The present application is based on, and claims priority from, Japanese Application Number 2012-289182, filed Dec. 29, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure relates to a method of producing an opened fiber bundle, a method of producing a cleaning member, an apparatus which opens a fiber bundle, and a system which produces a cleaning member.
Various methods for opening a fiber bundle, particularly a bundle of crimped fibers for use in a brush part or the like of a cleaning member have been being considered.
For example, PTL 1 describes a method of opening continuous filaments, the method including transporting crimped tow by means of a plurality of rolls; and applying a resistance on at least one side of the tow by slidingly contacting at least one sliding body onto the tow at between rolls, whereby continuous filaments stacked in a thickness direction of the tow are caused to sift in a transporting direction of the tow to open the tow and to spread the continuous filaments in a width direction of the tow.
The method described in PTL 1 requires a plurality of sliding plates, which results in a larger opening apparatus, and thus it is difficult to miniaturize the apparatus for producing a cleaning member.
Thus it is an object of the present disclosure to provide a method of producing an opened fiber bundle in a more space-saving manner.
As a result of assiduous research intended to solve the problems described above, the present inventors have found a method of continuously producing an opened fiber bundle for a cleaning member, comprising the steps of (a1) providing (i) first nip rolls, (ii) second nip rolls, which are disposed downstream from the first nip rolls and have a faster peripheral velocity compared with the first nip rolls, (iii) third nip rolls, which are disposed downstream from the second nip rolls and have a slower peripheral velocity compared with the second nip rolls, and (iv) an air feeder which is disposed downstream from the second nip rolls; (a2) conveying a fiber bundle using the first nip rolls and the second nip rolls to apply a tensile force to the fiber bundle; (a3) conveying the fiber bundle using the second nip rolls and the third nip rolls to relax the fiber bundle, thereby forming a belt-shaped fiber bundle; and (a4) blowing air from the air feeder in a direction intersecting with to the conveying direction of the belt-shaped fiber bundle.
The method of producing an opened fiber bundle according to the present disclosure provide an effect of producing an opened fiber bundle in a space-saving manner.
The method of producing an opened fiber bundle, the method of producing a cleaning member, the apparatus which opens a fiber bundle, and the system which produces a cleaning member according to the present disclosure will be described in detail.
<<Method of Producing Opened Fiber Bundle and Apparatus which Opens Fiber Bundle>>
The method of continuously producing an opened fiber bundle for a cleaning member according the present disclosure (hereinafter referred to as “method of producing an opened fiber bundle”) includes the steps of:
(a1) providing (i) first nip rolls, (ii) second nip rolls, which are disposed downstream from the first nip rolls and have a faster peripheral velocity compared with the first nip rolls, (iii) third nip rolls, which are disposed downstream from the second nip rolls and have a slower peripheral velocity compared with the second nip rolls, and (iv) an air feeder which is disposed downstream from the second nip rolls (hereinafter referred to as “step (a1)”);
(a2) conveying a fiber bundle using the first nip rolls and the second nip rolls to apply a tensile force to the fiber bundle (hereinafter referred to as “step (a2)”);
(a3) conveying the fiber bundle using the second nip rolls and the third nip rolls to relax the fiber bundle, thereby forming a belt-shaped fiber bundle (hereinafter referred to as “step (a3)”); and (a4) blowing air from the air feeder in a direction intersecting with the conveying direction (machine direction) of the belt-shaped fiber bundle (hereinafter referred to as “step (a4)”).
The apparatus which opens a fiber bundle for a cleaning member according to the present disclosure (hereinafter referred to as “apparatus which opens a fiber bundle”) includes:
first nip rolls,
second nip rolls, which are disposed downstream from the first nip rolls, have a faster peripheral velocity compared with the first nip rolls, and, together with the first nip rolls, convey the fiber bundle to apply a tensile force to the fiber bundle,
third nip rolls, which are disposed downstream from the second nip rolls, have a slower peripheral velocity compared with the second nip rolls, and, together with the second nip rolls, convey the fiber bundle to relax the fiber bundle, thereby forming a belt-shaped fiber bundle, and
an air feeder which is disposed downstream from the second nip rolls and blows air in a direction intersecting with the conveying direction of the belt-shaped fiber bundle.
The present disclosure will be described along with the method of producing an opened fiber bundle according to the present disclosure and with reference to
[Step (a1)]
[Step (a2)]
As illustrated in
The second nip rolls 106 are configured to have the peripheral velocity V2 faster than the peripheral velocity V1 of the first nip rolls 102. Such configuration allows a tensile force in the machine direction to be applied to the first fiber bundle F1 between the first nip rolls 102 and the second nip rolls 106. As a result, the first fiber bundle F1 is extended.
If the first fiber bundle F1 includes crimped fibers, the crimped fibers before the tensile force is applied are approximately uniformly crimped due to its production process, and thus the crimped fibers are less likely to unravel. Application of a tensile force to such fibers allows the crimps of the fibers to be temporarily extended, thereby reducing the crimp degree.
The plurality of tension rolls 104 are preferably formed of, for example, solid steel so that the rolls have a high mass. As substantial force is required to rotate the tension rolls 104, the rate of movement of the first fiber bundle F1 conveyed from the first nip rolls 102 to the second nip rolls 106 can be gradually increased, and thus the tensile force applied to the first fiber bundle F1 can be gradually increased.
