This invention relates to microparticles produced by cells, their use and production thereof.
Stem cells have the ability to self-renew and to differentiate into functionally different cell types. They have the potential to be a powerful tool in the growing field of Regenerative Medicine, in particular regenerative therapy requiring tissue replacement, regeneration or repair (Banerjee et al. 2011). However, there are drawbacks to the use of stem cells in therapy: there is a need for a consistent and substantial supply of stem cells with functional and phenotypic stability and the associated high costs and time delay caused by cell generation, storage, transport and handling; there is a requirement for immunological compatibility to avoid rejection of the stem cells by the recipient; and there are complex regulatory issues related to potential safety risks of tumour or ectopic tissue formation. Further, despite the therapeutic efficacy of stem cell transplantation, there is no convincing evidence for a direct long-term effect of the transplanted stem cells, for example through engraftment and differentiation into reparative or replacement cells.
Neural stem cells (NSCs) are self-renewing, multipotent stem cells that generate neurons, astrocytes and oligodendrocytes (Kornblum, 2007). The medical potential of neural stem cells is well-documented. Damaged central nervous system (CNS) tissue has very limited regenerative capacity so that loss of neurological function is often chronic and progressive. Neural stem cells (NSCs) have shown promising results in stem cell-based therapy of neurological injury or disease (Einstein et al. 2008). Implanting neural stem cells (NSCs) into the brains of post-stroke animals has been shown to be followed by significant recovery in motor and cognitive tests (Stroemer et al. 2009). It is not completely understood how NSCs are able to restore function in damaged tissues but it is now becoming increasingly recognised that NSCs have multimodal repairing properties, including site-appropriate cell differentiation, pro-angiogenic and neurotrophic activity and immunomodulation promoting tissue repair by the native immune system and other host cells (Miljan & Sinden, 2009, Horie et al., 2011). It is likely that many of these effects are dependent on transient signalling from implanted neural stem cells to the host milieu, for example NSCs transiently express proinflammatory markers when implanted in ischaemic muscle tissue damage which directs and amplifies the natural pro-angiogenic and regulatory immune response to promote healing and repair (Hicks et al., unpublished data). In chronic stroke brain, NSCs also have a substantial neurotrophic effect. For example, they promote the repopulation of the stoke-damaged striatal brain tissue with host brain derived doublecortin positive neroblasts (Hassani, O'Reilly, Pearse, Stroemer et al., PLoS One. 2012; 7(11)).
Furthermore, on the basis of a large body of NSC restorative effects in animal models with chronic stroke, a clinical trial using neural stem cells is being carried out by ReNeuron Limited (Surrey, UK), to trial the treatment of disabled stroke patients using its “CTX0E03” conditionally-immortalised cortex-derived neural stem cells (Clinicaltrials.gov Identifier: NCT01151124).
Mesenchymal stem cells (MSCs) are lineage-restricted stem cells which have the potential to differentiate into mesenchymal cell types only, namely of the adipocytic, chondrocytic and osteocytic lineages (Pittenger et al 1999; Ding et al. 2011). MSCs (also referred to as Mesenchymal Stromal Cells and Mesenchymal Progenitor Cells) are derived from a variety of sources including bone marrow, blood, adipose and other somatic tissues. The therapeutic potential of MSCs, however, is more directed towards the application of their pro-angiogenic and immune modulating properties as undifferentiated cells. Production of human MSCs is limited by the inability of these cells to expand in numbers stably beyond approximately 15-20 population doublings.
Mesenchymal stem cell-conditioned medium (MSC-CM) has a therapeutic efficacy similar to that of MSCs themselves, suggesting a paracrine mechanism of MSC-based therapy (Timmers et al. 2007). WO-A-2009/105044 discloses that particles known as exosomes, secreted by MSCs, comprise at least one biological property of the MSCs and suggests the use of these MSC particles in therapy, while Théry et al. 2011 provides a general review of exosomes and other similar secreted vesicles. Whereas some of the drawbacks of using stem cells directly as therapeutic agents are overcome by using the mesenchymal stem cell-derived exosomes (e.g. storage, transport and handling), the problem remains of providing a consistent and substantial supply of functionally and phenotypically stable stem cells to produce the exosomes. For therapeutic use, the exosomes preferably need to be produced on a large scale. In the absence of a stem cell line, replenishment of the cells through repeated derivation from a source of stem cells is required, which incurs recurring costs for testing and validation of each new batch. Furthermore, the diseases and disorders that can be treated by MSCs may be limited.
There remains a need for improved stem cell-based therapies.
The present invention is based on the surprising finding that microparticles can advantageously be produced by conditionally-immortalised cells. The conditionally-immortalised cells may be stem cells. The Examples show the successful harvest of microparticles from conditionally immortalised neural stem cells and CD34+ cells. Conditional immortalisation provides a constant supply of clonal cells that produce microparticles such as exosomes. The conditionally immortalised cells are useful as “producer cells” for microparticles such as exosomes, which are typically harvested or isolated from the conditionally-immortalised cells.
A first aspect of the invention provides the use of a conditionally-immortalised cell to produce microparticles. The conditionally-immortalised cell is typically:
The microparticle that is produced may be an exosome, microvesicle, membrane particle, membrane vesicle, exosome-like vesicle, ectosome-like vesicle, ectosome or exovesicle. Typically, the microparticle is an exosome. In one embodiment, the cell is a mesenchymal stem cell and the microparticle is an exosome.
Conditional immortalisation may be achieved by introducing an immortalisation factor which is inactive unless the cell is supplied with an activating agent. Such an immortalisation factor may be a gene such as c-mycER. The c-MycER gene product is a fusion protein comprising a c-Myc variant fused to the ligand-binding domain of a mutant estrogen receptor. The conditionally-immortalised cells are typically cultured in the presence of the activating agent. For c-MycER conditionally-immortalised cells, the activating agent is 4-hydroxytamoxifen (4-OHT). Accordingly, the microparticles are typically isolated from conditionally-immortalised cells that are in the immortalised state at the time of microparticle isolation.
It has also been found that it is possible to alter the production of microparticles by conditionally-immortalised cells by the addition of components to the culture medium, by culturing the stem cells under hypoxic conditions, or by co-culture with other cell types, thereby providing an improved method of producing stem cell microparticles.
A second aspect of the invention provides a method of producing a microparticle, comprising isolating a microparticle from a conditionally-immortalised cell-conditioned medium, optionally wherein the cell is as defined above. In certain embodiments of this aspect:
A further aspect of the invention provides a method of producing a stem cell microparticle, typically a neural stem cell microparticle or a microparticle from another stem cell type (as detailed above). The method may comprise culturing the stem cells, typically conditionally-immortalised stem cells, in an environment that allows stem cell differentiation and collecting the microparticles that are produced by the cells. The microparticles may be isolated from partially-differentiated neural stem cells. The stem cells may be cultured under conditions that allow the efficient removal of metabolic waste. In one embodiment, an environment that allows stem cell differentiation is culture in a multi-compartment bioreactor, typically for a prolonged period of time (for example more than seven days). The method may comprise isolating a microparticle from a stem cell-conditioned medium. The stem cell-conditioned medium may comprise one or more additive components or agents which stimulate the release of microparticles by the stem cells into the medium. The one or more components may be selected from transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ) and/or tumour necrosis factor-alpha (TNF-α). The microparticles may be isolated from stem cell-conditioned medium wherein the stem cells were cultured under hypoxic conditions. The microparticles may be isolated from stem cell-conditioned medium produced by stem cells co-cultured with a different cell type, typically endothelial cells, in order to create the NSC niche environment.
A further aspect of the invention provides a microparticle obtainable by a method aspect of the invention.
Another aspect of the invention provides a method of screening for an agent that alters the production of a microparticle by a conditionally-immortalised cell, comprising contacting a conditionally-immortalised cell with a candidate agent and observing whether the rate of production of microparticles by the contacted conditionally-immortalised cell increases or decreases compared to a control.
A further aspect of the invention provides a kit for use in a method for producing a microparticle, comprising: (a) a medium; (b) a conditionally-immortalised cell; (c) optionally the one or more components of claim 19 or 20; (d) optionally the microparticle of claim 22 suitable for use as a control; (e) optionally a detection agent suitable for specific detection of the produced microparticles; and (f) instructions for producing the microparticle of any of claim 22 using the kit.
Further aspects and embodiments of the invention are defined below, and in the claims.
The invention also relates to the finding that neural stem cells contain microparticles that are therapeutically useful. The methods discussed herein with regard to the production of microparticles from neural stem cells may be applied to methods of producing microparticles from the other cell types described for the first aspect of the invention.
One aspect of the invention provides a neural stem cell microparticle. The microparticle may be an exosome, microvesicle, membrane particle, membrane vesicle, exosome-like vesicle, ectosome-like vesicle, ectosome or exovesicle. Typically, the microparticle is an exosome. The microparticle may be derived from a conditionally-immortalised neural stem cell that has been cultured in an environment that allows stem cell differentiation. The microparticle may be isolated from partially-differentiated neural stem cells. In one embodiment, an environment that allows stem cell differentiation is a multi-compartment bioreactor, typically where the cells are cultured for more than seven days. The microparticle may be derived from a neural stem cell line. In some embodiments, the neural stem cell line may be the “CTX0E03” cell line, the “STR0C05” cell line, the “HPC0A07” cell line or the neural stem cell line disclosed in Miljan et al Stem Cells Dev. 2009. In some embodiments, the microparticle is derived from a stem cell line that does not require serum to be maintained in culture. The microparticle may have a size of between 30 nm and 1000 nm, or between 30 and 200 nm, or between 30 and 100 nm, as determined by electron microscopy; and/or a density in sucrose of 1.1-1.2 g/ml. The microparticle may comprise RNA. The RNA may be mRNA, miRNA, and/or any other small RNA. The microparticle may comprise one, two, three or four of hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532. The microparticle may comprise one or more lipids, typically selected from ceramide, cholesterol, sphingomyelin, phosphatidylserine, phosphatidylinositol, phosphatidylcholine. The microparticle may comprise one or more tetraspanins, typically CD63, CD81, CD9, CD53, CD82 and/or CD37. The microparticle may comprise one or more of TSG101, Alix, CD109, thy-1 and CD133. The microparticle may comprise at least 10 of the proteins present in Table 19 or Table 21. The microparticle may comprise at least one biological activity of a neural stem cell or a neural stem cell-conditioned medium. At least one biological activity may be a tissue regenerative activity. The microparticle of the invention is typically isolated or purified.
A further aspect of the invention provides a neural stem cell microparticle for use in therapy. The therapy may be regenerative therapy requiring tissue replacement, regeneration or repair, for example where the therapy requires angiogenesis, neurogenesis and/or neuroprotection. The therapy may be for a neurological disease, disorder or deficit. The therapy may improve functional and/or cognitive recovery. The therapy may be of stroke, peripheral arterial disease, neuropathy or any other disease or disorder that requires tissue regeneration, revascularisation or local anti-inflammatory action, including:
In one embodiment, the microparticle is an exosome and therapy is of a disease or condition requiring tissue replacement, regeneration or repair. In another embodiment, the microparticle is a microvesicle and the therapy is of a disease requiring angiogenesis or a neurological disease, disorder or deficit.
The therapy may also be a prophylactic therapy to induce tolerance, typically immunotolerance, in a host that is subsequently, concurrently or simultaneously to receive the stem cells from which the microparticle is derived. The administration of one or more doses of microparticles of the invention to a patient, prior to or concurrent with administration of a stem cell therapy, can be used to reduce the risk of an adverse immune response, i.e. “rejection”, of the stem cell therapy.
A further aspect of the invention provides the use of a neural stem cell microparticle in the manufacture of a medicament for the treatment of a disease.
Another aspect of the invention provides a composition comprising a neural stem cell microparticle and a pharmaceutically acceptable excipient, carrier or diluent.
The present invention is based on the surprising finding that microparticles can advantageously be produced by conditionally-immortalised cells. The conditionally-immortalised cells may be stem cells. The Examples show the successful production of microparticles by conditionally immortalised neural stem cells and CD34+ cells. Conditional immortalisation provides a constant supply of clonal cells that produce microparticles such as exosomes. The conditionally immortalised cells are useful as “producer cells” for microparticles such as exosomes, which are typically harvested or isolated from the conditionally-immortalised cells.
The present inventors have also surprisingly identified microparticles in neural stem cells. These microparticles retain some of the functions of the neural stem cells from which they are derived and are typically therapeutically useful for the same treatments as the neural stem cells. The microparticles are advantageous over the corresponding stem cells because they are smaller and less complex, thereby being easier to produce, maintain, store and transport, and have the potential to avoid some of the regulatory issues that surround stem cells. The microparticles can be produced continuously, by isolation from conditioned media, for example in a bioreactor such as a multi-compartment bioreactor, which allows for large scale production and the provision of an “off-the-shelf” therapy. The multi-compartment bioreactor is typically a two-compartment bioreactor.
It has further been found that, surprisingly, culturing stem cells (of any type, not limited to neural stem cells) in an environment that allows the stem cells to begin to differentiate, increases dramatically the yield of microparticles produced.
The inventors have surprisingly observed that culturing stem cells (of any type, not limited to neural stem cells) in a multi-compartment bioreactor, results in partial differentiation of the stem cells, into stem cells in a more differentiated form. This differentiation in culture does not require the addition of an agent to induce differentiation. This differentiation typically requires a culture period of at least one week, at least two weeks or at least three weeks. The changes to the stem cells that occur in culture in a multi-compartment bioreactor are reflected by the microparticles produced by the cultured stem cells. Therefore, by culturing stem cells in a multi-compartment bioreactor, it is possible to induce differentiation of the cells. Accordingly, microparticles from partially differentiated stem cells can be produced by harvesting microparticles from stem cells cultured in a multi-compartment bioreactor, typically for at least one week, at least two weeks, at least three weeks, at least four weeks, at least five weeks or at least six weeks. Optionally, the cells, e.g. NSCs, have been cultured for no more than ten weeks. In one embodiment, the invention provides a method of producing microparticles by isolating the microparticles from partially-differentiated neural stem cells.
The inventors have also found that it is possible to induce the secretion of microparticles from stem cells. This finding, which also is not limited to neural stem cells and can be used for the production of microparticles from any stem cell, allows for an improved yield of microparticles to be obtained from a stem cell culture. Several agents have been identified that enhance the secretion of microparticles to different degrees, which has the further advantage of being able to control the amount of microparticles that are secreted. Culturing stem cells under hypoxic conditions also improves microparticle production. Further, it has been found that co-culturing a stem cell with a different cell type, in particular an endothelial cell type can beneficially alter the microparticles that are produced by the stem cell.
In a further embodiment, the invention provides microparticles, typically exosomes, produced by serum-free stem cells. Serum is required for the successful culture of many cell lines, but contains many contaminants including its own exosomes. As described below, the inventors have produced microparticles from stem cells that do not require serum for successful culture.
