 30 of the female outer housing 22.
The female plate housing 24 receives a number of female terminals 34 therein. The female plate housing 24 is inserted into the female inner housing 20 to be received therein, and then by pivotally moving the lever 8, the female inner housing 20 is slid toward the male housing 12 through the female outer housing 22, so that the female terminals 34 are connected respectively to the male terminals 28. Wires (not shown) electrically connected respectively to the female terminals 34 are held watertight by the wire seal 26 attached to the female plate housing 24, and these wires are covered and protected by the wire cover 10 attached to the outside of the female outer housing 22.
The lever 8 comprises a lever base 36 molded of a slightly-elastic resin, and a pair of plates 38 formed of a metal sheet. The lever base 36 includes a pair of side plates 42 each having a cam arm 40, and an interconnecting portion 46 having a lock arm 44. Boss holes 48 and a pivot hole 50 are formed through each of the plates 38.
The lever base 36 has a U-shape as a whole, and has the interconnecting portion 46 at one end thereof, and the side plates 42 extend laterally from upper and lower edges of this interconnecting portion 46, respectively.
The lock arm 44 for being engaged with a lock arm receiving portion 52 formed at the female outer housing 22 is formed at the interconnecting portion 46.
Each of the side plates 42 has a relatively small thickness, and has a generally square or rectangular shape, and the cam arm 40 having a cam groove 54 of a curved slot-like shape projects from a side edge of the side plate 42. A pair of bosses 56 are formed on and project from an outer surface of each side plate 42.
Each of the plates 38 has a relatively small thickness similarly with the side plate 42, and is slightly larger in size than the side plate 42. The pair of boss holes 48 are formed through a plate body 58 (having a flat plate-like shape) of the plate 38, and a projection 60 and the pivot hole 50 are formed at an end portion of the plate body 58.
A reinforcing portion 62 conforming in shape to the periphery of the side plate 42 is formed at an outer edge of each plate 38, the reinforcing portion 62 being formed by bending an edge portion of the plate 38.
The pair of plates 38 are attached respectively to outer surfaces of the pair of side plates 42 of the lever base 36, and by doing so, the bosses holes 48 of each plate 38 are fitted respectively on the bosses 56 of the corresponding side plate 42, with the reinforcing portion 62 covering the periphery of the side plate 42. Thus, each plate 38 is mounted on the corresponding side plate 42 in a unitary manner.
The pivot holes 50 of the plates 38 are fitted respectively on the pivot shafts 32 of the female outer housing 22, so that the lever 8 is pivotally mounted on the female outer housing 22.
When the lever 8 is located in an unlocked position A1 shown in
As a result, the lever 8 pushes the female inner housing 20 toward the male housing 12. Then, when the lever 8 reaches the locked position A2, the lock arm 44 is engaged with the lock arm receiving portion 52 formed at the female outer housing 22, thus completing the fitting operation.
As shown in
Excessive displacement prevention piece portions 72 are formed on and project respectively from those portions of opposite side portions of the turned-back extension portion 68 which are offset from the support shaft portion 64 in the anti-fitting direction. Also, displacement limitation ribs 74 are formed respectively at opposite end portions of the interconnecting portion 46 of the lock arm 44, and project in an overhanging manner in a direction away from the side plates 42. As shown in
The lever base 36 is injection molded of the elastically-deformable resin, and the lever base 36 is molded, with the lock arm 44 assuming such a pantograph-shape that the lock arm 44 is much spaced from the interconnecting portion 46. Namely, a mold for molding the lever base 36 is so designed that the molded lock arm 44 is formed into an open pantograph-shape. Therefore, a mold section for molding the lock arm 44 does not need to have a small piece or die, and therefore the mold will not become expensive, and besides the strength of the mold will not be decreased in contrast with a mold using such a small piece or die, and there is no fear the mold may be damaged or broken.
Thus, the lever base 36 is injection molded in such a manner that the molded lock arm 44 is kept in the open condition. After the molding of the lever base 36, the free ends of the side plates 42 of the lever base 36 are held with the fingers, and are moved toward each other as indicated by arrows B (
In the above embodiment, the lever base 36, including the lock arm 44 having the excessive displacement prevention function, is injection molded in such a manner that the molded lock arm 44 is formed into the open pantograph-shape, and therefore the lever base 36 can be molded by the mold which does not need to have any small piece or die. And besides, the excessive displacement prevention piece portions 72 of the lock arm 44 are molded to be disposed outwardly respectively of the displacement limitation ribs 74, and therefore a space for receiving the mold section for the excessive displacement prevention piece portions 72 does not need to be secured within a mold section for the displacement limitation ribs, and accordingly the lock arm can be made smaller.
Number | Date | Country | Kind |
---|---|---|---|
2006-197861 | Jul 2006 | JP | national |