The plurality of tension rolls 104 are disposed so that the distance between the first nip rolls 102 and the second nip rolls 106 is increased, in order to gradually increase the tensile force applied to the first fiber bundle F1.
A method of producing an opened fiber bundle and an apparatus which opens a fiber bundle according to another embodiment of the present disclosure do not use the tension rolls.
[Step (a3)]
The first fiber bundle F1 runs through the second nip rolls 106 and then reach the third nip rolls 114 via the air feeder 108 and an oil applicator 110. The third nip rolls 114 are configured to have the peripheral velocity V3 slower than the peripheral velocity V2 of the second nip rolls 106. Thus, after the first fiber bundle F1 runs through the second nip rolls 106, the fibers of the first fiber bundle F1 are opened between the second nip rolls 106 and the third nip rolls 114 because the tensile force is relieved, and the first fiber bundle F1 is further widened, thereby forming a first belt-shaped fiber bundle F′1.
The air feeder 108 will be described in “Step (a4)” described below, while the oil applicator 110 will be described in “Other Steps” described below.
For the method of producing an opened fiber bundle, the method of producing a cleaning member, the apparatus which opens a fiber bundle, and the system which produces a cleaning member, “width direction”, as used herein, means a direction which is orthogonal to the machine direction and is horizontal, unless otherwise indicated.
When the first fiber bundle F1 includes crimped fibers, relief of the tensile force allows the crimp of the crimped fibers to be recovered, while the crimps of the adjacent fibers are misaligned, which allows the fiber bundle to be opened.
[Step (a4)]
As illustrated in
In an embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the step (a4) is performed after the step (a3) completes. In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the step (a4) at least partially overlaps with the step (a3). For example, the step (a4) is performed during the step (a3).
In
In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the air is blown in the direction of the thickness of the first belt-shaped fiber bundle. In still another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, air is blown in the direction inclined upstream in the machine direction of the fiber bundle.
In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, air is blown up onto the belt-shaped fiber bundle through the air outlet, which is disposed below, preferably vertically below the belt-shaped fiber bundle. Blowing up air from below the belt-shaped fiber bundle allows the belt-shaped fiber bundle to be floated, and thus the belt-shaped fiber bundle can be further widened.
In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the air is blown up onto the belt-shaped fiber bundle through the air outlet which is disposed below the belt-shaped fiber bundle, and a float control plate is disposed above the air outlet so that the belt-shaped fiber bundle is sandwiched between the plate and the air outlet to prevent the belt-shaped fiber bundle from floating.
In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, an air feeder is disposed downstream from the third nip rolls.
[Other Steps]
An embodiment of the method of producing an opened fiber bundle according to the present disclosure further includes a step of applying dust adsorbent oil to a fiber bundle. The step may be performed after the step (a2) completes or may at least partially overlap with the step (a2).
An embodiment of the apparatus which opens a fiber bundle according to the present disclosure includes an oil applicator.
In
In another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the oil applicator is disposed at a location other than between the second nip rolls and the third nip rolls such as, a location upstream from the second nip rolls or a location downstream from the third nip rolls.
Still another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure does not include the step of applying dust adsorbent oil and/or the oil applicator.
The fiber bundle F1 is conveyed with the fiber bundle F1 pushed onto the upstream portion 117 and the edge 116 of the opening facilitator 115. Conveying of the fiber bundle F1 with the fiber bundle F1 pushed onto the upstream portion 117 and the edge 116 of the opening facilitator 115 allows the fiber bundle F1 to be widen in the width direction of the fiber bundle F1, thereby causing the machine direction of the fibers which constitute the fiber bundle F1 to be strained in the width direction (in the width direction of the fiber bundle).
As described above, the fibers of the fiber bundle F1 are strained in the directions of both of the thickness and the width on the opening facilitator 115. Thus the fibers are more readily opened, compared with the method described in PTL 1, the method straining fibers only in the direction of the thickness.
In the method of producing an opened fiber bundle and/or the apparatus which opens a fiber bundle according to the present disclosure, the fiber bundle changes its conveying direction, at the edge of the opening facilitator, to a direction toward the first surface preferably by an angle of 30 to 150°, and more preferably by an angle of 60 to 120°. When the angle is less than 30°, the edge has a high curvature, and thus the fibers tend to break, and a failure tends to occur due to entanglement in a roll or the like. On the other hand, when the angle is more than 150°, the ability to facilitate opening tends to be reduced.
In the method of producing an opened fiber bundle and/or the apparatus which opens a fiber bundle according to the present disclosure, the edge of the opening facilitator has preferably an angle of 30 to 150° and more preferably an angle of 60 to 120°, in order to correspond to the change in the conveying direction of the fiber bundle.
Because the opening facilitator 115 includes the upstream portion 117 adjacently located upstream from the edge 116, a large localized force, specifically a large localized force from the edge 116 is less likely to be applied to the fibers which constitute the fiber bundle F1, and thus the fibers are less likely to break.
The opening facilitator 115 illustrated in
In another embodiment of the method of producing an opened fiber bundle and/or the apparatus which opens a fiber bundle according to the present disclosure, after the fiber bundle runs through the edge, the fiber bundle is conveyed with the fiber bundle pushed onto the downstream portion 118. Conveying of the fiber bundle with the fiber bundle pushed allows the fiber bundle to be more readily opened.