The invention relates to the production of microparticles from conditionally-immortalised cells
The invention provides, in one aspect, microparticles obtainable from a conditionally-immortalised neural stem cell, mesenchymal stem cell or haematopoietic stem cell. A neural stem cell microparticle is a microparticle that is produced by a neural stem cell; a mesenchymal stem cell microparticle is a microparticle that is produced by a mesenchymal stem cell; a haematopoietic stem cell microparticle is a microparticle that is produced by a haematopoietic stem cell. Typically, the microparticle is secreted by the stem cell. More typically, the microparticle is an exosome or a microvesicle. Microparticles from some stem cells (that are not conditionally immortalised), such as mesenchymal stem cells, are known in the art.
A “microparticle” is an extracellular vesicle of 30 to 1000 nm diameter that is released from a cell. It is limited by a lipid bilayer that encloses biological molecules. The term “microparticle” is known in the art and encompasses a number of different species of microparticle, including a membrane particle, membrane vesicle, microvesicle, exosome-like vesicle, exosome, ectosome-like vesicle, ectosome or exovesicle. The different types of microparticle are distinguished based on diameter, subcellular origin, their density in sucrose, shape, sedimentation rate, lipid composition, protein markers and mode of secretion (i.e. following a signal (inducible) or spontaneously (constitutive)). Four of the common microparticles and their distinguishing features are described in Table 1, below.
Microparticles are thought to play a role in intercellular communication by acting as vehicles between a donor and recipient cell through direct and indirect mechanisms. Direct mechanisms include the uptake of the microparticle and its donor cell-derived components (such as proteins, lipids or nucleic acids) by the recipient cell, the components having a biological activity in the recipient cell. Indirect mechanisms include microvesicle-recipient cell surface interaction, and causing modulation of intracellular signalling of the recipient cell. Hence, microparticles may mediate the acquisition of one or more donor cell-derived properties by the recipient cell. It has been observed that, despite the efficacy of stem cell therapies in animal models, the stem cells do not appear to engraft into the host. Accordingly, the mechanism by which stem cell therapies are effective is not clear. Without wishing to be bound by theory, the inventors believe that the microparticles secreted by neural stem cells play a role in the therapeutic utility of these cells and are therefore therapeutically useful themselves.
The microparticles and cells, e.g. stem cells, of the invention are isolated. The term “isolated” indicates that the microparticle, microparticle population, cell or cell population to which it refers is not within its natural environment. The microparticle, microparticle population, cell or cell population has been substantially separated from surrounding tissue. In some embodiments, the microparticle, microparticle population, cell or cell population is substantially separated from surrounding tissue if the sample contains at least about 75%, in some embodiments at least about 85%, in some embodiments at least about 90%, and in some embodiments at least about 95% microparticles and/or stem cells. In other words, the sample is substantially separated from the surrounding tissue if the sample contains less than about 25%, in some embodiments less than about 15%, and in some embodiments less than about 5% of materials other than the microparticles and/or stem cells. Such percentage values refer to percentage by weight. The term encompasses cells or microparticles which have been removed from the organism from which they originated, and exist in culture. The term also encompasses cells or microparticles which have been removed from the organism from which they originated, and subsequently re-inserted into an organism. The organism which contains the re-inserted cells may be the same organism from which the cells were removed, or it may be a different organism.
Stem cells naturally produce microparticles by a variety of mechanisms, including budding of the plasma membrane (to form membrane vesicles and microvesicles) and as a result of the fusion of intracellular multivesicular bodies (which contain microparticles) with the cell membrane and the release of the microparticles into the extracellular compartment (to secrete exosomes and exosome-like vesicles).
In one embodiment, the neural stem cell that produces the microparticles of the invention can be a fetal, an embryonic, or an adult neural stem cell, such as has been described in U.S. Pat. No. 5,851,832, U.S. Pat. No. 6,777,233, U.S. Pat. No. 6,468,794, U.S. Pat. No. 5,753,506 and WO-A-2005121318. The fetal tissue may be human fetal cortex tissue. The cells can be selected as neural stem cells from the differentiation of induced pluripotent stem (iPS) cells, as has been described by Yuan et al. (2011) or a directly induced neural stem cell produced from somatic cells such as fibroblasts (for example by constitutively inducing Sox2, Klf4, and c-Myc while strictly limiting Oct4 activity to the initial phase of reprogramming as recently by Their et al, 2012). Human embryonic stem cells may be obtained by methods that preserve the viability of the donor embryo, as is known in the art (e.g. Klimanskaya et al., 2006, and Chung et al. 2008). Such non-destructive methods of obtaining human embryonic stem cell may be used to provide embryonic stem cells from which microparticles of the invention can be obtained. Alternatively, microparticles of the invention can be obtained from adult stem cells, iPS cells or directly-induced neural stem cells. Accordingly, microparticles of the invention can be produced by multiple methods that do not require the destruction of a human embryo or the use of a human embryo as a base material.
Typically, the cell population from which the microparticles are produced, is substantially pure. The term “substantially pure” as used herein, refers to a population of cells that is at least about 75%, in some embodiments at least about 85%, in some embodiments at least about 90%, and in some embodiments at least about 95% pure, with respect to other cells that make up a total cell population. For example, with respect to stem cell, e.g. neural stem cell populations, this term means that there are at least about 75%, in some embodiments at least about 85%, in some embodiments at least about 90%, and in some embodiments at least about 95% pure, stem cells compared to other cells that make up a total cell population. In other words, the term “substantially pure” refers to a population of stem cells of the present invention that contain fewer than about 25%, in some embodiments fewer than about 15%, and in some embodiments fewer than about 5%, of lineage committed cells in the original unamplified and isolated population prior to subsequent culturing and amplification.
A stem cell, e.g. neural stem cell, microparticle comprises at least one lipid bilayer which typically encloses a milieu comprising lipids, proteins and nucleic acids. The nucleic acids may be deoxyribonucleic acid (DNA) and/or ribonucleic acid (RNA). RNA may be messenger RNA (mRNA), micro RNA (miRNA) or any miRNA precursors, such as pri-miRNA, pre-miRNA, and/or small nuclear RNA (snRNA).
A stem cell, e.g. neural stem cell, microparticle retains at least one biological function of the stem cell from which it is derived. Biological functions that may be retained include the ability to promote angiogenesis and/or neurogenesis, the ability to effect cognitive improvement in the brain of a patient that has suffered a stroke, or the ability to accelerate blood flow recovery in peripheral arterial disease. For example, CTX0E03 cells are known to inhibit T cell activation in a PBMC assay and, in one embodiment, the microparticles of the invention retain this ability to inhibit T cell activation in a PBMC assay. PBMC assays are well-known to the skilled person and kits for performing the assay are commercially available.
Example 8, Table 2 and
Example 8 also shows that microvesicles of the invention are able to stimulate angiogenesis of primary HUVECs and to stimulate neurite outgrowth of PC-12 cells. Accordingly, a biological function that microparticles of the invention may retain is the ability to stimulate angiogenesis of primary HUVECs and/or to stimulate neurite outgrowth of PC-12 cells.
The proteomic analysis in Example 13 indicates that neural stem cell exosomes comprise biological functions associated with the production, packaging, function and degradation of genetic material. Accordingly, in one embodiment, exosomes of the invention retain these functions, typically one or more of RNA polymerase function, RNA degradation function, ribosome function and spliceosome function.
The microparticle has a diameter of 1000 nm or less. Typically, the microparticle of the invention will have a diameter of 200 nm or less, for example 100 nm or less. As noted in Table 1 above, microvesicles have a diameter of 100 nm to 1000 nm. Exosomes are typically defined as having a diameter of 30-100 nm, but more recent studies confirm that exosomes can also have a diameter between 100 nm and 200 nm, (e.g. Katsuda et al, Proteomics 2013 and Katsuda et al, Scientific Reports 2013). Accordingly, exosomes typically have a diameter between 30 nm and 150 nm. Membrane particles have a diameter of 50 nm to 80 nm and exosome-like particles have a diameter of 20 nm-50 nm. The diameter can be determined by any suitable technique, for example electron microscopy or dynamic light scattering. The term microparticle includes, but is not limited to: membrane particle, membrane vesicle, microvesicle, exosome-like vesicle, exosome, ectosome-like vesicle, ectosome or exovesicle.
Some microparticles of the invention express the CD133 surface marker. Other microparticles of the invention do not express the CD133 surface marker.
“Marker” refers to a biological molecule whose presence, concentration, activity, or phosphorylation state may be detected and used to identify the phenotype of a cell.
Exosomes are endosome-derived lipid microparticles of typically 30-100 nm diameter and sometimes between 100 nm and 200 nm diameter, that are released from the cell by exocytosis. Exosome release occurs constitutively or upon induction, in a regulated and functionally relevant manner. During their biogenesis, exosomes incorporate a wide range of cytosolic proteins (including chaperone proteins, integrins, cytoskeletal proteins and the tetraspanins) and genetic material. Consequently, exosomes are considered to be inter-cellular communication devices for the transfer of proteins, lipids and genetic material between cells, in the parent cell microenvironment and over considerable distance. Although the invention is not bound by this theory, it is possible that the exosomes are responsible for the efficacy of the neural stem cells. Therefore, exosomes from neural stem cells are themselves expected to be therapeutically efficacious.
Microparticles Designed to have Desired Functions
Microparticles retain at least some of the functions of the stem cells that produce them. Therefore, it is possible to design microparticles by manipulating the stem cell (which can be any stem cell type and is not limited to neural stem cells, although the neural stem cell microparticles of the invention are expressly included as an embodiment) to possess one or more desired functions, typically protein or miRNA. The manipulation will typically be genetic engineering, to introduce one or more exogenous coding, non-coding or regulatory nucleic acid sequences into the stem cell. For example, if an exosome containing VEGF and/or bFGF is desired, then the exosome-producing stem cell can be transformed or transfected to express (high levels of) VEGF and/or bFGF, which would then be incorporated into the microparticles produced by that stem cell. Similarly, iPS cells can be used to produce microparticles, and these cells can be designed to produce the proteins and nucleic acids (e.g. miRNA) that are required in the microparticles produced by the iPS cells. The invention therefore provides ad hoc microparticles, from any stem cell type, that contain a function that is not naturally present in the stem cell from which is produced, i.e. the microparticles (e.g. exosomes) contain one or more exogenous protein or nucleic acid sequences, are not naturally-occurring and are engineered. The use of conditionally-immortalised cells advantageously provides for the continuous production of these designed microparticles.
In one embodiment, isolated or purified microparticles are loaded with one or more exogenous nucleic acids, lipids, proteins, drugs or prodrugs which are intended to perform a desired function in a target cell. This does not require manipulation of the stem cell and the exogenous material can optionally be directly added to the microparticles. For example, exogenous nucleic acids can be introduced into the microparticles by electroporation. The microparticles can then be used as vehicles or carriers for the exogenous material. In one embodiment, microparticles that have been isolated from the cells that produced them are loaded with exogenous siRNA, typically by electroporation, to produce microparticles that can be deployed to silence one or more pathological genes. In this way, microparticles can be used as vehicles to deliver one or more agents, typically therapeutic or diagnostic agents, to a target cell. An example of this is a neural stem cell exosome comprising exogenous siRNA capable of silencing one or more pathological genes.
The invention provides a population of isolated neural stem cell microparticles, wherein the population essentially comprises only microparticles of the invention, i.e. the microparticle population is pure. In many aspects, the microparticle population comprises at least about 80% (in other aspects at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9% or 100%) of the microparticles of the invention.
The isolated neural stem cell microparticle of the invention is characterised in that it has a distinctive expression profile for certain markers and is distinguished from microparticles from other cell types. When a marker is described herein, its presence or absence may be used to distinguish the microparticle. For example, the term “may comprise” or “may express” also discloses the contrary embodiment wherein that marker is not present, e.g. the phrase “the microparticle may comprise one or more tetraspanins, typically CD63, CD81, CD9, CD53, CD82 and/or CD37” also describes the contrary embodiment wherein the microparticle may not comprise one or more tetraspanins, typically CD63, CD81, CD9, CD53, CD82 and/or CD37.
The stem cell, e.g. neural stem cell, microparticle of the invention is typically considered to carry a marker if at least about 70% of the microparticles of the population, e.g. 70% of the membrane particles, membrane vesicles, microvesicles, exosome-like vesicles, exosomes, ectosome-like vesicles, ectosomes or exovesicles show a detectable level of the marker. In other aspects, at least about 80%, at least about 90% or at least about 95% or at least about 97% or at least about 98% or more of the population show a detectable level of the marker. In certain aspects, at least about 99% or 100% of the population show detectable level of the markers. Quantification of the marker may be detected through the use of a quantitative RT-PCR (qRT-PCR) or through fluorescence activated cell sorting (FACS). It should be appreciated that this list is provided by way of example only, and is not intended to be limiting. Typically, a neural stem cell microparticle of the invention is considered to carry a marker if at least about 90% of the microparticles of the population show a detectable level of the marker as detected by FACS.
The markers described herein are considered to be expressed by a cell of the population of the invention, if its expression level, measured by qRT-PCR has a crossing point (Cp) value below or equal to 35 (standard cut off on a qRT-PCR array). The Cp represents the point where the amplification curve crosses the detection threshold, and can also be reported as crossing threshold (ct).
In one embodiment, the invention relates to microparticles produced by a neural stem cell population characterised in that the cells of the population express one or more of the markers Nestin, Sox2, GFAP, βIII tubulin, DCX, GALC, TUBB3, GDNF and 100. In another embodiment, the microparticle is an exosome and the population of exosomes expresses one or more of DCX (doublecortin—an early neuronal marker), GFAP (Glial fibrillary acidic protein—an astrocyte marker), GALC, TUBB3, GDNF and 100.
The neural stem cell microparticles of the invention may express one or more protein markers at a level which is lower or higher than the level of expression of that marker in a mesenchymal stem cell microparticle of the same species. Protein markers that are expressed by the CTX0E03 cell microparticles are identified herein and below. In some embodiments, the microparticles may express a protein marker at a level relative to a tubulin or other such control protein(s). In some embodiments, the microparticles of the invention may express that protein at a level of at least +/−1.2 fold change relative to the control protein, typically at least +/−1.5 fold change relative to the control protein, at least +/−2 fold change relative to the control protein or at least +/−3 fold change relative to the control protein. In some embodiments, the microparticles may express a protein marker at a level of between 10−2 and 10−6 copies per cell relative to a tubulin or other control protein. In some embodiments, the microparticles of the invention may express that protein at a level of between 10−2 and 10−3 copies per cell relative to a tubulin or other control protein.
The neural stem cell microparticles of the invention may express one or more miRNAs (including miRNA precursors) at a level which is lower or higher than the level of expression of that miRNA (including miRNA precursors) in a mesenchymal stem cell microparticle of the same species. miRNA markers that are expressed by the CTX0E03 cell microparticles are identified below. In some embodiments, the microparticles of the invention may express the marker miRNA at a level of least +/−1.5 fold change, typically at least +/−2 fold change or at least +/−3 fold change (calculated according to the ΔΔct method, which is well-known) relative to U6B or 15a, or any other miRNA reference gene, also referred to as an internal control gene.