Although the edge 116 of the opening facilitator 115 illustrated in
In still another embodiment of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the fiber bundle does not run along the downstream portion. In other words, the fiber bundle is conveyed in a direction other than along the downstream portion.
The upstream portion 117 and the downstream portion 118 of the opening facilitator 115 illustrated in
The opening facilitator 115 illustrated in
In some other embodiments of the method of producing an opened fiber bundle and the apparatus which opens a fiber bundle according to the present disclosure, the opening facilitator has a polygonal cross direction section such as, a trigonal, tetragonal, pentagonal, or hexagonal cross direction section.
Although the opening facilitator 115 illustrated in
Especially, the basis weight of the fibers of the belt-shaped fiber bundle F′1 conveyed from the second nip rolls 102 tends to be larger closer to the center of the width. Thus widening of the fibers in the width direction allows the basis weight of the belt-shaped fiber bundle F′1 to be uniformed.
In addition, use of the widening member allows shortening of the operation cycle of the apparatus which opens a fiber bundle.
Although the widening member 201 is disposed between the second nip rolls 106 and the air feeder 108 in
<<Method of Producing Cleaning Member and System which Produces Cleaning Member>>
The method of producing a cleaning member according to the present disclosure includes the steps of:
(A) continuously producing an opened fiber bundle (hereinafter referred to as “step (A)”),
(B) stacking the opened fiber bundle with one or more other materials to form a multilayer web and fixing the respective materials of the multilayer web to each other (hereinafter referred to as “step (B)”), and
(C) cutting the fixed multilayer web into individual cleaning members (hereinafter referred to as “step (C)).
The system which produces a cleaning member according to the present disclosure includes:
an apparatus which opens a fiber bundle,
one or more apparatuses which stack the opened fiber bundle with one or more other materials to form a multilayer web and fix the respective materials of the multilayer web to each other, and
one or more apparatuses which cut the fixed multilayer web into individual cleaning members.
By way of example, the cleaning member illustrated in
The cleaning member 1 illustrated in
The upper portion in
The cleaning member 1 illustrated in
As illustrated in
Dust adsorbent oil which enhances adsorption of dust, dirt, and the like and which includes, for example, liquid paraffin as a major component is applied to the first, second, third, and fourth fibrous members 3, 4, 5, and 6 of the brush part 2.
The first, second, third, and fourth fibrous member 3, 4, 5, and 6 of the brush part 2 may be formed by cutting an opened fiber bundle such as, an opened tow.
As used herein, “tow” means a bundle of a multiplicity of filaments, as described in JIS L 0204-3: 1998, 3.1.24.
The fiber bundle as described above includes, for example, a fiber bundle which consists of thermoplastic fibers and a fiber bundle which includes thermoplastic fibers.
The fiber materials which constitute the fiber bundle as described above include, for example, polyethylene, polypropylene, polyethylene terephthalate, nylon, rayon, and the like.
The fibers which constitute the fiber bundle as described above include, for example, monofibers and bicomponent fibers such as, sheath-core bicomponent fibers and side-by-side bicomponent fibers.
The bicomponent fibers as described above are preferably sheath-core bicomponent fibers, and more preferably sheath-core bicomponent fibers which have a core melting point higher than a sheath melting point, due to its thermal bondability.
The sheath-core bicomponent fibers as described above are more preferably sheath-core bicomponent fibers which have a core of polypropylene or polyethylene terephthalate and a sheath of polyethylene, and still more preferably sheath-core bicomponent fibers which have a core of polyethylene terephthalate and a sheath of polyethylene.
The fibers which constitute the fiber bundle have preferably a fineness of 1 to 50 dtex, and more preferably a fineness of 2 to 10 dtex. The fiber bundle may include a plurality of different fibers which have a same fineness or may include a single type or a plurality of different fibers which have a different fineness.
The fiber bundle as described above may be a bundle of slit fibers, which are formed by slitting and drawing a film, split fibers, which are formed by splitting an elongated film into network segments, or the like.
In an embodiment of the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure, the fiber bundle includes or consists of crimped fibers. Because the fiber bundle includes crimped fibers, the fiber bundle can be bulked, and the crimped areas in the brush part formed of the fiber bundle can more easily adsorb dust and dirt.
In another embodiment of the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure, the fiber bundle does not include crimped fibers.
As described below, the sheet with slits 7 is formed of a nonwoven fabric which consists of or includes thermoplastic fibers (thermally bondable fibers), as with the substrate sheet 12 and the holding sheet 13. And the sheet with slits 7 is formed in a rectangular shape having approximately the same width and length as the substrate sheet 12. The sheet with slits 7 is provided with jagged slits (not illustrated) at predetermined intervals over the entire length of the sheet with slits 7. The slits allow jagged reed-shaped parts (not illustrated) to be formed on both width edges of the cleaning member.
As illustrated in
As illustrated in
For the cleaning member 1 illustrated in
The substrate sheet 12 and the holding sheet 13 are formed of a nonwoven fabric which consists of or includes thermoplastic fibers (thermally bondable fibers). The thermoplastic fibers include, for example, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, bicomponent fibers of polyethylene and polyethylene terephthalate such as, sheath-core bicomponent fibers which have a core of polyethylene terephthalate and a sheath of polyethylene and bicomponent fibers of polyethylene and polypropylene, and the like. The nonwoven fabric includes a thermal-bonded nonwoven fabric, a spun-bonded nonwoven fabric, a spun-laced nonwoven fabric, and the like.
In another embodiment, the substrate sheet and the holding sheet are formed of a thermoplastic resin film such as, a polyethylene film and a polypropylene film. In still another embodiment, the substrate sheet and the holding sheet are formed of a laminate sheet of a nonwoven fabric and a resin film.
The substrate sheet 12 and the holding sheet 13 are melt bonded to the entire layers of the brush part 2 (the first, second, third, and fourth fibrous members 3, 4, 5, and 6, and the sheet with slits 7) by the first melt bonding apparatus as described below, which is numbered 158 in
Additionally, the substrate sheet 12 and the holding sheet 13 are melt bonded to one of the layers of the brush part 2 (the first fibrous member 3), on the opposing sides of the first melt bonded part 8, by the second melt bonding apparatus as described below, which is numbered 134 in
The substrate sheet 12 and the holding sheet 13 are melt bonded to the entire layers of the brush part 2 (the first, second, third, and fourth fibrous members 3, 4, 5, and 6 and the sheet with slits 7) by the first melt bonded part 8, and the substrate sheet 12 and the holding sheet 13 are also melt bonded to the first fibrous member 3 of the brush part 2 by the two second melt bonded parts 11. This allows a pair of the receiving parts 14 to be formed between the substrate sheets 12 and the holding sheet 13, the receiving parts being defined by the first melt bonded part 8 and one of the two second melt bonded parts 11, extending in the longitudinal direction of the substrate sheet 12 and the holding sheet 13, and being a tube open at opposing longitudinal sides. Thus, the insert part 16 of the handle 15 can be inserted into the receiving parts 14.
The substrate sheet 12 and the holding sheet 13 are melt bonded to the first fibrous member 3 of the brush part 2 along the longitudinal centerline of the cleaning member by the second melt bonding apparatus as described below, which is numbered 134 in
Each of the two second melt bonded parts 11 is disposed as a dotted line in the longitudinal direction. A circular arc projection 16a of the respective insert part 16 of the handle 15 is locked into a non-bonded area in the second melt bonded parts 11 to prevent removal of the respective insert part 16 of the handle 15 from the respective receiving part 14.
As illustrated in
In another embodiment, the substrate sheet 12 and the holding sheet 13 include no jagged slits 20a, and thus the cleaning member includes no reed-shaped parts 20.
The handle 15 is formed of plastic or the like, and, as illustrated in
The respective insert parts 16 of the handle 15 are inserted into the respective receiving parts 14 of the cleaning member 1, and projections 16a are locked into a non-bonded area in the second melt bonded parts 11 to attach the cleaning member 1 to the handle 15.
A user holds the holder 17 of the handle 15, contacts the brush part 2 with a surface to be cleaned, and moves the cleaning member in a desired direction so that the brush part 2 adsorbs the dust, dirt, and the like on the surface, for cleaning the surface.
The cleaning member illustrated in
In addition, the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure can be used to produce a cleaning member as described in, for example, U.S. Pat. No. 6,554,937B, US2002/148061A, US2003/0000934A, US2004/0149095A, US2005/0005381A, US2005/039285A, US2005/097695A, US2005/097696A, US2005/132521A, US2005/177967A, US2005/188490A, US2005/193513A, US2005/193514A, US2005/198760A, US2006/016035A, US2006/016036A, US2006/101601A, US2009/165230A and US2009/172904A, as well as US2009/049633A, US2009/255078A and US2010/154156A, the entire disclosure of which is incorporated herein by reference.
[Step (A)]
The description of the step (A) is omitted. For the details, see “Method of Producing Opened Fiber Bundle and Apparatus which opens Fiber Bundle” described above.
[Step (B)]
In the step (B), the opened fiber bundle is stacked with one or more other materials to form a multilayer web, and the respective materials of the multilayer web are fixed to each other. The one or more other materials which constitute the multilayer web include one or more opened fiber bundles, nonwoven fabrics, and the like. The method of fixing as described above includes use of adhesive such as, hot-melt adhesive, sealing such as, heat sealing and ultrasonic sealing, and the like.
Although the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure is not intended to include a multilayer web of a particular structure, one of the embodiments will be described with reference to
In
On the other hand, a belt-shaped nonwoven fabric 121, which is to form the substrate sheet 12, is continuously wound off from a nonwoven fabric roll 120. The belt-shaped nonwoven fabric 121 is intermittently conveyed by running the belt-shaped nonwoven fabric 121 through a dancer roller 124, which includes a plurality of rolls arranged in upper and lower rows, the rolls in the lower row oscillating up and down. As used herein, “intermittently conveying” refers to repeating a cycle of conveying materials a certain distance (for example, a length corresponding to the width length of the cleaning member) and then halting conveying for a certain period. Intermittent conveying of materials allows time to be gained for melt bonding the components of the multilayer web as described below.
Similarly, a belt-shaped nonwoven fabric 123, which is to form the holding sheet 13, is continuously wound off from a nonwoven fabric roll 122. The belt-shaped nonwoven fabric 123 is intermittently conveyed by running the belt-shaped nonwoven fabric 123 through a dancer roller 126, which includes a plurality of rolls arranged in upper and lower rows, the rolls in the lower row oscillating up and down.