The neural stem cell microparticles of the invention may express one or more mRNAs at a level which is lower or higher than the level of expression of that mRNA in a mesenchymal stem cell microparticle of the same species. In some embodiments, the microparticles of the invention may express the marker mRNA at a level of least +/−1.5 fold change, typically at least +/−2 fold change or at least +/−3 fold change (calculated according to the ΔΔct method) relative to ATP5B or YWHAZ, or any other reference gene, also referred to as an internal control gene.
Exosomes of the invention typically express specific integrins, tetraspanins, MHC Class I and/or Class II antigens, CD antigens and cell-adhesion molecules on their surfaces, which may facilitate their uptake by specific cell types. Exosomes contain a variety of cytoskeletal proteins, GTPases, clathrin, chaperones, and metabolic enzymes (but mitochondrial, lysosomal and ER proteins are excluded, so the overall profile does not resemble the cytoplasm). They also contain mRNA splicing and translation factors. Finally, exosomes generally contain several proteins such as HSP70, HSP90, and annexins that are known to play signalling roles yet are not secreted by classical (ER-Golgi) mechanisms.
The lipid bilayer of an exosome is typically enriched with cholesterol, sphingomyelin and ceramide. Exosomes also express one or more tetraspanin marker proteins. Tetraspanins include CD81, CD63, CD9, CD53, CD82 and CD37. Exosomes can also include growth factors, cytokines and RNA, in particular miRNA. Exosomes typically express one or more of the markers TSG101, Alix, CD109, thy-1 and CD133. Alix (Uniprot accession No. Q8WUM4), TSG101 (Uniprot accession No. Q99816) and the tetraspanin proteins CD81 (Uniprot accession No. P60033) and CD9 (Uniprot accession No. P21926) are characteristic exosome markers.
Alix is an endosomal pathway marker. Exosomes are endosomal-derived and, accordingly, a microparticle positive for this marker is characterised as an exosome. Exosomes of the invention are typically positive for Alix. Microvesicles of the invention are typically negative for Alix.
Tables 18 and 20 list all proteins detected by mass spectrometry in exosomes and microvesicles, respectively, isolated from CTX0E03 cells cultured for two weeks in an Integra Celline multicompartment bioreactor. In one embodiment, exosomes of the invention comprise at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or at least 99.5% of the proteins listed in Table 18. Similarly, microvesicles of the invention typically comprise at least 70% at least 80%, at least 90%, at least 95%, at least 99% or at least 99.5% of the proteins listed in Table 20. In a further embodiment, the proteome of a microvesicle or exosome of the invention is least 70%, at least 80%, at least 90%, at least 95%, at least 99% or at least 99.5% identical to the proteome provided in Table 18 (exosome) or Table 20 (microvesicle). When determining the protein content of a microparticle or exosome, mass spectrometry is typically used, for example the LC/MS/MS method described in Example 13.
Tables 19 and 21 show the 100 most abundant proteins detected by mass spectrometry in exosomes and microvesicles, respectively, isolated from CTX0E03 cells cultured for two weeks in an Integra Celline multicompartment bioreactor. Typically, an exosome of the invention comprises the first ten proteins listed in Table 19, more typically the first 20, the first 30, the first 40 or the first 50 proteins listed in Table 19. Similarly, a microparticle of the invention typically comprises the first ten proteins listed in Table 21, more typically the first 20, the first 30, the first 40 or the first 50 proteins listed in Table 21. In one embodiment, an exosome of the invention comprises all 100 proteins listed in Table 19. In one embodiment, a microvesicle of the invention comprises all 100 proteins listed in Table 21. Typically, the 100 most abundant proteins in an exosome or microvesicle of the invention contain at least 70 of the proteins identified in Table 19 (exosome) or Table 21 (microparticle). More typically, the 100 most abundant proteins in an exosome or microvesicle of the invention contain at least 80, at least 90, at least 95, 96, 97, 98 or 99, or all 100 of the proteins identified in Table 19 (exosome) or Table 21 (microparticle).
Microparticle miRNA Content
Example 12 (and the related
The data in Example 12 also show that the microparticles are characterised by four main miRNA species, namely hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532. These four miRNAs are the only miRNAs present at a read count of greater than 1000 in the microparticles; these four miRNAs are present in massive excess compared to the other miRNAs in the microparticles. This is in contrast to the profile in the cells, which contain a much greater number of miRNAs present at high (read count greater than 1000) or very high (read count greater than 10,000) levels. Although not bound by theory, the inventors propose that hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532 are selectively trafficked (or otherwise incorporated) into the microparticles and are thought to play a role in the function of the microparticles.
Typically, in one embodiment microparticles, e.g. exosomes, of the invention contain one, two, three or all four of hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532. Each of these miRNA markers is typically present at a read count (optionally determined using the deep sequence technique described in Example 12) of at least 1000 per microparticle. hsa-miR-1246 may optionally have a read count of at least 2000, 5000, 10,000, 20,000, or 25,000 per microparticle. Hsa-miR-4492 may optionally have a read count of at least 2000, 3000, 4000 or 5000 per microparticle. Hsa-miR-4532 may optionally have a read count of at least 2000 or 3000 per microparticle.
In one embodiment, each of hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and/or hsa-miR-4532 is present in the microparticle, e.g. exosome, at a higher read count than is present in the cell that produced the microparticle. In particular, miR-1246 typically has a read count in the microparticle at least twice the read count in the cell, more typically at least 4, 5, 6, 7, or 8 times the read count in the cell, and optionally 10, 15 or 20 times the read count in the cell.
In one embodiment, microparticles of the invention contain hsa-let-7a-5p, has-miR-92b-3p, hsa-miR-21-5p, hsa-miR-92a-3p, hsa-miR-10a-5p, hsa-100-5p and/or hsa-99b-5p at a lower read count than is present in the cell that produced the microparticle. Typically, each of these miRNAs has a read count of less than 1000 in the microparticles of the invention, more typically less than 100, for example less than 50. Optionally, microparticles of the invention contain hsa-let-7a-5p at a read count of less than 50 or less than 25.
In one embodiment, microparticles of the invention contain fewer than 150 types of miRNA (i.e. different miRNA species) when analysed by deep sequencing, typically fewer than 120 types of miRNA.
In one embodiment, hsa-miR-1246 is the most abundant miRNA in the microparticles of the invention (optionally determined using the deep sequence technique described in Example 12). Typically, at least 40% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-1246. Typically, at least 50% of the total count of miRNA in exosomes of the invention is hsa-miR-1246.
hsa-miR-4492 is typically the second-most abundant miRNA in the microparticles of the invention. Typically, at least 3% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-4492. More typically, at least 4% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-4492.
Typically, at least 2% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-4532.
Typically, at least 1% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-4488.
In one embodiment microparticles of the invention contain one or both of hsa-miR-4508, hsa-miR-4516 at a level at least 0.1% of the total miRNA content of the particle.
One or more of hsa-miR-3676-5p, hsa-miR-4485, hsa-miR-4497, hsa-miR-21-5p, hsa-miR-3195, hsa-miR-3648, hsa-miR-663b, hsa-miR-3656, hsa-miR-3687, hsa-miR-4466, hsa-miR-4792, hsa-miR-99b-5p and hsa-miR-1973 may be present in the microparticles of the invention.
Typically, each of hsa-let-7a-5p and hsa-100-5p is present at less than 1%, more typically less than 0.1% or less than 0.05% of the total miRNA count in microparticles of the invention.
In a typical exosome of the invention, at least 50% of the total count of miRNA is hsa-miR-1246, and less than 0.1% of the total miRNA count is hsa-let-7a-5p.
In one embodiment, at least 90% of the total count of miRNA in microparticles of the invention comprises hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532. Typically, at least 95% or 96% of the total count of miRNA in microparticles of the invention comprises hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532. Less than 10% of the total miRNA content of these microparticles is an miRNA that is not hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532.
Combinations of the miRNA embodiments discussed above are provided. For example, a microparticle of the invention typically contains each of hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532 at a read count of at least 1000 and contains each of hsa-let-7a-5p, hsa-miR-92b-3p, hsa-miR-21-5p, hsa-miR-92a-3p, hsa-miR-10a-5p, hsa-100-5p and hsa-99b-5p at a read count of less than 100. Typically, at least 90% or at least 95% of the total miRNA in these microparticles is hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532.
A microparticle (e.g. microvesicle or exosome) of the invention typically has hsa-miR-1246 as the most abundant miRNA and hsa-miR-4492 is the second-most abundant miRNA. In this embodiment, at least 40% of the total count of miRNA in microparticles (e.g. microvesicles and exosomes) of the invention is hsa-miR-1246 and at least 3% of the total count of miRNA in the microparticle is hsa-miR-4492. At least 2% of the total count of miRNA in these microparticles is hsa-miR-4532 and at least 1% of the total count of miRNA in these microparticles is hsa-miR-4488. Each of hsa-let-7a-5p and hsa-100-5p is present at less than 0.1% of the total miRNA count in these microparticles.
Plotting the deep sequencing results in the exosomes and microvesicles as relative fold change compared to the cells confirms that hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532 are significantly upregulated in the exosomes and microvesicles compared to the cells. This comparison also shows that miRNA hsa-miR-3195 is the miRNA that is most upregulated, in both exosomes and microvesicles. Although the absolute reads of hsa-miR-3195 are in the range of ˜40 for exosomes and microvesicles, there is no hsa-miR-3195 detected in the cells. Accordingly, hsa-miR-3195 is uniquely found in the exosomes and microvesicles of the invention and, in one embodiment, an exosome or microvesicle of the invention comprises hsa-miR-3195.
In one embodiment, microparticles of the invention comprise one or more of the following miRNA precursors:
In one embodiment, microparticles of the invention comprise one, two or three of the following mature miRNAs derived from the precursors listed above (as detailed in part D of Example 12):
These 5 miRNA precursors and 3 mature miRNAs have not previously been isolated and each sequence is therefore also provided as a new sequence per se. Accordingly, in one aspect, the invention provides a composition comprising one or more of the miRNA precursors AC079949.1, AP000318.1, AL161626.1, AC004943.1 and AL121897.1. In another embodiment, the invention provides a composition comprising one or more of the mature miRNAs ggcggagugcccuucuuccugg (derived from AL161626.1-201), ggagggcccaaguccuucugau (derived from AP000318.1-201) and gaccaggguccggugcggagug (derived from AC079949.1-201). Optionally, the composition is a pharmaceutical composition comprising one or more of the miRNA precursors and/or one or more of the mature miRNAs and a pharmaceutically-acceptable carrier or diluent. As noted in Example 12, these miRNAs and precursors appear to be selectively shuttled into the exosomes and microvesicles and so may be at least partially responsible for the function of the microparticles.
Example 12 also shows that neural stem cell microparticles comprise a variety of non-coding RNA species. In one embodiment, microparticles of the invention comprise one or more of ribosomal RNA, small nucleolar RNA, small nuclear RNA, microRNA, large intergenic non-coding RNA and miscellaneous other RNA (e.g. RMRP, vault RNA, metazoan SRP and/or RNY).
Example 4 shows miRNAs present in microparticles produced by the CTX0E03 cells and having a Cp below 35 as determined by a qRT-PCR array. Typically, in one embodiment microparticles of the invention contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60 or more, or all, of the following miRNAs (identified according by name according to Ambros et al and accessible at www.mirbase.org):
In one embodiment, the CTX0E03 microparticles contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30 or more of the following miRNAs (which are selected from the list above):
Example 5 shows proteins present in microparticles produced by the CTX0E03 cells, as detected by a dot-blot. Typically, microparticles of the invention contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or all of the following proteins:
Galectin-3 and Thrombospondin-1 are also identified as present in exosomes and microvesicles in Example 13. TIMP-1 is identified in Example 13 as being present in exosomes.
Example 5 also shows that the microparticles produced by the CTX0E03 cells may also express 1, 2, 3, 4 or 5 of the following proteins:
EGF-R and Csk are also identified as present in exosomes and microvesicles in Example 13.
Galectin-3, SPARC, TIMP-1, Thrombospondin-1, VEGF, MDC and Endostatin are known to be modulate angiogenesis. Accordingly, microparticles containing one or more of these proteins are useful in treating diseases or disorders requiring modulation of angiogenesis.
IL-1a, LECT2, MCP-1 and Csk are known to modulate inflammation. Accordingly, microparticles containing one or more of these proteins are useful in treating diseases or disorders requiring modulation of inflammation.
Microparticles containing one or more of (i) Galectin-3, SPARC, TIMP-1, Thrombospondin-1, VEGF, MDC and Endostatin, and one or more of (ii) IL-1a, LECT2, MCP-1 and Csk, may be useful for treating diseases or disorders requiring modulation of angiogenesis and inflammation.
As shown in Example 10 and
CTX0E03 neural stem cells cultured for three weeks in a multi-compartment bioreactor express DCX, GALC, GFAP, TUBB3, GDNF and IDO at a higher level than neural stem cells cultured in a standard single-compartment T175 cell culture. Accordingly neural stem cells that have been cultured in a multi-compartment bioreactor, typically for a week or more, ten days or more, two weeks or more, or at least three weeks, four weeks, five weeks or more, may express one or more of DCX, GALC, GFAP, TUBB3, GDNF and IDO. Cells cultured in a two-compartment bioreactor typically show increased expression of one or more of DCX, GALC, GFAP, TUBB3, GDNF and IDO compared to the stem cells cultured under standard conditions. The expression level of these markers in the multi-compartment bioreactor-cultured cells is typically significantly higher than in the cells cultured in a standard single-compartment T175 culture flask. Typically, a stem cell cultured in a multi-compartment bioreactor expresses one or more of DCX1, GALC, GFAP, TUBB3, GDNF or IDO at a level least 2 fold higher than in CTX0E03 cells cultured in a T-175 flask according to standard culture procedure. In one embodiment, microparticles, typically exosomes, are obtained from neural stem cells that show increased expression of one or more of DCX, GALC, GFAP, TUBB3, GDNF and IDO compared to the stem cells cultured under standard conditions. For example, microparticles can be obtained from freshly filtered conditioned medium collected from Integra CeLLine bioreactor cultured neural stem cells.
The upregulated markers include DCX (doublecortin—an early neuronal marker), GFAP (Glial fibrillary acidic protein—an astrocyte marker), GALC, TUBB3, GDNF and IDO. CTX0E03 cells are able to differentiate into 3 different cell types: neurons, astrocytes and oligodendrocytes. The high levels of DCX and GFAP after three weeks in a multi-compartment bioreactor indicates that the cultured stem cells have partially differentiated and have entered the neuronal (DCX+ cells) and/or astrocytic (GFAP+ cells) lineage. Accordingly, in one embodiment the invention provides a microparticle produced by a neural stem cell population that expresses (i) one or more markers associated with a neuronal lineage, typically DCX and/or (ii) one or more markers associated with an astrocytic lineage, typically GFAP. In another embodiment, the invention provides neural stem cell microparticles, typically exosomes, that express (i) one or more markers associated with a neuronal lineage, typically DCX and/or (ii) one or more markers associated with an astrocytic lineage, typically GFAP. These cells, or the microparticles (typically exosomes) derived from these cells, express DCX and/or GFAP at a higher level than the corresponding stem cells in standard (T-175) culture. Typically, these cells or microparticles express DCX and/or GFAP at a level at least 2 fold more than the stem cells, more typically at least 2.5 fold more than the corresponding stem cells in standard culture, at least 5 fold more than the corresponding stem cells in standard culture, at least 7.5 fold more than the corresponding stem cells in standard culture or at least 10 fold more than the corresponding stem cells in standard culture. For expression of DCX, the fold change in the cells or microparticles compared to the corresponding stem cells in standard (T-175) culture can optionally be at least 20 fold, at least 50 fold, at least 100 fold, at least 500 fold or at least 1000 fold more than the standard stem cells.