The belt-shaped nonwoven fabric 123 is stacked onto the belt-shaped nonwoven fabric 121 at merging point 128 to form a multilayer web S1 of the belt-shaped nonwoven fabric 121 and the belt-shaped nonwoven fabric 123. The multilayer web S1 runs through a gather cutter 130, which includes serrated blades (not illustrated) formed at spaced apart locations on its circumferential surface, to make slits into the multilayer web S1. The slits in the multilayer web S1 correspond to the slits 20a in the substrate sheet 12 and the holding sheet 13 illustrated in
Then the first belt-shaped fiber bundle F′1 is stacked onto the multilayer sheet S1 at the merging point 132 to form a multilayer web S2 of the first belt-shaped fiber bundle F′1 and the multilayer sheet S1.
The zone between the third nip rolls 114 and the merging point 132 is configured to convey the first belt-shaped fiber bundle F′1 with the first belt-shaped fiber bundle F′1 flexed to some extent. The flexing brings the similar result of disposing a dancer roller between the third nip rolls 114 and the merging point 132.
The substrate sheet 12, the holding sheet 13, and the first fiber bundle F1, which constitute the multilayer web S2, are melt bonded by a second melt bonding apparatus 134 to form the two second melt bonded parts 11 (see
Next, in the same manner for the first fiber bundle F1, an opened second fiber bundle F2 (a second belt-shaped fiber bundle F′2) is stacked onto the multilayer web S2 at a merging point 136, and a third fiber bundle F3 (a third belt-shaped fiber bundle F′3) is stacked onto the resulting web at a merging point 138. Then a fourth fiber bundle F4 (a fourth belt-shaped fiber bundle F′4) is stacked onto the resulting web at a merging point 140 to form a multilayer web S3.
Next, a belt-shaped nonwoven fabric 151, which is to form the sheet with slits 7, is continuously wound off from a nonwoven fabric roll 150. The belt-shaped nonwoven fabric 151 is intermittently conveyed by running the belt-shaped nonwoven fabric 151 through a dancer roller 152, and then runs through a gather roll 154. The gather roll 154 includes serrated blades (not illustrated) continuously formed on its circumferential surface, thereby making jagged slits (not illustrated) into the belt-shaped nonwoven fabric 151 running through the gather roll 154.
The sheet with slits 7 formed of the belt-shaped nonwoven fabric 151 is stacked onto the multilayer web S3 at a merging point 156 to form a multilayer web S4 of the sheet with slits 7 and the multilayer web S3.
Then the multilayer web S4 is melt bonded in the thickness direction using a first melt bonding apparatus 158 to form the first melt bonded part 8 (see
[Step (C)]
As the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure is not intended to include a multilayer web of a particular structure, the step (C) is not particularly limited, so long as the step can cut the fixed multilayer web into individual cleaning members.
After the multilayer web S4 runs through the first melt bonding apparatus 158, the web S4 is cut by a cutter unit 160 to produce the cleaning member 1.
Although the system which produces a cleaning member 100 illustrated in
Still another embodiment of the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure does not include the gather roll and the step performed upstream from the roll, and the resulting cleaning members include a fibrous member formed as a cleaning surface.
Although the system which produces a cleaning member 100 illustrated in
In another embodiment of the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure, in order to facilitate insertion of the insert part into the receiving part, the substrate sheet and the holding sheet are preferably configured to have a larger longitudinal dimension compared with the fibrous members. In still another embodiment of the method of producing a cleaning member and the system which produces a cleaning member according to the present disclosure, the sheet with slits is not stacked. In still another embodiment, the sheet with slits 7 is stacked onto the both surfaces of the cleaning member 1.
The present disclosure relates to the following J1 to J14:
[J1]
A method of continuously producing an opened fiber bundle for a cleaning member, comprising the steps of:
(a1) providing (i) first nip rolls, (ii) second nip rolls, which are disposed downstream from the first nip rolls and have a faster peripheral velocity compared with the first nip rolls, (iii) third nip rolls, which are disposed downstream from the second nip rolls and have a slower peripheral velocity compared with the second nip rolls, and (iv) an air feeder which is disposed downstream from the second nip rolls;
(a2) conveying the fiber bundle using the first nip rolls and the second nip rolls to apply a tensile force to the fiber bundle;
(a3) conveying the fiber bundle using the second nip rolls and the third nip rolls to relax the fiber bundle, thereby forming a belt-shaped fiber bundle; and
(a4) blowing air from the air feeder in a direction intersecting with orthogonal to the conveying direction of the belt-shaped fiber bundle.
[J2]
The method according to J1, wherein an opening facilitator which comprises an edge extending orthogonal to the machine direction, an upstream portion adjacently located upstream from the edge, and a downstream portion adjacently located downstream from the edge is disposed between the first nip rolls and the second nip rolls, and the fiber bundle is conveyed with the fiber bundle pushed onto the upstream portion and the edge of the opening facilitator.
[J3]
The method according to J2, wherein after the fiber bundle runs through the edge, the fiber bundle is conveyed along the downstream portion of the opening facilitator.
[J4]
The method according to J2 or J3, wherein the opening facilitator is static.