The term “bioreactor” is to be given its usual meaning in the art, i.e. an apparatus used to carry out a bioprocess. The bioreactors described herein are suitable for use in cell culture, e.g. stem cell culture. Simple bioreactors for cell culture are single compartment flasks, such as the commonly-used T-175 flask (e.g. the BD Falcon™ 175 cm2 Cell Culture Flask, 750 ml, tissue-culture treated polystyrene, straight neck, blue plug-seal screw cap, BD product code 353028). Bioreactors can have multiple compartments, as is known in the art. These multi-compartment bioreactors typically contain at least two compartments separated by one or more membranes or barriers that separate the compartment containing the cells from one or more compartments containing gas and/or culture medium. Multi-compartment bioreactors are well-known in the art. An example of a multi-compartment bioreactor is the Integra CeLLine bioreactor, which contains a medium compartment and a cell compartment separated by means of a 10 kDa semi-permeable membrane; this membrane allows a continuous diffusion of nutrients into the cell compartment with a concurrent removal of any inhibitory waste product. The individual accessibility of the compartments allows to supply cells with fresh medium without mechanically interfering with the culture. A silicone membrane forms the cell compartment base and provides an optimal oxygen supply and control of carbon dioxide levels by providing a short diffusion pathway to the cell compartment. Any multi-compartment bioreactor may be used according to the invention.
Example 11, Table 3 and
It can be seen from
In one embodiment, neural stem cell exosomes of the invention express one, two, three, four, five, six or seven of the following miRNAs at a higher level than is expressed in the corresponding stem cells cultured in standard T-175 flasks, as calculated by Fold Regulation (where an asterisk indicates an miRNA where at least a two-fold regulation increase is preferred):
In one embodiment, neural stem cell exosomes of the invention express one, two, three, four, five, six, seven, eight, nine, ten or more of the following miRNAs at a lower level than is expressed in the corresponding stem cells cultured in standard T-175 flasks, as calculated by
Fold Regulation (where an asterisk indicates an miRNA where at least a two-fold regulation decrease is preferred):
In a further embodiment, NSC exosomes of the invention comprise (i) an increased level of at least one, two, three, four, five, six or seven of the miRNAs indicated above as being increased in exosomes compared to the corresponding cells in standard culture and (ii) a decreased level of at least one, two, three, four, five, six, seven, eight, nine, ten or more or more of the miRNAs indicated above as being decreased in exosomes compared to the corresponding cells in standard culture. For example, a neural stem cell exosome may contain a fold-regulation increase in three or more or more of the miRNAs indicated above as being increased in exosomes compared to the corresponding cells in standard culture and a fold-regulation decrease in three or more of the miRNAs indicated above as being decreased in exosomes compared to the corresponding cells in standard culture. In another exemplary embodiment, a neural stem cell exosome may contain a fold-regulation increase in five or more of the miRNAs indicated above as being increased in exosomes compared to the corresponding cells in standard culture and a fold-regulation decrease in five or more of the miRNAs indicated above as being decreased in exosomes compared to the corresponding cells in standard culture.
The term “expressed” is used to describe the presence of a marker within a cell or microparticle. In order to be considered as being expressed, a marker must be present at a detectable level. By “detectable level” is meant that the marker can be detected using one of the standard laboratory methodologies such as qRT-PCR, or qPCR, blotting, Mass Spectrometry or FACS analysis. A gene is considered to be expressed by a cell or microparticle of the population of the invention if expression can be reasonably detected at a crossing point (cp) values below or equal 35. The terms “express” and “expression” have corresponding meanings. At an expression level below this cp value, a marker is considered not to be expressed. The comparison between the expression level of a marker in a stem cell or microparticle of the invention, and the expression level of the same marker in another cell or microparticle, such as for example an mesenchymal stem cell, may preferably be conducted by comparing the two cell/microparticle types that have been isolated from the same species. Preferably this species is a mammal, and more preferably this species is human. Such comparison may conveniently be conducted using a reverse transcriptase polymerase chain reaction (RT-PCR) experiment.
As used herein, the term “significant expression” or its equivalent terms “positive” and “+” when used in regard to a marker shall be taken to mean that, in a cell or microparticle population, more than 20%, preferably more than, 30%, 40%, 50%, 60%, 70%, 80%, 90% 95%, 98%, 99% or even all of the cells of the cells/microparticles express said marker.
As used herein, “negative” or “−” as used with respect to markers shall be taken to mean that, in a cell or microparticle population, less than 20%, 10%, preferably less than 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% or none of the cells/microparticles express said marker.
Expression of microparticle surface markers may be determined, for example, by means of flow cytometry and/or FACS for a specific cell surface marker using conventional methods and apparatus (for example a Beckman Coulter Epics XL FACS system used with commercially available antibodies and standard protocols known in the art) to determine whether the signal for a specific microparticle surface marker is greater than a background signal. The background signal is defined as the signal intensity generated by a non-specific antibody of the same isotype as the specific antibody used to detect each surface marker. For a marker to be considered positive the specific signal observed is typically more than 20%, preferably stronger than 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 500%, 1000%, 5000%, 10000% or above, greater relative to the background signal intensity. Alternative methods for analysing expression of microparticle surface markers of interest include visual analysis by electron microscopy using antibodies against cell-surface markers of interest.
“Fluorescence activated cell sorting (FACS)” is a method of cell purification based on the use of fluorescent labelled antibodies. The antibodies are directed to a marker on the cell surface, and therefore bind to the cells of interest. The cells are then separated based upon the fluorescent emission peak of the cells.
Microparticle markers (including surface and intracellular proteins) can also be analysed by various methods known to one skilled in the art to assay protein expression, including but not limited to gel electrophoresis followed by western blotting with suitable antibodies, immunoprecipitation followed by electrophoretic analysis, and/or electron microscopy as described above, with microparticle permeabilisation for intraparticle markers. For example, expression of one or more tetraspanins may be assayed using one or more of the above methods or any other method known to one skilled in the art. RNA levels may also be analysed to assess marker expression, for example qRT-PCR.
As noted above, a stem cell microparticle retains at least one biological function of the stem cell from which it is derived. Biological functions that may be retained include the ability to promote angiogenesis, tissue regeneration, tissue repair, and/or neurogenesis, the ability to effect cognitive improvement in the brain of a patient that has suffered a stroke, or the ability to accelerate blood flow recovery in peripheral arterial disease.
For example, CTX0E03 cells are known to inhibit T cell activation in a PBMC assay and, in one embodiment, the microparticles of the invention retain this ability to inhibit T cell activation in a PBMC assay. PBMC assays are well-known to the skilled person and kits for performing the assay are commercially available.
Example 8, Table 2 and
Example 8 also shows that microvesicles of the invention are able to stimulate angiogenesis of primary HUVECs and to stimulate neurite outgrowth of PC-12 cells. Accordingly, a biological function that microparticles of the invention may retain is the ability to stimulate angiogenesis of primary HUVECs and/or to stimulate neurite outgrowth of PC-12 cells. Angiogenesis and neurite outgrowth assays are known in the art. Stimulation of angiogenesis of primary HUVECs may be determined using a 24 hour angiogenesis assay using an ibidi p-slide and Wimtube detection and analysis of tube length and bifurcation points, for example the assay of Example 8(B). Stimulation of angiogenesis in this assay is typically defined as an increase compared to basal angiogenesis, e.g. >100% basal angiogenesis, typically at least 110%, at least 120% or at least 140% basal angiogenesis (i.e. at least 1.1×, at least 1.2× or at least 1.4× the basal level of angiogenesis). Stimulation of neurite outgrowth may be determined by detecting outgrowth of PC-12 cells through a 1 μm insert, for example the assay of Example 8(C). Stimulation of neurite outgrowth in this assay is typically defined as an increase in neurite outgrowth compared to basal conditions (without microparticles), or an increase in neurite outgrowth when the microparticle is combined with NGF compared to the addition of NGF alone, as quantified by a spectrophotometer.
The proteomic analysis in Example 13 indicates that neural stem cell exosomes comprise biological functions associated with the production, packaging, function and degradation of genetic material. Accordingly, in one embodiment, exosomes of the invention retain these functions, typically one or more of RNA polymerase function, RNA degradation function, ribosome function and spliceosome function.
The (allogeneic) neural stem cell microparticles of the invention typically either do not trigger an immune response in vitro or in vivo or trigger an immune response which is substantially weaker than that which would be expected to be triggered upon injection of an allogeneic stem cell population into a patient. In certain aspects of the invention, the neural stem cell microparticles are considered not to trigger an immune response if at least about 70% of the microparticles do not trigger an immune response. In some embodiments, at least about 80%, at least about 90% or at least about 95%, 99% or more of the microparticles do not trigger an immune response. Preferably the microparticles of the invention do not trigger an antibody mediated immune response or do not trigger a humoral immune response. More preferably the microparticles of the invention do not trigger either an antibody mediated response or a humoral immune response in vitro. More preferably still, the microparticles of the invention do not trigger a mixed lymphocyte immune response. It will be understood by one skilled in the art that the ability of the cells of the invention to trigger an immune response can be tested in a variety of ways.
CTX0E03 cells transplanted in a rodent model of limb ischemia have been previously demonstrated a faster and transient up-regulation of host genes involved in angiogenesis, such as CCL11, CCL2, CXCL1, CXCL5, IGF1, IL1β, IL6, HGF, HIF1α, bFGF, VEGFA, and VEGFC, compared to vehicle treated controls. hNSC treatment transiently elevates host innate immune and angiogenic responses and accelerates tissue regeneration.
The CTX0E03 cell line has been previously demonstrated, using a human PBMC assay, not to be immunogenic. Accordingly, microparticles produced by CTX0E03 cells are also expected to be non-immunogenic. The lack of immunogenicity allows the microparticles to avoid clearance by the host/patient immune system and thereby exert their therapeutic effect without a deleterious immune and inflammatory response.
The stem cell that produces the microparticle may be a stem cell line, i.e. a culture of stably dividing stem cells. A stem cell line can to be grown in large quantities using a single, defined source. Immortalisation may arise from a spontaneous event or may be achieved by introducing exogenous genetic information into the stem cell which encodes immortalisation factors, resulting in unlimited cell growth of the stem cell under suitable culture conditions. Such exogenous genetic factors may include the gene “myc”, which encodes the transcription factor Myc. The exogenous genetic information may be introduced into the stem cell through a variety of suitable means, such as transfection or transduction. For transduction, a genetically engineered viral vehicle may be used, such as one derived from retroviruses, for example lentivirus.
Additional advantages are provided by using a conditionally immortalised stem cell line, in which the expression of the immortalisation factor can be regulated without adversely affecting the production of therapeutically effective microparticles. This may be achieved by introducing an immortalisation factor which is inactive unless the cell is supplied with an activating agent. Such an immortalisation factor may be a gene such as c-mycER. The c-MycER gene product is a fusion protein comprising a c-Myc variant fused to the ligand-binding domain of a mutant estrogen receptor. C-MycER only drives cell proliferation in the presence of the synthetic steroid 4-hydroxytamoxifen (4-OHT) (Littlewood et al. 1995). This approach allows for controlled expansion of e.g. neural stem cells in vitro, while avoiding undesired in vivo effects on host cell proliferation (e.g. tumour formation) due to the presence of c-Myc or the gene encoding it in microparticles derived from the neural stem cell line. A suitable c-mycER conditionally immortalized neural stem cell is described in U.S. Pat. No. 7,416,888. The use of a conditionally immortalised neural stem cell line therefore provides an improvement over existing stem cell microparticle isolation and production. Other methods of conditional immortalisation are known in the art.
Preferred conditionally-immortalised cell lines include the CTX0E03, STR0C05 and HPC0A07 neural stem cell lines, which have been deposited at the European Collection of Animal Cultures (ECACC), Vaccine Research and Production laboratories, Public Health Laboratory Services, Porton Down, Salisbury, Wiltshire, SP4 0JG, with Accession No. 04091601 (CTX0E03); Accession No. 04110301 (STR0C05); and Accession No. 04092302 (HPC0A07). The derivation and provenance of these cells is described in EP1645626 B1. The advantages of these cells are retained by microparticles produced by these cells.
The cells of the CTX0E03 cell line may be cultured in the following culture conditions:
Plus basic Fibroblast Growth Factor (10 ng/ml), epidermal growth factor (20 ng/ml) and 4-hydroxytamoxifen 100 nM for cell expansion. The cells can be differentiated by removal of the 4-hydroxytamoxifen. Typically, the cells can either be cultured at 5% CO2/37° C. or under hypoxic conditions of 5%, 4%, 3%, 2% or 1% O2. These cell lines do not require serum to be cultured successfully. Serum is required for the successful culture of many cell lines, but contains many contaminants including its own exosomes. A further advantage of the CTX0E03, STR0C05 or HPC0A07 neural stem cell lines, or any other cell line that does not require serum, is that the contamination by serum is avoided.
The cells of the CTX0E03 cell line (and microparticles derived from these cells) are multipotent cells originally derived from 12 week human fetal cortex. The isolation, manufacture and protocols for the CTX0E03 cell line is described in detail by Sinden, et al. (U.S. Pat. No. 7,416,888 and EP1645626 B1). The CTX0E03 cells are not “embryonic stem cells”, i.e. they are not pluripotent cells derived from the inner cell mass of a blastocyst; isolation of the original cells did not result in the destruction of an embryo.
The CTX0E03 cells (and microparticles derived from these cells) are angiogenic and so are useful in treating diseases requiring angiogenesis, such as Peripheral Arterial Disease. The cells (and microparticles derived from these cells) are also neurogenic and are therefore useful in treating diseases requiring neurogenesis, such as the ischaemia (stroke) damaged brain. CTX0E03 is a clonal cell line that contains a single copy of the c-mycER transgene that was delivered by retroviral infection and is conditionally regulated by 4-OHT (4-hydroxytamoxifen). The C-mycER transgene expresses a fusion protein that stimulates cell proliferation in the presence of 4-OHT and therefore allows controlled expansion when cultured in the presence of 4-OHT. This cell line is clonal, expands rapidly in culture (doubling time 50-60 hours) and has a normal human karyotype (46 XY). It is genetically stable and can be grown in large numbers. The cells are safe and non-tumorigenic. In the absence of growth factors and 4-OHT, the cells undergo growth arrest and differentiate into neurons and astrocytes. Once implanted into an ischemia-damaged brain, these cells migrate only to areas of tissue damage.