[J5]
The method according to any one of J1 to J4, wherein a widening member which widens the belt-shaped fiber bundle in the width direction, is disposed downstream from the second nip rolls, and the belt-shaped fiber bundle is contacted with the widening member.
[J6]
The method according to J5, wherein the widening member comprises a curved portion which is downwardly curved toward the thickness direction of the belt-shaped fiber bundle, and the belt-shaped fiber bundle is conveyed while contacting with the curved portion.
[J7]
A method of producing a cleaning member, comprising the steps of:
(A) continuously producing an opened fiber bundle using the method according to any one of J1 to J6;
(B) stacking the opened fiber bundle with one or more other materials to form a multilayer web and fixing the respective materials of the multilayer web to each other; and
(C) cutting the fixed multilayer web into individual cleaning members.
[J8]
An apparatus which opens a fiber bundle for a cleaning member, comprising:
first nip rolls
second nip rolls, which are disposed downstream from the first nip rolls, have a faster peripheral velocity compared with the first nip rolls, and, together with the first nip rolls, convey the fiber bundle to apply a tensile force to the fiber bundle,
third nip rolls, which are disposed downstream from the second nip rolls, have a slower peripheral velocity compared with the second nip rolls, and, together with the second nip rolls, convey the fiber bundle to relax the fiber bundle, thereby forming a belt-shaped fiber bundle, and
an air feeder which is disposed downstream from the second nip rolls and blows air in a direction intersecting with the conveying direction of the belt-shaped fiber bundle.
[J9]
The apparatus according to J8, the apparatus further comprising an opening facilitator which comprises an edge extending orthogonal to the machine direction, an upstream portion adjacently located upstream from the edge, and a downstream portion adjacently located downstream from the edge and is disposed between the first nip rolls and the second nip rolls so that the fiber bundle is conveyed with the fiber bundle pushed onto the upstream portion and the edge.
[J10]
The apparatus according to J9, wherein the opening facilitator is disposed so that the fiber bundle is conveyed along the downstream portion.
[J11]
The apparatus according to J9 or J10, wherein the opening facilitator is static.
[J12]
The apparatus according to any one of J9 to J11, the apparatus comprising, downstream from the second nip rolls, a widening member which widens the belt-shaped fiber bundle in the width direction to contact with the belt-shaped fiber bundle.
[J13]
The apparatus according to J12, wherein the widening member comprises a curved portion which is downwardly curved toward the thickness direction of the belt-shaped fiber bundle to convey the belt-shaped fiber bundle while contacting with the curved portion.
[J14]
A system which produces a cleaning member, comprising:
the apparatus which opens a fiber bundle according to any one of J8 to J13;
one or more apparatuses which stack the opened fiber bundle with one or more other materials to form a multilayer web and fix the respective materials of the multilayer web to each other; and
one or more apparatuses which cut the fixed multilayer web into individual cleaning members.
The present application claims the benefit of the following patent applications, and the entire disclosure of which is incorporated herein by reference:
(1) JP Patent Application No. 2012-289181 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(2) JP Patent Application No. 2012-289182 filed on Dec. 29, 2012,
(3) JP Patent Application No. 2012-289174 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(4) JP Patent Application No. 2012-289189 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(5) JP Patent Application No. 2012-289175 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(6) JP Patent Application No. 2012-289188 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(7) JP Patent Application No. 2012-289179 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(8) JP Patent Application No. 2012-289177 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(9) JP Patent Application No. 2012-289184 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(10) JP Patent Application No. 2012-289178 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(11) JP Patent Application No. 2012-289176 filed on Dec. 29, 2012, and US patent application claiming priority thereof,
(12) JP Patent Application No. 2013-002855 filed on Jan. 10, 2013, and US patent application claiming priority thereof, as well as
(13) JP Patent Application No. 2013-002857 filed on Jan. 10, 2013, and US patent application claiming priority thereof.