The development of the CTX0E03 cell line has allowed the scale-up of a consistent product for clinical use. Production of cells from banked materials allows for the generation of cells in quantities for commercial application (Hodges et al, 2007).
Pollock et al 2006 describes that transplantation of CTX0E03 in a rat model of stroke (MCAo) caused statistically significant improvements in both sensorimotor function and gross motor asymmetry at 6-12 weeks post-grafting. These data indicate that CTX0E03 has the appropriate biological and manufacturing characteristics necessary for development as a therapeutic cell line.
Stevanato et al 2009 confirms that CTX0E03 cells downregulated c-mycERTAM transgene expression both in vitro following EGF, bFGF and 4-OHT withdrawal and in vivo following implantation in MCAo rat brain. The silencing of the c-mycERTAM transgene in vivo provides an additional safety feature of CTX0E03 cells for potential clinical application.
Smith et al 2012 describe preclinical efficacy testing of CTX0E03 in a rat model of stroke (transient middle cerebral artery occlusion). The results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3 month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage.
Neural retinal stem cell lines (for example as described in U.S. Pat. No. 7,514,259) may also be used according to the invention.
The term “culture medium” or “medium” is recognized in the art, and refers generally to any substance or preparation used for the cultivation of living cells. The term “medium”, as used in reference to a cell culture, includes the components of the environment surrounding the cells. Media may be solid, liquid, gaseous or a mixture of phases and materials. Media include liquid growth media as well as liquid media that do not sustain cell growth. Media also include gelatinous media such as agar, agarose, gelatin and collagen matrices. Exemplary gaseous media include the gaseous phase to which cells growing on a petri dish or other solid or semisolid support are exposed. The term “medium” also refers to material that is intended for use in a cell culture, even if it has not yet been contacted with cells. In other words, a nutrient rich liquid prepared for bacterial culture is a medium. Similarly, a powder mixture that when mixed with water or other liquid becomes suitable for cell culture may be termed a “powdered medium”. “Defined medium” refers to media that are made of chemically defined (usually purified) components. “Defined media” do not contain poorly characterized biological extracts such as yeast extract and beef broth. “Rich medium” includes media that are designed to support growth of most or all viable forms of a particular species. Rich media often include complex biological extracts. A “medium suitable for growth of a high density culture” is any medium that allows a cell culture to reach an OD600 of 3 or greater when other conditions (such as temperature and oxygen transfer rate) permit such growth. The term “basal medium” refers to a medium which promotes the growth of many types of microorganisms which do not require any special nutrient supplements. Most basal media generally comprise of four basic chemical groups: amino acids, carbohydrates, inorganic salts, and vitamins. A basal medium generally serves as the basis for a more complex medium, to which supplements such as serum, buffers, growth factors, lipids, and the like are added. In one aspect, the growth medium may be a complex medium with the necessary growth factors to support the growth and expansion of the cells of the invention while maintaining their self-renewal capability. Examples of basal media include, but are not limited to, Eagles Basal Medium, Minimum Essential Medium, Dulbecco's Modified Eagle's Medium, Medium 199, Nutrient Mixtures Ham's F-10 and Ham's F-12, McCoy's 5A, Dulbecco's MEM/F-I 2, RPMI 1640, and Iscove's Modified Dulbecco's Medium (IMDM).
The stem cell microparticle of the invention is useful in therapy and can therefore be formulated as a pharmaceutical composition. A pharmaceutically acceptable composition typically includes at least one pharmaceutically acceptable carrier, diluent, vehicle and/or excipient in addition to the microparticles of the invention. An example of a suitable carrier is Ringer's Lactate solution. A thorough discussion of such components is provided in Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The composition, if desired, can also contain minor amounts of pH buffering agents. The carrier may comprise storage media such as Hypothermosol®, commercially available from BioLife Solutions Inc., USA. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E W Martin. Such compositions will contain a prophylactically or therapeutically effective amount of a prophylactic or therapeutic microparticle preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the subject. The formulation should suit the mode of administration. In a preferred embodiment, the pharmaceutical compositions are sterile and in suitable form for administration to a subject, preferably an animal subject, more preferably a mammalian subject, and most preferably a human subject.
The pharmaceutical composition of the invention may be in a variety of forms. These include, for example, semi-solid, and liquid dosage forms, such as lyophilized preparations, liquid solutions or suspensions, injectable and infusible solutions. The pharmaceutical composition is preferably injectable. A particular advantage of the microparticles of the invention is their improved robustness compared to the stem cells from which they are obtained; the microparticles can therefore be subjected to formulation, such as lyophilisation, that would not be suitable for stem cells.
It is preferred that the methods, medicaments and compositions of the invention are used for treating or repairing damaged tissue, and/or for the treatment, modulation, prophylaxis, and/or amelioration of one or more symptoms associated with tissue disorders. Particularly preferred is the use of the methods, medicaments, compositions and microparticles of the invention in regenerative therapy, typically the treatment of stroke, peripheral arterial disease or blindness-causing diseases of the retina.
Pharmaceutical compositions will generally be in aqueous form. Compositions may include a preservative and/or an antioxidant.
To control tonicity, the pharmaceutical composition can comprise a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml. Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride and calcium chloride.
Compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included at a concentration in the 5-20 mM range. The pH of a composition will generally be between 5 and 8, and more typically between 6 and 8 e.g. between 6.5 and 7.5, or between 7.0 and 7.8.
The composition is preferably sterile. The composition is preferably gluten free. The composition is preferably non-pyrogenic.
In a typical embodiment, the microparticles are suspended in a composition comprising 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox®), Na+, K+, Ca2+, Mg2+, Cl−, H2P04−, HEPES, lactobionate, sucrose, mannitol, glucose, dextron-40, adenosine and glutathione. Typically, the composition will not include a dipolar aprotic solvent, e.g. DMSO. Suitable compositions are available commercially, e.g. HypoThermasol®-FRS. Such compositions are advantageous as they allow the microparticles to be stored at 4° C. to 25° C. for extended periods (hours to days) or preserved at cryothermic temperatures, i.e. temperatures below −20° C. The microparticles may then be administered in this composition after thawing.
The pharmaceutical composition can be administered by any appropriate route, which will be apparent to the skilled person depending on the disease or condition to be treated. Typical routes of administration include intravenous, intra-arterial, intramuscular, subcutaneous, intracranial, intranasal or intraperitoneal. For treatment of a disorder of the brain, one option is to administer the microparticles intra-cerebrally, typically to the site of damage or disease.
The microparticles will be administered at a therapeutically or prophylactically-effective dose, which will be apparent to the skilled person. Due to the low or non-existent immunogenicity of the microparticles, it is possible to administer repeat doses without inducing a deleterious immune response.
The microparticles of the invention are useful in the treatment or prophylaxis of disease. Accordingly, the invention includes a method of treating or preventing a disease or disorder in a patient using a microparticle of the invention. The term “patient” includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.
As noted above, the compositions comprising miRNAs of the invention are also useful in these therapies, and references to therapeutic uses of microparticles herein therefore applies equally to the compositions comprising miRNAs.
Therapeutically useful microparticles of the invention have regenerative activity. A microparticle having regenerative activity is a microparticle that is capable of activating or enhancing regenerative processes, or inhibiting or reducing degenerative processes. Regenerative processes lead to renewal, restoration, repair and/or growth of cells and tissues. Degenerative processes lead to a loss of cell or tissue integrity and/or function. This may be particularly useful in treating damaged or disturbed cells or tissues, such as those resulting from Stroke, psychiatric disorders, myocardial infarction, Amyotrophic lateral sclerosis and Peripheral arterial disease.
The microparticles of the invention are useful in tissue regeneration. “Tissue regeneration” is the process of increasing the number of cells in a tissue following a trauma. The trauma can be anything which causes the cell number to diminish. For example, an accident, an autoimmune disorder or a disease state could constitute trauma. Tissue regeneration increases the cell number within the tissue and enables connections between cells of the tissue to be re-established, and the functionality of the tissue to be regained.
The therapy may be regenerative therapy requiring tissue replacement, regeneration or repair. The therapy may be for a neurological disease, disorder or deficit. The therapy may improve functional and/or cognitive recovery. The therapy may be of stroke, peripheral arterial disease, neuropathy or any other disease or disorder that requires tissue regeneration, revascularisation or local anti-inflammatory action, including:
In one embodiment, the microparticle and compositions containing them are not used for immune modulation. In one embodiment, the therapy is not related to immunomodulation.
The invention also provides a method for treating or preventing a disease or condition comprising administering an effective amount of the microparticle of the invention, thereby treating or preventing the disease. Typically, the disease or condition is as identified above.
The microparticles of the invention can be used to treat the same diseases as the stem cells from which they are obtained. Neural stem cells are known to be useful in the treatment of diseases including: Stroke, brain damage such as motor, sensory and/or cognitive deficit, psychiatric disorders, myocardial infarction, Amyotrophic lateral sclerosis, limb ischaemia, peripheral arterial disease. Accordingly, the microparticles of the invention are also useful in the treatment of Stroke, brain damage such as motor, sensory and/or cognitive deficit, psychiatric disorders, myocardial infarction, Amyotrophic lateral sclerosis, limb ischaemia, peripheral arterial disease.
The observed increased efficacy of exosomes isolated from NSCs (CTX0E03 cells) that have been cultured (in a multi-compartment bioreactor) for 6 weeks correlates with the observed reduction in size of the exosomes to around 70 nm diameter, which also occurred after culturing the cells for 6 weeks. Accordingly, in one embodiment, exosomes isolated from NSCs (typically CTX0E03 cells) that have been cultured (typically in a multi-compartment bioreactor) for at least 6 weeks are used to treat a disease or condition requiring tissue replacement, regeneration or repair. As noted above, optionally the NSCs have been cultured for no more than ten weeks, e.g. between 6 and 10 weeks. In another embodiment, exosomes isolated from NSCs (typically CTX0E03 cells) having a diameter less than 100 nm, typically less than 80 nm, for example around 70 nm diameter, are used to treat a disease or condition requiring tissue replacement, regeneration or repair.
As shown in
As shown in
In prophylactic applications, pharmaceutical compositions or medicaments are administered to a patient susceptible to, or otherwise at risk of, a particular disease in an amount sufficient to eliminate or reduce the risk or delay the outset of the disease. In therapeutic applications, compositions or medicaments are administered to a patient suspected of, or already suffering from such a disease in an amount sufficient to cure, or at least partially arrest, the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a therapeutically- or pharmaceutically-effective dose. In both prophylactic and therapeutic regimes, agents are typically administered in several dosages until a sufficient response has been achieved. Typically, the response is monitored and repeated dosages are given if the response starts to fade.
The microparticles of the invention may optionally be combined with a stem cell to provide a combination therapy. The stem cell is optionally the stem cell from which the microparticle is derived, e.g. if the microparticle is an exosome from a CTX0E03 cell, then the stem cell for use in combination therapy may be a CTX0E03 cell. A stem cell and microparticle can optionally be (i) administered together in a single pharmaceutical composition, (ii) administered contemporaneously or simultaneously but separately, or (iii) administered separately and sequentially, e.g. stem cell followed by microparticle, or microparticle followed by stem cell. When the stem cell and microparticle are administered separately and sequentially, the duration between the administration of the cell and microparticle may be one hour, one day, one week, two weeks or more.
In one embodiment, a prophylactic therapy induces tolerance, typically immunotolerance, in a host that is to receive the stem cells from which the microparticle is derived. In one embodiment, the administration of one or more doses of microparticles of the invention to a patient, prior to administration of a stem cell therapy, can be used to reduce the risk of an adverse immune response, i.e. “rejection”, of the stem cell therapy. In another embodiment, tolerance to the stem cells can be increased by administering stem cells together with microparticles of the invention, as discussed above.
Effective doses of the compositions of the present invention, for the treatment of the above described conditions vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Usually, the patient is a human.
The CTX0E03 cell line has been shown to be effective in treating stroke, peripheral arterial disease, brain damage such as motor, sensory and/or cognitive deficit, and psychiatric disorders. The cells are currently being tested in a clinical trial for treatment of disabled stroke patients (Clinicaltrials.gov Identifier: NCT01151124). WO-A-2012/004611 describes the use of the CTX0E03 cells in treating psychiatric disorders including unipolar and bipolar depression, schizophrenia, obsessive compulsive disorder, autism and autistic syndrome disorders. Accordingly, microparticles produced by CTX0E03 cells are also able to treat stroke, peripheral arterial disease, blindness-causing diseases of the retina (such as retinitis pigmentosa), brain damage such as motor, sensory and/or cognitive deficit, and psychiatric disorders.
As used herein, the terms “treat”, “treatment”, “treating” and “therapy” when used directly in reference to a patient or subject shall be taken to mean the amelioration of one or more symptoms associated with a disorder, or the prevention or prophylaxis of a disorder or one or more symptoms associated with a disorder. The disorders to be treated include, but are not limited to, a degenerative disorder, a disorder involving tissue destruction, a neoplastic disorder, an inflammatory disorder, an autoimmune disease or an immunologically mediated disease including rejection of transplanted organs and tissues. Amelioration or prevention of symptoms results from the administration of the microparticles of the invention, or of a pharmaceutical composition comprising these microparticles, to a subject in need of said treatment.
The present invention provides a distinct marker profile for microparticles produced by neural stem cells. It is therefore possible to detect the presence of these microparticles in vivo, by testing a sample obtained from a patient and determining whether the marker profile in the sample matches that of the microparticles. If the sample profile matches the profile of the microparticles described herein, then this confirms the presence of the microparticles. This can be used to detect not only the presence and/or biodistribution of the microparticles themselves, but also the presence of stem cells producing the microparticles. This is particularly useful when detecting whether a stem cell administered in vivo has engrafted into the host tissue, and/or has migrated, for example in ADME(T) studies.
Detection of the microparticles in vivo can be used to monitor the course of a treatment wherein microparticles or stem cells are administered to a patient. Determining the presence, absence or amount of microparticles or cells producing microparticles of the invention in a patient allows the dosage regime to be altered accordingly, e.g. to increase or decrease the dose as required to provide an effective amount of microparticles or stem cells in vivo.
Microparticles are isolated from cell conditioned media, typically stem cell conditioned media. The “conditioned medium” (CM) may be a growth medium for stem cells, which has been used to culture a mass culture of stem cells for at least about 12 hours, at least about 24 hours, at least about 48 hours or least about 72 hours, typically up to 168 hours (7 days), removed and sterilized by any suitable means, preferably by filtration, prior to use, if required.
Alternatively, microparticles may be harvested from a two-compartment bioreactor which allows the cell culture, and hence the conditioned media, to be maintained for longer periods of time, for example at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks or more. The system maintains the cells and secreted microparticles within a small cell compartment (approximately 15 ml) which is separated from a larger reservoir of medium by a 10 kDa semi-permeable membrane. This allows the efficient removal of metabolic waste products while effectively maintaining an extremely high cell density to maximize microparticle production. Example 9, and
The microparticles may be separated from other media components based on molecular weight, size, shape, hydrodynamic radius, composition, charge, substrate-ligand interaction, absorbance or scattering of electromagnetic waves, or biological activity. In one embodiment, the conditioned media is filtered using a filter of appropriate size to separate the desired microparticle, for example a 100K MWCO filter. Optionally, the stem cell-conditioned medium is concentrated prior to the isolation of the microparticles by subjecting the concentrated NSC-conditioned medium to size exclusion chromatography. The UV absorbant fractions can then be selected for isolation of the microparticles of interest.
Different microparticles can be isolated from the media by using different isolation techniques and parameters. For example, exosomes have a vesicle density of 1.13-1.19 g/mL and can be isolated by differential centrifugation and sucrose gradient ultracentrifugation at 100,000-200,000 g. Microvesicles can be isolated by filtration (100K MWCO) and differential centrifugation at 18,000-20,000 g. Membrane particles have a density of 1.04-01.07 g/ml and Exosome-like vesicles have a density of 1.1 g/ml.
A typical production method comprises: culturing stem cells to produce conditioned media; removing cell debris by centrifugation at 1500 rpm; isolating microvesicles (<1000 kDa) by ultrafiltration through a 100K MWCO filter or isolating exosomes (30-100 nm) by ultracentrifugation at 120,000 g; followed by quantification using a BCA protein assay.
In one aspect of the invention, conditionally immortalised stem cells are used to produce microparticles such as microvesicles and/or exosomes. Conditional immortalisation provides a constant supply of clonal cells that produce microparticles such as exosomes. These conditionally immortalised stem cells are typically neural stem cells, but may be a stem cell of any type, for example a haematopoietic stem cell or a mesenchymal stem cell. The conditionally immortalised stem cell may be a CD34+ cell. A method of producing stem cell microparticles is therefore provided, comprising the steps of culturing conditionally-immortalised stem cells and harvesting the microparticles that are produced by the cells. Conditional immortalisation of stem cells is known in the art, as described above; in one embodiment, conditional immortalisation is achieved by introducing c-mycER, which drives cell proliferation only in the presence of the synthetic steroid 4-hydroxytamoxifen (4-OHT). For the avoidance of doubt, this method is not limited to the use of neural stem cells.
The Examples demonstrate the production of exosomes from conditionally-immortalised neural stem cells and CD34+ cord blood cells. This exemplification can readily be applied to other cell types, including mesenchymal stem cells.
When the stem cell used to produce microparticles is a neural stem cell, it may be any of the neural stem cells described herein, for example the CTX0E03 conditionally-immortalised cell line which is clonal, standardised, shows clear safety in vitro and in vivo and can be manufactured to scale thereby providing a unique resource for stable exosome production. Alternatively, the neural stem cells may be neural retinal stem cell lines, optionally as described in U.S. Pat. No. 7,514,259.
Microparticles may also be produced from conditionally-immortalised neurosphere initiating stem cells (NS-IC) that are CD45−, CD34−. These cells can initiate neurosphere culture. A neurosphere is an aggregate or cluster of cells which includes neural stem cells and primitive progenitors. NS-IC cells are known in the art, for example as described in EP 1900811 B1 (StemCells Inc.). NS-IC cells are typically AC133+.
In another embodiment, the conditionally immortalised stem cells are oligodendrocyte precursor cells (OPCs). OPCs are precursors to oligodendrocytes and are typically also able to differentiate into astrocytes and, optionally, neurons. OPCs typically express the proteoglycan PDGFRα. OPCs are described, for example, in WO-A-2010/075500 (StemCells Inc.); these OPCs are PDGFRα+/CD105− and optionally CD133+.
When the stem cell used to produce microparticles is a mesenchymal stem cell, it may optionally be a conditionally-immortalised adipose-derived stem cell (“ADSC”) or a conditionally-immortalised version of the mesenchymal stem cells described in WO-A-2009/105044; these cells are CD29+, CD44+, CD49a+/e+, CD105+, CD166+, CD34−, CD45−.
In a further embodiment, microparticles are produced by conditionally-immortalised human bone marrow derived stem cells expressing CD73, CD90 and CD105 and not expressing CD14, CD19, CD34, CD45 and HLA-DR, wherein at least 50% of the cells of the cell population express glial fibrillary acidic protein (GFAP) and secrete BDNF. Such cells are described in EP-A-2620493 (Brainstorm Cell Therapeutics).
In one embodiment, the conditionally immortalised mesenchymal stem cell is an endometrial regenerative cell (“ERC”). ERCs are known in the art and are typically isolated from menstrual blood. ERCs typically express CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105.
The production of exosomes from non-conditionally-immortalised ERCs is described, for example, in US patent publication number US2013/0195899 (Medistem Inc.).
A further embodiment provides microparticles from conditionally immortalised multipotent adult progenitor cells (“MAPCs”), which are typically derived from bone marrow. MAPCs are known in the art and typically express Oct3 and telomerase. MAPCS are being developed by Athersys Inc. as the “Multistem” product. In one embodiment, MAPCs are human multipotent non-embryonic, non-germ cells that can differentiate into at least one cell type of each of at least two of the endodermal, ectodermal, and mesodermal embryonic lineages, express telomerase, and optionally express Oct-3. These MAPCs have typically undergone at least 10-40 cell doublings in culture (see, for example, U.S. Pat. No. 8,147,824; Athersys, Inc.). In another embodiment the MAPCs are a human cell population that express CD90 and CD49c and one or more of sox-9, sox-11, hox-A5, and MSX-1, and optionally express telomerase. These cells typically show that marker profile after having undergone 22 cell doublings in culture.
Another embodiment of mesenchymal stem cells that can be conditionally-immortalised according to the invention are mesenchymal progenitor cells (MPCs). MPCs express SDF-1 (stroma derived factor 1—a potent stroma derived CXCα chemokine). MPCs can typically differentiate into bone, fat and cartilage. MPCs may typically be isolated by selection for SDF-1 expression, for example using an SDF-1 antibody. MPCs are typically isolated from bone marrow. MPCs are typically positive for at least one marker selected from the group consisting of STRO-Ibright VCAM-Ibright, THY-Ibright, CD146bright and STRO-2bright. Optionally, the MPCs carry at least two markers selected from the group of surface markers specific for MPCs consisting of STRO-Ibri, LFA-3, THY-I, VCAM-I, ICAM-I, PECAM-I, P-selectin, L-selectin, CD49a/CD49b/CD29, CD49c/CD29, CD49d/CD29, CD29, CDI 8, CD61, beta-1 integrin, 6-19, thrombomodulin, CDIO, CD13, SCF, PDGF-R, EGF-R, IGFI-R, NGF-R, FGF-R, Leptin-R, RANKL and CD 146 or any combination of these markers. The survival and/or proliferation of the MPC, or their progeny, may be enhanced by exposure to SDF-I or an analog thereof (see, for example, WO2006032075, Angioblast Inc. [now Mesoblast, Inc.]). MPCs are being developed commercially by Mesoblast under the name “Revascor”.
Other conditionally-immortalised stem cells from which microparticles, such as exosomes, can be isolated include haematopoietic stem cells, typically CD34+ haematopoietic stem cells, optionally isolated from umbilical cord blood (often referred to as “cord blood cells”). Example 15 and
Umbilical cord blood also includes non-haematopoietic stem cells, which can also be conditionally immortalised and used to produce microparticles.
Hematopoietic stem cells are also described in U.S. Pat. No. 7,794,705 (Amorcyte Inc.). These cells are CD34+/CXCR-4+ cells that have CXCR-4-mediated chemotactic activity and are able to form hematopoietic colonies in vitro.
Microparticles may also be produced by conditionally-immortalised very small embryonic like stem cells (VSELs) derived from a human, which are typically CD133+ CXCR4+ CD34+ Lin− CD45− (for example as described by WO2010039241, NeoStem Inc.). The VSELs are optionally Oct-4+, SSEA+, Nanog+, or express Oct-4 protein in nuclei and SSEA antigens on the surface.
The conditionally-immortalised stem cell may be a Multipotent Adult Progenitor Cell (“MAPC”). MAPCs are known in the art (see, for example, Reading et al. J Immunol. 2013 May 1; 190(9):4542-52).
Induced pluripotent stem (iPS) cells may also be conditionally-immortalised and used to produce exosomes. iPS cells are known in the art, as reviewed by Malik and Rao Methods Mol Biol, 2013; 997-23-33.
Conditional immortalisation is not limited to stem cells. Accordingly, in a further aspect of the invention, conditionally immortalised differentiated (i.e. non-stem) cells are used to produce microparticles such as microvesicles and/or exosomes.
Fibroblasts may be conditionally-immortalised and used to produce microparticles such as exosomes. Typically, the fibroblast is a human dermal fibroblast.
Dendritic cells may also be conditionally-immortalised and used to produce microparticles such as exosomes.
The inventors have found that it is possible to increase the production of microparticles by cells, typically stem cells. This finding, which is not limited to neural stem cells and can be used for the production of microparticles from any cell (typically stem cell), allows for an improved yield of microparticles to be obtained from a stem cell culture. This improved yield is particularly advantageous when combined with the continuous supply of microparticles provided by conditionally-immortalised cells.
A first technique to increase the production of microparticles by the (stem) cells is to treat the stem cells with one or more of TGF-β, IFN-γ or TNF-α, typically at between 1 and 25 ng/ml e.g. 10 ng/ml, for between 12 to 96 hours prior to the removal of conditioned media.
As explained in Example 2 below, the frequency of the occurrence of multivesicular bodies (MVBs) was observed to be altered by the presence of TGF-β, IFN-γ or TNF-α (10 ng/ml). The frequency was highest in the presence of TGF-β, followed by IFN-γ, followed by TNF-α. Therefore, adding one or more of TGF-β, IFN-γ or TNF-α to the stem cell culture medium will stimulate the production of microparticles by the cells. The microparticles can then be harvested, by separating the microparticles from other components as described above.
A second technique to increase the production of microparticles by the stem cells is to culture the cells under hypoxic conditions. Culturing cells under hypoxic conditions is well-known to the skilled person, and involves culturing the cells in an atmosphere that has less than atmospheric level of O2, i.e. less than 21% O2. This is typically achieved by placing the cells in an incubator that allows oxygen levels to be changed. Hypoxic culture typically involves culturing in an atmosphere containing less than 10% O2, more typically 5% or less O2, for example 4% or less, 3% or less, 2% or less, or 1% or less O2.
The inventors have also realised that co-culturing a stem cell with a different cell type can alter the production of microparticles by the stem cell. The different cell type may be a non-stem cell, i.e. a terminally differentiated cell type. Typically, the different cell type is one with which the stem cell would interact in vivo. In one embodiment, neural stem cells are co-cultured with epithelial cells such as endothelial cells, typically Human Umbilical Vein Endothelial Cells (HUVEC). It has been observed that in vivo, NSCs and the vasculature interact, with proliferating NSCs being localized in close proximity or adjacent to blood vessels. Receptor tyrosine kinase activation and signal protein secretion has also been observed to be upregulated when NSCs are co-cultured with endothelial cells, again indicating that the vasculature modulates the proliferation capacity of NSCs. Without wishing to be bound by theory, the inventors believe that in vivo, there is a pivotal interplay between NSCs and microvessels (i.e. endothelial cells) in the process of tissue regeneration, through amplification of cytokine expression. Microparticles, e.g. exosomes, derived from NSCs (for example CTX0E03 cells) co-cultured with endothelial cells (for example HUVEC) are therefore primed for therapeutic use, because they have been produced in an environment that mimics the in vivo environment in which the stem cells and microparticles are active.
Therefore, culturing a stem cell with a different cell type may improve the amount of microparticles produced and/or may refine the content of the microparticles, typically so that the microparticles produced by the stem cells are biased towards an activated state of tissue repair. Accordingly, microparticles produced by stem cells that have been co-cultured with other cells, e.g. NSCs co-cultured with endothelial cells, are advantageous. These microparticles may be obtained by isolation from the co-cultured stem-cell conditioned media, as described herein.
Surprisingly, the present inventors have realised that the amount of microparticles produced by stem cells can be increased greatly simply by culturing stem cells in a multi-compartment bioreactor. This finding is not limited to neural stem cells and applies generally to the culture of all stem cells. Accordingly, one aspect of the invention provides a method of producing microparticles from stem cells that have been cultured in a multi-compartment bioreactor. The cells from which the microparticles are harvested have typically been cultured for at least one week, typically at least 8, 9, 10, 11, 12, 13 or 14 days, for example 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days or more, for example at least three weeks, four weeks, five weeks, six weeks or more. It can be seen from
Method of Screening for an Agent that Alters Microparticle Production
The invention provides a method of screening for an agent that alters the production of a microparticle by a conditionally-immortalised cell, typically a conditionally-immortalised stem cell. This method comprises contacting a conditionally-immortalised (e.g. stem) cell with a candidate agent, typically under conditions suitable for microparticle production, and observing whether (i) the rate of production of microparticles by the contacted conditionally-immortalised cell increases or decreases, or (ii) the characteristics (e.g. size, protein, mRNA or miRNA content) of the microparticles changes, compared to a control stem cell that is not contacted with the agent.
Following centrifugation (5 min at 1500 rpm), microparticles are collected from conditioned medium through filtration (0.02-0.2 μm, or 100K MWCO). Total RNA is obtained using trizol based extraction followed by purification using Qiagen RNaesy mini kit. The extract in water has a 260:280 nm absorbance suggesting that it may be RNA. Total RNA is retro-transcribed with either a protocol suitable for mRNA (Superscript II RT, Invitrogen) or miRNA (mScript RT kit, Qiagen). Validation of mRNA and miRNA presence is proven by qRT-PCR using primers for ATP5B and YWHAZ for mRNA, and U6B and 15a for miRNA housekeeping genes respectively. The RNA may be assessed by a generic gene expression analysis assay such as an array (micro array or PCR based array), and sequencing.
The invention provides a kit for use in a method for producing the microparticle of the invention. The kit comprises a cell culture medium, a conditionally-immortalised cell and instructions for producing the microparticle of claim 22 using the kit. Optionally, the kit comprises one or more components of claim 19 or 20. The kit may also comprise a microparticle according to the invention, for use as a control. The control microparticle is optionally lypohilised. The kit may also contain optionally a detection agent suitable for detection of the produced microparticles, for example an antibody that binds specifically to a marker protein that can be used to identify the microparticle.
The invention is further described with reference to the following non-limiting examples.
5 Sub-confluent flasks containing the same culture of CTX0E03 cells were individually treated with either 10 ng/ml TGF-β, 10 ng/ml IFNγ, or 10 ng/ml TNFα alongside full growth media controls with or without the addition of 4OHT. 72 hours after treatment, the cells were collected using trypzean/EDTA, washed and fixed overnight in 2.5% Gluteraldehyde in 0.1M Cacodylate pH7.4 ready for electron microscopy evaluation.
The frequency of the occurrence of multivesicular bodies (MVBs) was observed to be altered by the presence of TGF-β, IFN-γ or TNF-α. The frequency was highest in the presence of TGF-β, followed by IFN-γ, followed by TNF-α.
The production of microparticles from neural stem cells can be stimulated by the addition of the factors TGF-β, IFN-γ or TNF-α. This has the potential for more efficient production of microparticles.