Number | Date | Country | Kind |
---|---|---|---|
2012-289182 | Dec 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
345644 | Moseman | Jul 1886 | A |
470898 | Reiffel | Mar 1892 | A |
1847065 | Munch | Feb 1932 | A |
1989048 | Winter et al. | Jan 1935 | A |
2733064 | Martin | Jan 1956 | A |
2737688 | Jackson | Mar 1956 | A |
2738973 | Koch | Mar 1956 | A |
2828752 | Jackson | Apr 1958 | A |
2836418 | Blattner et al. | May 1958 | A |
2904335 | Rabinow | Sep 1959 | A |
2926392 | Jackson | Mar 1960 | A |
2960023 | Greiner et al. | Nov 1960 | A |
3017309 | Crawford | Jan 1962 | A |
3022999 | Mead | Feb 1962 | A |
3095343 | Berger | Jun 1963 | A |
3362707 | Lauren | Jan 1968 | A |
3370848 | Bartlett | Feb 1968 | A |
3376609 | Kalwaites | Apr 1968 | A |
3417560 | Watson | Dec 1968 | A |
3566451 | Welgand | Mar 1971 | A |
3592371 | Wyatt et al. | Jul 1971 | A |
3608024 | Yazawa et al. | Sep 1971 | A |
3724037 | Nicholson et al. | Apr 1973 | A |
3737950 | Bolliand | Jun 1973 | A |
3827113 | Vidal et al. | Aug 1974 | A |
3840941 | Neveu | Oct 1974 | A |
3860127 | Fassman | Jan 1975 | A |
3907128 | Cathers | Sep 1975 | A |
3912258 | Martin | Oct 1975 | A |
3996196 | Simeth | Dec 1976 | A |
4075375 | Komatsu | Feb 1978 | A |
4190241 | Krueger | Feb 1980 | A |
4319744 | Nagel et al. | Mar 1982 | A |
4385757 | Muller | May 1983 | A |
4514128 | Hedrick | Apr 1985 | A |
4640161 | Kurk | Feb 1987 | A |
4664368 | Bouwens et al. | May 1987 | A |
4817483 | Armbruster | Apr 1989 | A |
4961805 | Siebert | Oct 1990 | A |
5060351 | Street | Oct 1991 | A |
5060929 | Kohlmann | Oct 1991 | A |
5168786 | Huggins et al. | Dec 1992 | A |
5230764 | Moll | Jul 1993 | A |
5241731 | Stuart | Sep 1993 | A |
5243890 | Ober | Sep 1993 | A |
5253762 | Duncan | Oct 1993 | A |
5332210 | Silverberg et al. | Jul 1994 | A |
5355567 | Holliday | Oct 1994 | A |
5417912 | Merry | May 1995 | A |
5431530 | Kobayashi et al. | Jul 1995 | A |
5435541 | Fornay et al. | Jul 1995 | A |
5516091 | Nakayama | May 1996 | A |
5535576 | Walintschek | Jul 1996 | A |
5779432 | Pena | Jul 1998 | A |
6286403 | Rosenthal et al. | Sep 2001 | B1 |
6491492 | Cook | Dec 2002 | B1 |
6494450 | Tsurumaki | Dec 2002 | B2 |
6554937 | Kenmochi et al. | Apr 2003 | B1 |
6572101 | Kaya et al. | Jun 2003 | B2 |
6585842 | Bompard et al. | Jul 2003 | B1 |
6743392 | Tanaka et al. | Jun 2004 | B2 |
6780264 | Nakata et al. | Aug 2004 | B2 |
7003856 | Hayashi et al. | Feb 2006 | B2 |
7156011 | Morris et al. | Jan 2007 | B2 |
7228587 | Tanaka et al. | Jun 2007 | B2 |
7300053 | Asano | Nov 2007 | B2 |
7339675 | Nishida et al. | Mar 2008 | B2 |
7536761 | Nestler et al. | May 2009 | B2 |
7571524 | Kawabe et al. | Aug 2009 | B2 |
8100038 | Sandahl | Jan 2012 | B2 |
8201429 | Matsunaga | Jun 2012 | B1 |
8357415 | Furusawa | Jan 2013 | B2 |
8448335 | Lundgren et al. | May 2013 | B2 |
20020026699 | Hayashi et al. | Mar 2002 | A1 |
20020148061 | Tanaka et al. | Oct 2002 | A1 |
20030000934 | Tanaka et al. | Jan 2003 | A1 |
20030127177 | Lane | Jul 2003 | A1 |
20030172506 | Guirman et al. | Sep 2003 | A1 |
20040149095 | Miyatake et al. | Aug 2004 | A1 |
20050005381 | Tanaka et al. | Jan 2005 | A1 |
20050039285 | Tanaka et al. | Feb 2005 | A1 |
20050066496 | Ames et al. | Mar 2005 | A1 |
20050097695 | Tanaka et al. | May 2005 | A1 |
20050097696 | Tanaka et al. | May 2005 | A1 |
20050132521 | Tanaka et al. | Jun 2005 | A1 |
20050139513 | Miller | Jun 2005 | A1 |
20050177967 | Tanaka et al. | Aug 2005 | A1 |
20050188490 | Tanaka et al. | Sep 2005 | A1 |
20050193514 | Tanaka et al. | Sep 2005 | A1 |
20050198760 | Tanaka et al. | Sep 2005 | A1 |
20050258589 | Michler et al. | Nov 2005 | A1 |
20060005675 | Scheffer et al. | Jan 2006 | A1 |
20060016035 | Tanaka et al. | Jan 2006 | A1 |
20060016036 | Tanaka et al. | Jan 2006 | A1 |
20060048325 | Tsuchiya | Mar 2006 | A1 |
20060051434 | Tsuchiya | Mar 2006 | A1 |
20060101601 | Fujiwara et al. | May 2006 | A1 |
20060156876 | Sussmeier et al. | Jul 2006 | A1 |
20060179989 | James et al. | Aug 2006 | A1 |
20070068353 | Piucci et al. | Mar 2007 | A1 |
20070101564 | Nestler et al. | May 2007 | A1 |
20080047087 | Levy et al. | Feb 2008 | A1 |
20090049633 | Takabayashi et al. | Feb 2009 | A1 |