An outline protocol for producing large quantities of microparticles is provided in
B) Arithmetic and geometric mean of the reference (housekeeping) genes
Human angiogenesis ELISA strips (Signosis) were utilized according to manufacturer's instruction. Fresh RMM medium and 24 hour conditioned CTX0E03 RMM medium were analyzed for 8 angiogenesis cytokines; tumor necrosis factor α (TNFα), insulin-like growth factor 1 (IGF-1), VEGFA, interleukin-6 (IL-6), bFGF, transforming growth factor β 1 (TGFβ1), EGF, and leptin. Individual wells of the strip, coated with each of the primary antibodies directed against the specific angiogenesis cytokines were loaded with test samples. Absorbance was measured by a spectrophotometer at 450 nm. The concentrations of the angiogenesis cytokines were directly proportional to the color intensity of the test sample.
The results are shown in
Efficient micro particle production and harvest from a cell line relies upon maintaining optimal culture conditions for the greatest density of cells. Any restriction in the oxygen or nutrients supplied to the cells or an accumulation of waste metabolic products will limit the life span of the culture, and hence the micro particle production.
The two-compartment CELLine AD 1000 is designed to accommodate adherent cells attached to a matrix inlay within a small cell compartment, separated from a larger media reservoir by means of a 10 kDa semi-permeable membrane. This membrane allows a continuous diffusion of nutrients and removal of waste products, while concentrating any micro particles produced by the cell within the smaller cell compartment. Due to the large volume capacity (1 litre) of the media compartment, the system has the potential to maintain high density cultures for longer periods of time without the need for a media change. The production of exosomes from mesothelioma tumour cell cultures is described in Mitchell et al, 2008.
In order to obtain optimal performance of the CELLine AD1000, place 25 ml of complete growth medium (RMM with growth factors and 4OHT) into the medium compartment of the flask to pre-wet the semi-permeable membrane. Allow the flask to sit for 5 minutes at room temperature before coating the matrix inlay with mouse Laminin by adding 15 ml of laminin solution (20 μg/ml in DMEM/F12) to the cell compartment for a minimum of 1 hour at 37° C. Remove the laminin solution and add 15 ml of warm DMEM/F12 to the cell compartment to remove any excess laminin. Avoiding the matrix inlay drying, slowly introduce approximately 15×106 CTX0E03 cells in a total of 15 ml of complete growth medium. Take care to remove any air bubbles from the cell compartment. Carefully add a further 460 ml of complete growth medium to the cell compartment before incubating the flask overnight in 5% CO2 at 37° C. The next day remove the medium from the cell compartment and replace with 15 ml of pre warmed growth medium.
Every 7 days harvest the microparticles/medium from the cell compartment. Centrifuge the medium at 1500 rpm for 5 minutes to remove any cell debris and store at −80° C. Carefully add another 15 ml of pre-warmed complete growth medium in to the cell compartment and 485 ml of complete growth medium to the medium compartment and incubate for another 7 days. Microparticles were isolated by 100K MWCO filtration. Repeat as necessary.
Marker characterisations indicated that both purified populations (microvesicles and exosomes) express CD63 and CD81 (determined by FACS—
(A) Comparison of the Function of CTX0E03 Conditioned Media with the Function of Purified Exosomes from CTX0E03 Cells in a Wound Healing Assay.
Wound closure was calculated as the area covered by cells in relation to the initial wound area, as determined at 0 h. Wound closure is expressed as the percentage of the initial wound area at time 0 h. These data are also shown, photographically, in
Further experiments confirmed that exosomes purified (by ultracentrifugation; quantified by BCA protein assay; characterised as >99% positive for CD63 and CD81 and having a greater expression level of Alix compared to the corresponding microparticle fraction) from all time points (weeks 2-6) during continuous culture (using Integra CELLine bioreactors in the presence of growth factors and 4OHT) significantly enhanced fibroblast migration and wound healing, with a peak response between 5-10 μ/ml compared to basal conditions.
The data in
Conclusion Exosomes released from the human neural stem cell line CTX0E03 enhance fibroblast migration in an in vitro model of wound healing, suggesting that exosomes may contribute to the mechanisms by which hNSCs promote repair. Exosomes isolated from cells cultured for 6 weeks show improved wound healing efficacy in vitro, compared to exosomes isolated from cells cultured for 2 weeks.
A 24 hour assay to detect angiogenesis on primary HUVECs was carried out using an Ibidi p-slide and automated Wimtube detection and analysis (of tube length and bifurcation points). Microvesicles harvested from Integra flasks at 1, 2, 3, 4 and 6 weeks were added to HUVECs and angiogenesis compared to basal HUVECs (without addition). LSGS (low serum growth supplement) was used as a positive control. The results, depicted in
These data indicate that hNSC microvesicles stimulate angiogenesis.
Neurite outgrowth was determined using PC-12 cells though a 1 μm insert. After 72 hours, the PC-12 cell bodies were removed and the neurites stained on the underside of the insert. The stain was then extracted and quantified on a spectrophotometer. Microvesicles harvested from Integra flasks at 2 weeks were added to the cells at 0.03 μg, 0.3 μg and 3 μg, each with 100 ng/ml NGF (nerve growth factor). Neurite outgrowth was compared to basal cells (without addition). 100 ng/ml NGF was used as a control. As shown in
These data indicate that hNSC microvesicles stimulate neurite outgrowth.
CTX0E03 cells were cultured using the Integra CELLine system and exosomes were purified as described in Example 7. The concentration of exosomes purified from the medium using the CELLine system at the 3 week time point, and as a control a standard T175 system as routinely used in the art, was quantified (using a BCA assay to estimate protein content).
Using the Integra CELLine system, CTX0E03 cells were cultured over a 3-week period and medium was harvested at week 1, 2 and 3 for purification and quantification of exosomes, as described in Example 7.
These results show that exosome production is surprisingly enhanced when stem cells are cultured in a multi-compartment bioreactor for weeks, typically at least three weeks.
CTX0E03 cells were cultured using the Integra CELLine bioreactor and standard culture, as described in Example 7. Expression of DCX and GFAP protein markers was confirmed using marker-specific antibodies and fluorescence microscopy.
Expression of DCX, GALC, GFAP, TUBB3, GDNF and IDO markers was detected by qRT-PCR in samples obtained from the cells. Marker expression was compared between microparticles obtained from standard (T175) culture and exosomes obtained from the 3 week cultured Integra CELLine system, assessed against a baseline of the expression level in CTX0E03 cells in standard (T175) culture.
The inventors observed a striking difference in marker expression of cells obtained from the Integra CELLine system as compared to control cells obtained from standard. Markers of partially-differentiated cells were increased several fold in cells cultured in the Integra CELLine system, compared to control cells obtained from standard cultures (
CTX0E03 cells were cultured for three weeks using the Integra CELLine culture and in the standard culture in single-compartment 1-175 flasks. Exosomes were purified from the Integra culture and microparticles were purified from the standard T-175 culture as described in Example 7. The relative expression levels of various miRNAs expressed in the exosomes and microparticles obtained from either the standard culture or the Integra CELLine system were determined with an miRNA array using qRT-PCR panel (Qiagen) according to manufacturer's instruction, and converted into fold up and down regulation levels as compared to a standard CTX0E03 cell line control group (see Table 3 and
Values were calculated from raw data using the following equations:
Wherein:
CT=cycle threshold
GOI=gene of interest (investigated miRNA)
HKG=housekeeping genes (reference miRNAs used to normalize the data)
Cells can shuttle RNA into microparticles determined for release into the extracellular space. This allows the conveyance of genetically encoded messages between cells. We here collectively refer to extracellular RNA as ‘shuttle RNA’. We aimed to analyze comprehensively non coding RNA species released by CTX0E03 neural stem cells (NSCs) using Next Generation Sequencing.
Non coding RNAs are divided in two categories (small and long). Small non coding RNA biotypes include ribosomal RNA (rRNA), small nucleolar (snoRNA), small nuclear RNA (snRNA), microRNA (miRNA), miscellaneous other RNA (misc_RNA, e.g. RMRP, vault RNA, metazoa SRP, and RNY), and long non coding RNA biotypes includes long non-coding RNAs (IncRNAs) and large intergenic non-coding RNAs (lincRNAs).
Here, we characterized shuttle RNAs, including small and long non coding RNAs, released from NSC derived exosomes and microvesicles (MV) and compared with the RNA contents of the producer NSCs.
The RNA in both exosomes and microvesicles mainly consists of small RNA species as shown in
Small RNA sequencing libraries were generated to investigate the composition of shuttle and cellular RNA by deep sequencing (Next Generation Sequencing). The results are shown in
C) Deep Sequencing of CTX0E03 Cell, Microvesicle and Exosome miRNA Expression from Standard (T175) Cultures.
Deep sequencing is based on the preparation of a cDNA library following by sequencing and provides information regarding the total sequence read out of different miRNAs in the microvesicles and exosomes. These deep sequence data complement the qRT-PCR array data shown above and provide a comprehensive analysis of the miRNA profile of the cells and microparticles. Unlike the qRT-PCR array analysis, deep sequencing is not restricted to identification of sequences present in the probe array and so the sequences to be identified do not need to be known in advance. Deep sequencing also provides direct read-out and the ability to sequence very short sequences. However, deep sequencing is not suitable for detection of transcripts with low expression.
The presence of a variety of miRNAs in parental cells and their exosomes (30-100 μm) and microvesicles (100-1000 μm), purified by differential centrifugation, was identified by deep sequencing, following construction of 1 tagged miRNA library for each sample.
Additionally, specific primers for highly shuttled miRNAs (e.g. hsa-miR-1246) were designed and used in real-time reverse transcription PCR (qRT-PCR) to trace exosomes/microvesicles following in vivo implantation.
Deep sequencing was performed by GATC Biotech (Germany) and required the preparation of a tagged miRNA library for each samples followed by sequencing, and miRBase scanning:
Many microvesicle and exosome miRNAs were enriched relative to the cells, indicating that cells specially sort miRNAs for extracellular release. Furthermore, miRNA contents were similar in both exosomes and microvesicles, indicating a common apparatus of selective miRNA uptake in excreted microvesicles. Without wishing to be bound by theory, this may indicate that miRNA content in secreted microvesicles and exosomes can be used as a fingerprint to identify hNSC subtypes.
The deep sequencing analysis therefore identified a unique set of miRNAs in both hNSC exosomes and microvesicles not previously reported. MiRNA content in excreted vesicles is similar, but showed a preferential miRNA uptake compared with hNSC. These findings could support biological effects mediated by shuttle miRNA not previously described for hNSC.
The results are detailed in Tables 4 to 9, below. The data are also depicted in
The presence of each of hsa-miR-1246, hsa-miR-4488, hsa-miR-4492, hsa-miR-4508, hsa-miR-4516 and hsa-miR-4532 in the exosomes was validated by qRT-PCR (data not shown).
Plotting the deep sequencing results in the exosomes and microvesicles as relative fold change compared to the cells confirms that hsa-miR-1246, hsa-miR-4492, hsa-miR-4488 and hsa-miR-4532 are significantly upregulated in the exosomes and microvesicles compared to the cells. This comparison also shows that miRNA hsa-miR-3195 is the miRNA that is most upregulated, in both exosomes and microvesicles. Although the absolute reads of hsa-miR-3195 are in the range of ˜40 for exosomes and microvesicles, there is no hsa-miR-3195 present in the cells.
As noted in Example 11 above, miRNA contents in exosomes, microparticles, and parental cells were also tested and validated using PCR array analysis. The following miRNAs were found present by qRT-PCR: hsa-let-7 g-5p, hsa-miR-101-3p, hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-128, hsa-miR-130a-3p, hsa-miR-134, hsa-miR-137, hsa-miR-146b-5p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-182-5p, hsa-miR-185-5p, hsa-miR-18b-5p, hsa-miR-192-5p, hsa-miR-194-5p, hsa-miR-195-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-210, hsa-miR-21-5p, hsa-miR-218-5p, hsa-miR-219-5p, hsa-miR-222-3p, hsa-miR-22-3p, hsa-miR-23b-3p, hsa-miR-24-3p, hsa-miR-26a-5p, hsa-miR-301a-3p, hsa-miR-302a-3p, hsa-miR-302c-3p, hsa-miR-345-5p, hsa-miR-378a-3p, hsa-miR-7-5p, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-9-5p, hsa-miR-96-5p, and hsa-miR-99a-5p.
Table 10: Total number of sequence reads identified by using GENCODE in each tested samples
Using GENCODE database analysis of the sequence results, seven putative novel miRNA sequences were identified in exosomes (EXO), microvesicles (MV) and producer cells, as shown in Table 11. (nb CTX0E03 07E1 MV reads are misrepresented due to the lower amount of starting material—see Table 10). These data are shown graphically in
Validation and of Novel miRNAs
AC079949.1-201 (SEQ ID NO:738)
Gene: AC079949.1 ENSG00000239776
For AC079949.1-201 putative mature miRNA, gaccaggguccggugcggagug (SEQ ID NO:745) was identified as the possible 5′ stem mature miRNA using http://mirna.imbb.forth.gr/MatureBayes.html, a tool for finding mature miRNA within a miRNA precursor sequence using a Naive Bays classifier. Its presence validation was performed using AGGGTCCGGTGCGGAGT (SEQ ID NO:746) primer sequence. This sequence was entered in mirbase (http://www.mirbase.org/) and the following miRNA was found with similar sequence: Bos taurus miR-2887-1 (Accession No. MIMAT0013845).
bta-miR-2887: 9-20 (SEQ ID NO:747)
The presence of this novel miRNA was tested by qRT-PCR on purified exosomes retro transcribed miRNA.
The same analysis was performed using the 3′ stem of AC079949, sequence TGCGGAGTGCCCTTTGTCCT (SEQ ID NO:748), but in this case no similar miRNA was identified in mirbase.
Gene: AP000318.1 ENSG00000266007
For AP000318.1-201 putative mature miRNA, ggagggcccaaguccuucugau (SEQ ID NO:744) was identified as the possible 5′ stem mature miRNA. Its presence validation was performed using GGAGGGCCCAAGTCCTTCTGAT (SEQ ID NO:749) primer sequence. Caenorhabditis remanei miR-55 stem-loop was identified as similar miRNA. Primer validation was again carried out by qRT-PCR.
AL161626.1-201 (SEQ ID NO:740)
Gene: AL161626.1 ENSG00000241781
For AL161626.1-201 putative mature miRNA, ggcggagugcccuucuuccugg (SEQ ID NO:743) was identified as the possible 5′ stem mature miRNA. Its presence validation was performed using CGGAGTGCCCTTCTTCCT (SEQ ID NO:751) primer sequence. Zea mays miR164c stem-loop and Achypodium distachyon miR164f stem-loop were identified as similar miRNA. Primer validation was again carried out by qRT-PCR.
AC004943.1 (SEQ ID NO:741)
Gene: AC004943.1 ENSG00000265573
AL121897.1 (SEQ ID NO:742)
Gene: AL121897.1 ENSG00000264308
Misc_RNA is short for miscellaneous RNA, a general term for a series of miscellaneous small RNA. Miscellaneous transcript feature are not defined by other RNA keys.
List of top ranking previously known and novel misc_RNAs identified using GENCODE sequence data set:
indicates data missing or illegible when filed
Among the misc_RNA the following sequences were found preferentially down or up shuttled in exosomes and MV: RPHI, RMRP, and VTRNA1-1 up shuttled and Y_RNA.725-201, and Y_RNA.125-201 down respectively. RPHI is a ribonuclease P RNA component H1. RMRP gene encodes the RNA component of mitochondrial RNA processing endoribonuclease, which cleaves mitochondrial RNA at a priming site of mitochondrial DNA replication. This RNA also interacts with the telomerase reverse transcriptase catalytic subunit to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase activity and produces double-stranded RNAs that can be processed into small interfering RNA. VTRNA1-1 is vault RNA component 1. Vaults are large cytoplasmic ribonucleoproteins and they are composed of a major vault protein, MVP, 2 minor vault proteins, TEP1 and PARP4, and a non-translated RNA component, VTRNA1-1. Y_RNA.725-201, and Y_RNA.125-201 are novel misc_RNAs and their function is not defined.
The signal recognition particle RNA, also known as 7SL, 6S, ffs, or 4.5S RNA, is the RNA component of the signal recognition particle (SRP) ribonucleoprotein complex. SRP is a universally conserved ribonucleoprotein that directs the traffic of proteins within the cell and allows them to be secreted. The SRP RNA, together with one or more SRP proteins contributes to the binding and release of the signal peptide. The RNA and protein components of this complex are highly conserved but do vary between the different kingdoms of life.
List of top ranking Metazoa misc_RNAs identified using GENCODE sequence data set:
indicates data missing or illegible when filed
Ribosomal RNA (rRNA) forms part of the protein-synthesizing organelle known as a ribosome and that is exported to the cytoplasm to help translate the information in messenger RNA (mRNA) into protein. Eukaryotic ribosome (80S) rRNA components are: large unit (rRNA 5S, 5.8S, and 28S) small unit (rRNA 18S). Both rRNA 28S and 5.8S are selectively up-shuttled in exosomes and MV.
List of top ranking rRNA identified using GENCODE sequence data set:
Small Nucleolar RNA: snoRNA
Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guides chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs which are associated with methylation, and the H/ACA box snoRNAs which are associated with pseudouridylation. List of top ranking snoRNA identified using GENCODE sequence data set:
Small Nuclear RNA (snRNA)
Small nuclear ribonucleic acid (snRNA), also commonly referred to as U-RNA, is a class of small RNA molecules that make up the major spliceosome are named U1, U2, U4, U5, and U6, and participate in several RNA-RNA and RNA-protein interactions. Their primary function is in the processing of pre-mRNA (hnRNA) in the nucleus. They have also been shown to aide in the regulation of transcription factors (7SK RNA) or RNA polymerase II (B2 RNA), and maintaining the telomeres.
List of top ranking snRNA identified using GENCODE sequence data set:
LincRNA and Novel lincRNA
Large intergenic non-coding RNAs (lincRNAs) are emerging as key regulators of diverse cellular processes. Determining the function of individual lincRNAs remains a challenge. Long non-coding RNAs (long ncRNAs, lncRNA) are non-protein coding transcripts longer than 200 nucleotides.
List of top ranking previously known and novel lincRNAs identified using GENCODE sequence data set:
indicates data missing or illegible when filed
GAS5 lincRNA is highly expressed in cell producer compared to in exosomes and microvesicles (down shuttled in both exosomes and MV).
mRNA
Coding sequencing mRNA were also identified.
The main scope of the deep sequence analysis was to identify their miRNA components in neural stem cell-derived vesicles (exosomes and microvesicles). This analysis identified a new set of known and novel miRNAs that are preferentially shuttled into both exosomes and MV. Among the identified miRNAs already included in mirbase database were hsa-miR-1246, hsa-miR-4488, hsa-miR-4492, hsa-miR-4508, hsa-miR-4516, hsa-miR-4532, and among the novel miRNAs were AC079949.1, AP000318.1, AL161626.1, AC004943.1, AL121897.1. Top ranking shuttled miRNAs, including novel ones were validated by qRT-PCR in exosomes.
The size distribution of shuttle RNA, as shown here, is mostly in the range of 20 to 200 nt and other RNA species are released by cells into the extracellular space. By deep sequencing and GENCODE sequence set analysis we found a greater complexity and diversity of non-coding RNA transcripts. We extended this analysis with detailed evaluation and this led to the discovery of preferentially up (defined as log 2 fold change 2) and down (defined as log 2 fold change ≦−2) shuttle of other non-coding RNAs in both exosomes and microvesicles. Differentially shuttled non coding RNA were found in almost all the non-coding RNA subtypes, ribosomal RNA (rRNA), small nucleolar (snoRNA), small nuclear RNA (snRNA), microRNA (miRNA), miscellaneous other RNA (mist RNA, e.g. RMRP, vault RNA, metazoa SRP, and RNY), and large intergenic non-coding RNAs (lincRNAs).
The unequal distribution of the detected RNA species over cellular and shuttle RNA, combined with increasing evidence for their role in gene regulation strongly suggest that cells specifically release these RNAs to modify the function of target cells.
Exosomes and microvesicle fractions were prepared from a CTX0E03 cell Integra culture (week 2), using differential ultracentrifugation. Exosomes and microvesicles were disrupted in modified RIPA buffer (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 1% SDS, 0.1% Triton X100, 10 mM DTT, 1× Complete protease inhibitor (Roche) and 1× PhosStop phosphatase inhibitor (Roche)) and subjected to manual shearing using a 1 mL tuberculin syringe and 25 gauge needle. Samples were re-quantitated post disruption using the Qubit fluorometer (Invitrogen). 20 μg of each sample was loaded onto a 4-12% SDS-PAGE gel (Novex, Invitrogen). The gel was excised into forty segments per lane and gel slices were processed using a robot (ProGest, DigiLab) with the following protocol:
Each gel digest was analysed by nano LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a ThermoFisher Q Exactive. Peptides were loaded on a trapping column and eluted over a 75 μm analytical column at 350 nL/min; both columns were packed with Jupiter Proteo resin (Phenomenex). The mass spectrometer was operated in data-dependent mode, with MS and MS/MS performed in the Orbitrap at 70,000 FWHM and 17,500 FWHM resolution, respectively.
2572 proteins were identified by Mass spectrometry in exosomes purified by ultracentrifugation. The exosomes were isolated from the initial stages of an Integra culture (week 2). The gene names and corresponding SWISSPROT accession numbers (in brackets) of all 2572 proteins are listed in Table 18 (in alphabetical order of gene name) and the 100 most abundant proteins are listed in Table 19, in order of decreasing abundance. The characteristic exosome markers CD9, CD81 and Alix (also known as PDCD6IP) are present in the most abundant 100 proteins.
2940 proteins were identified by Mass spectrometry in Microvesicles isolated from the initial stages of an Integra culture (week 2) and purified by centrifugation at 10,000×g. The gene names and corresponding SWISSPROT accession numbers (in brackets) of all 2940 proteins are listed in Table 20 (in alphabetical order of gene name) and the 100 most abundant proteins are listed in Table 21, in order of decreasing abundance.
CD63 (also known as MLA1 and TSPAN30), TSG101 (also known as ESCRT-I complex subunit TSG101), CD109 (also known as 150 kDa TGF-beta-1-binding protein) and thy-1 (also known as CD90) were detected in both exosomes and microvesicles.
Other tetraspanins were also detected: Tetraspanin-4, -5, -6, -9 and 14 were detected in the exosome fraction; tetraspanins-6 and -14 were detected in the microvesicles.
CD133 (also known as AC133, Prominin-1, PROM1, PROML1 and MSTP061) was detected in the exosomes but not the microvesicles.
CD53 (also known as MOX44 and TSPAN25), CD82 (also known as KAI1, SAR2, ST6 and TSPAN27), CD37 (also known as TSPAN26) and CD40 ligand (also known as CD40LG, CD40L and TNFSF5) were not detected in the exosomes or the microvesicles.
Nestin, GFAP and tubulin beta-3 chain (also known as TUBB3) were detected in both the exosome and microvesicle fractions, with tubulin beta-3 chain being particularly prominent within the top 100 proteins in both fractions. Sox2, DCX, GALC, GDNF and IDO were not detected.
Selectins and TNFRI (also known as TNF receptor 1, TNFRSF1A, TNFAR and TNFR1) were not detected.
Integrin alpha-2, -3, -4, -5, -6, -7, -V and integrin beta-1, -4 and -8 were detected in both exosome and microvesicle fractions. Integrin beta-3 and -5 were detected in the microvesicles only.
MHC Class I antigens (e.g. HLA_A1, HLA-A2 and HLA-B27) were detected in both the exosomes and microvesicles.
Cell-adhesion molecules (e.g. CADM1, CADM4, ICAM1, JAM3, L1CAM, NCAM) were detected in both the exosomes and microvesicles.
Cytoskeletal proteins (e.g. actin, vimentin, keratins, catenins, dystroglucan, neurofilament polypeptide, microtubule-associated protein, tubulin, desmoplaktin, plectin, plakophilin, septin, spectrin, talin, vinculin and zyxin) were detected in both the exosome and microvesicle fractions.
GTPases, clathrin, chaperones, heat-shock proteins (e.g. Hsp90, Hsp70), splicing factors, translation factors, annexins and growth factors (e.g. TGF-beta) were detected in both the exosomes and microvesicles.
Galectin-3, TIMP-1, thrombosponding-1, EGF receptor and CSK were detected in both the exosomes and microvesicles.
Proteins associated with biotin metabolism were only found in exosomes and proteins involved in tryptophan biosynthesis and taurine/alpha-linolenic acid metabolism were only identified in microvesicles.
A further comparison of the 197 biological processes shared by both MSC derived exosomes and NSC derived exosomes shows that NSC exosomes contain notably more processes involved in RNA degradation, the Ribosome and spliceosomes, when compared to MSC exosomes.
The above comparison indicates a number of significant differences between NSC derived exosomes and MSC derived exosomes (as characterised by Lim et al 2012). The 4 most significant biological differences identified as present in NSC exosomes compared to being very low/absent in those identified by the Lim's group, all involve proteins associated with the production, packaging, function and degradation of genetic material, i.e RNA polymerase, RNA degradation, Ribosome and spliceosomes.
NanoSight analysis was undertaken to determine the particle size and concentration of microvesicles (“mv1” to “mv6”) and exosomes (“exo1” to “exo6”) isolated from CTX0E03 cells cultured in the Integra Celline system for 1, 2, 3, 4, 5 and 6 weeks. All results are based on 5 replicate measurements.
Particle size distribution was measured using Nanoparticle Tracking Analysis (NTA). NTA detects the movement of particles in solution and relates it to particle size. Mode and median particle size was calculated for all samples. Exosome samples were analysed using the most sensitive camera settings in order to capture the smallest vesicles. Microvesicle samples were analysed using less sensitive camera settings to prevent over exposure of the larger vesicles. As a result, some smaller vesicles were not detected in the samples. Although smaller vesicles were present in the MV samples, these represent a small percentage of the sample in terms of mass.
A proportion of Exo1 was labelled with a fluorescent membrane-specific dye (CellMask™) and a combination of NTA analysis with the CellMask™ labelling confirmed that the events detected by NTA correspond to membrane vesicles (data not shown).
The results are shown in Table 22 below, and in
The exosomes show a drop in size at week six, from a mode of approximately 110 nm to approximately 70 nm, or from a median of approximately 130 nm to approximately 75 nm. The overall size range, from 70 nm to 150 nm, is consistent with the size of exosomes from other cell types, described in the art. The observed reduction in size of the exosomes to around 70 nm diameter after culturing the cells for 6 weeks correlates with the increased efficacy of exosomes isolated from CTX0E03 cells that have been cultured in a multi-compartment bioreactor for 6 weeks correlates, as reported in Example 8 and
It is also noted that the concentration of microvesicles and exosomes decreases over the six week period of
The microvesicles are, as expected, larger, with a mode diameter of approximately 150 nm-200 nm, or a median diameter of approximately 180 nm-350 nm.
Human CD34+ progenitor cells derived from cord blood were conditionally immortalized with a c-mycERTAM lentivirus. qRT-PCR confirmed the presence of c-mycERTAM mRNA in lentivirus infected human CD34+ progenitor derived from cord blood (as shown in
Western Blot analysis of exosomes from cell culture supernatants was then performed. The analysis of samples was done as specified below:
Aliquots of supernatant from cell culture contained three 1.5 ml vials isolated from CD34 and conditionally immortalised CD34 c-mycERTAM cells, stored at −80° C. until processing.
Exosomes are captured and concentrated from precleared supernatants by incubation with exosome capture immunobeads ON at 4° C.
After immunobeads recovery, remaining supernatant we as ultracentrifuged 2 hours at 120,000×g to precipitate residual exosomes (if any) and check efficiency of immunocapturing.
Total IP and UC pellets, corresponding each to 1 ml of original supernatant samples, were lysed and loaded on gel and analyzed by WB for Alix (a protein involved in the concentration and sorting of cargo proteins at the multivesicular body level, and incorporation into IL vesicles, ubiquitously expressed in all exosomes) and HSP70 (molecular chaperone facilitating the assembly of multi-protein complexes, participate in the translocation of polypeptides across cell membranes, expressed on exosomes from most epithelial like human cells).
Concentrated supernatants were too dense and thus not suitable for WB analysis.
We first applied the protocol to a control sample, supernatant derived from a human cell culture, showing that 1 mL of sample is sufficient to obtain high expression signal.
We harvested control sample supernatant from 72 hours old cell culture at 80% confluence, in a way that 1 ml of conditioned medium corresponded to 1.1×106 cells with a total yield of 8.3 μg total exosomes protein concentration/ml supernatant.
As a reference to estimate band's density we loaded three different concentrations of exosomes purified from the same human cell culture supernatant.
As expected immunoprecipitated sample (from 1 ml of supernatant) yields a signal comparable to 5-10 μg of purified exosomes. This result is shown in
CD34 cmycERTAM
Exosomes from sample supernatants were successfully concentrated using exosome capturing immunobeads (based on binding tetraspanins as common exosomal markers).
Samples loaded after Immunoprecipitation (IP) shows Alix expression corresponding to overall yield of less than 1 μg of exosomes while no clear differences can be appreciated between two samples: both CD34+ and CD34+ c-MycERTam cells produce exosomes. A different method should be used for accurate quantitative comparison. Samples appear negative for HSP70 expression (possibly due to tissue/cell type). These results are shown in
Used immunobeads have previously shown to precipitate total exosomes from cell supernatant as confirmed by absence of signal after ultracentrifugation (UC) of residual supernatants. The same was confirmed also for analyzed sample.
Embodiments of the invention comprise:
Number | Date | Country | Kind |
---|---|---|---|
1302468.2 | Feb 2013 | GB | national |
1317888.4 | Oct 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2014/050412 | 2/12/2014 | WO | 00 |