20090165230 | Tsuchiya et al. | Jul 2009 | A1 |
20090172904 | Tsuchiya et al. | Jul 2009 | A1 |
20090196538 | Liou et al. | Aug 2009 | A1 |
20090255078 | Wada et al. | Oct 2009 | A1 |
20100000382 | Maddalon | Jan 2010 | A1 |
20100015383 | Yamada | Jan 2010 | A1 |
20100022978 | Kasai et al. | Jan 2010 | A1 |
20100058907 | Kern | Mar 2010 | A1 |
20100122613 | Sandahl | May 2010 | A1 |
20100154156 | Takabayashi et al. | Jun 2010 | A1 |
20100180745 | Hall | Jul 2010 | A1 |
20110088189 | Wada et al. | Apr 2011 | A1 |
20110138942 | Murata | Jun 2011 | A1 |
20110296965 | Manek-Honninger et al. | Dec 2011 | A1 |
20120102678 | Junker et al. | May 2012 | A1 |
20120132046 | Supe-Dienes | May 2012 | A1 |
20120135227 | Kawabe | May 2012 | A1 |
20120167736 | Yokoe | Jul 2012 | A1 |
20140182429 | Saito et al. | Jul 2014 | A1 |
20140187406 | Matsumoto et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
0546580 | Jun 1993 | EP |
2009152 | Dec 2008 | EP |
4535382 | Nov 1970 | JP |
4889917 | Oct 1973 | JP |
53-45414 | Apr 1978 | JP |
56-169873 | Dec 1981 | JP |
61-105364 | Jul 1986 | JP |
333222 | Feb 1991 | JP |
4-289100 | Oct 1992 | JP |
5-20896 | Mar 1993 | JP |
5245090 | Sep 1993 | JP |
5-279950 | Oct 1993 | JP |
5-316909 | Dec 1993 | JP |
6-297386 | Oct 1994 | JP |
8-49126 | Feb 1996 | JP |
8-259274 | Oct 1996 | JP |
9-111644 | Apr 1997 | JP |
10110346 | Apr 1998 | JP |
10-266012 | Oct 1998 | JP |
11323718 | Nov 1999 | JP |
2000296083 | Oct 2000 | JP |
2001-246595 | Sep 2001 | JP |
2001-288639 | Oct 2001 | JP |
2002-66991 | Mar 2002 | JP |
2002069781 | Mar 2002 | JP |
2003265390 | Sep 2003 | JP |
2003268663 | Sep 2003 | JP |
2003-293236 | Oct 2003 | JP |
2004-238615 | Aug 2004 | JP |
2004223692 | Aug 2004 | JP |
2005040641 | Feb 2005 | JP |
2005046645 | Feb 2005 | JP |
2005095665 | Apr 2005 | JP |
2005111284 | Apr 2005 | JP |
2005137929 | Jun 2005 | JP |
2005137930 | Jun 2005 | JP |
2005137931 | Jun 2005 | JP |
2005144198 | Jun 2005 | JP |
2005169148 | Jun 2005 | JP |
2005199077 | Jul 2005 | JP |
2005230573 | Sep 2005 | JP |
2005237975 | Sep 2005 | JP |
2006015164 | Jan 2006 | JP |
2006034990 | Feb 2006 | JP |
2006-152485 | Jun 2006 | JP |
2006-166931 | Jun 2006 | JP |
2006141483 | Jun 2006 | JP |
2006152485 | Jun 2006 | JP |
2006-265762 | Oct 2006 | JP |
2007002390 | Jan 2007 | JP |
2007029135 | Feb 2007 | JP |
2007029136 | Feb 2007 | JP |
2007-126810 | May 2007 | JP |
2007111297 | May 2007 | JP |
2007135666 | Jun 2007 | JP |
2007135774 | Jun 2007 | JP |
2007136156 | Jun 2007 | JP |
2007159612 | Jun 2007 | JP |
2007209460 | Aug 2007 | JP |
2007209461 | Aug 2007 | JP |
2007236690 | Sep 2007 | JP |
2007-283086 | Nov 2007 | JP |
2008006260 | Jan 2008 | JP |
2008119171 | May 2008 | JP |
2008-125603 | Jun 2008 | JP |
2009-153914 | Jul 2009 | JP |
2009-254536 | Nov 2009 | JP |
2010-24575 | Feb 2010 | JP |
2011-062802 | Mar 2011 | JP |
4675218 | Apr 2011 | JP |
2011084313 | Apr 2011 | JP |
2011-94701 | May 2011 | JP |
4738311 | Aug 2011 | JP |
4878988 | Feb 2012 | JP |
2012-115783 | May 2012 | JP |
20110137660 | Dec 2011 | KR |
2007023965 | Mar 2007 | WO |
2008099733 | Aug 2008 | WO |
Entry |
---|
Office Action mailed Apr. 29, 2015, corresponding to U.S. Appl. No. 13/749,717. |
Office Action mailed Apr. 27, 2015, corresponding to U.S. Appl. No. 13/749,726. |
International Search Report Mailed Mar. 25, 2014, corresponds to International Application No. PCT/JP2013/085172. |
International Search Report Mailed Mar. 18, 2014, corresponds to International Application No. PCT/JP2013/085177. |
International Search Report Mailed Apr. 1, 2014, corresponds to International Application No. PCT/JP2013/085233. |
International Search Report and Written Opinion Mailed Feb. 18, 2014, corresponds to International Application No. PCT/JP2013/085203. |
International Search Report and Written Opinion Mailed Mar. 25, 2014, corresponds to International Application No. PCT/JP2013/085170. |
International Search Report and Written Opinion mailed Feb. 18, 2014, corresponds to Internation Application No. PCT/JP2013/085179. |
Office Action mailed Jan. 15, 2015, corresponding to U.S. Appl. No. 13/749,721. |
Number | Date | Country | |
---|---|---|---|
20140183780 A1 | Jul 2014 | US |