The invention is directed to a method of producing a coating system produced by thermal spray forming a heating component.
Electric heaters are required in the thermal management of the batteries and passenger cabin heating in electric vehicles to maintain an optimum operation temperature between 10-45° C. The required heating power is relatively high at 2-8 kW and the requirement to save space and weight of the heaters produced by thermal spray are a very suitable technology. The coating systems for such electric heaters are described e.g. in the article by Michels et al. “High Heat Flux Resistance Heaters from VPS and HVOF Thermal Spraying,” Experimental Heat Transfer, Vol. 11:4, pp. 341-359, DOI: 10.1080/08916159808946570 (1998); the article by Scheitz et al., “Thermisch gespritzte keramische Schichtheizelemente, Thermally sprayed multilayer ceramic heating elements,” Thermal Spray Bulletin, p. 88-92 (2011); and in Europe Patent Nos. EP 2 815 626 (and U.S. counterparts U.S. Pat. No. 10,112,457 and U.S. Patent Publication Application No. 2015/0014424) and EP 2 815 627 (and U.S. counterparts U.S. Pat. No. 10,625,571 and U.S. Patent Publication Application No. 2015/0014293), the disclosures of which are expressly incorporated by reference herein in their entireties.
The cross-sectional view of the typical coating system in
Embodiments are directed to a method of producing a heating component, e.g., an electric heating element, via a thermal spray process that is simplified with respect to the thermal process by which the known electric heating element is produced.
In embodiments, the method simplifies the known art by replacing/eliminating one of the thermally sprayed coatings, e.g., the ceramic top insulation layer, and performing a sealing procedure to produce a heating component having improved electric insulation to the substrate and the environment. This combination of a simplified thermal spray process and the sealing procedure allows high performance heating elements in an efficient manner.
Embodiments are directed to a heating component that includes a coating system applied to a substrate; and a sealant applied as at least one of a continuous or closed layer over the coating system.
According to embodiments, the coating system can include a heater element formed over the substrate; and an insulation layer formed between the substrate and heater element. Further, the coating system may further include a conductive layer applied over the heater element to form contacts for an external power supply. The sealant can permeate the coating system to improve insulating properties of the insulation layer. Optionally, the coating system can include a bond layer formed over the substrate and the insulation layer is formed over the bond layer.
In accordance with other embodiments, a thickness of the insulation layer can be 50-300 μm.
In other embodiments, a thickness of the sealant above the coating system can be 0.05-5.0 mm.
In still other embodiments, the coating system may include only one insulation layer.
Embodiments are directed to a method for producing a heating component. The method includes applying a coating system to a substrate; and applying a sealant over the coating system as at least one of a continuous or closed layer.
According to embodiments, the coating system may include a heater element formed over the substrate; and an insulation layer formed between the substrate and heater element. The coating system may further include a conductive layer applied over the heater element for form contacts for an external power supply. Further, the sealant can permeate the coating system to improve insulating properties of the insulation layer. Moreover, at least the insulation layer can be formed by thermal spraying. The sealant may penetrate the coating system to improve dielectric properties of the insulation layer. Optionally, the coating system can include a bond layer formed over the substrate and the insulation layer is formed over the bond layer.
In embodiments, a thickness of the insulation layer is 50-300 μm.
In other embodiments, the sealant is applied to a thickness of 0.05-5.0 mm above the coating system.
In still other embodiments, the coating system may include plural layers applied by thermal spraying. The plural layers applied by thermal spraying can include a heater element and an insulation layer. The insulation layer can be sprayed over the substrate and heater element can be sprayed onto the insulation layer. Optionally, a bond layer can also be thermally sprayed over the substrate and the insulation layer can be sprayed over the bond layer.
In accordance with still yet other embodiments, the coating system may include only one insulation layer.
Embodiments are directed to a heating component that includes a coating system applied to a substrate and a sealant applied over the coating system. The sealant permeates the coating system to improve insulating properties of the insulation layer, a thickness of the sealant above the coating system is 0.05-5.0 mm, and the coating system includes only one insulation layer.
Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.
The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
Electrically conductive layer 26, e.g., a copper based alloy, is patterned at zones via, e.g., APS, EAW, CP, CW, CS, HVOF or other process, with a sufficient thickness of e.g., 120-200 μm and preferably 150-165 μm, to allow heating element 24 to be connected to an external power source (not shown), e.g., by soldering. However, in lieu of the insulation layer applied over the heating element in the known art, i.e., ceramic top insulation layer 15 in
The exemplary embodiment of the heating component in
Coating system 2 is formed by applying insulation layer 23, heater element 24 and conductive layer 26, and optionally bond coat 22, by a thermal spray process, e.g., APS or other suitable thermal spray process. In areas where heating element 24 is to be connected to the power supply, covers are arranged to mask contact pads so that they are still accessible after the application of sealant layer 27. A 2-component epoxy-like sealant, e.g., METCOSEAL ERS from Oerlikon Metco or DICHTOL HM-RT can be applied in such a quantity that a closed liquid film of 0.1-1 mm is formed over coating system 2. As there is no top insulation layer 15 as in prior art to penetrate, more sealant from sealant layer 27 accesses the insulation layer 23, thereby improving the dielectric properties to separate the heating layer 24 and the substrate 21. In separate measurements, it was shown that, after applying the sealant of sealant layer 27, the discharge resistance of insulation layer 23, e.g., Al2O3, can be increased from about 5 kV/mm to up to 50 kV/mm. In view of this increase in discharge resistance, insulation layer 23 can be reduced in thickness by 50% to a minimum thickness of about 50 μm without increasing the risk of short-circuiting heating element 24 to substrate 21.
The excessive sealant on top of the coating system 2 forms a hard, dense resin-like overlay forming an electrically insulating layer that is impermeable to humidity. This excessive sealant coating is what allows coating system 2 to dispense with the insulation layer over the heating element in the known art. The resin-like overlay can resist temperatures up to 300° C., which is sufficient for using the heating component on a water cooled heater. The resin-like coating also achieves better values in breakdown voltage than a thermal sprayed insulation coating, as the thermal sprayed insulation suffers from porosity and thin crack networks. Moreover, application of this epoxy-type sealant does not require sophisticated equipment and, unlike APS layers, there is no losses of material.
Further benefits can be achieved by applying vibrations to coating system 2 during the heat curing treatment to avoid enclosed air bubbles in the sealant, which can thereby avoid pin-holes that bear the risk of undesired discharge to other components above the heating element.
An even higher degree of penetration of the sealant can be achieved by vacuum impregnation. The component with the full coating system and masking of the contact pads is placed in a vacuum vessel above the sealant liquid. At low pressure or near vacuum conditions the component is placed into the resin and then the pressure is brought back to atmospheric pressure. The amount of excessive sealant on the surface must be adapted in a separate processing step by adding of removing sealant.
Insulation layer 23, heater element 24 and conductive layer 26 of coating system 2, and optionally bond coat 22, can be applied and masked as described in Embodiment 1. A one-component polymeric sealant can be applied in a manner similar to that described in Embodiment 1 so that excessive sealant forms a continuous overlay over the full surface of coating system 2. The thickness of this excessive sealant layer is in a range of 0.1-1 mm. This sealant requires a 6 hour drying period followed by heat treatment. While this sealant has a reduced capability to penetrate coating system 2, this sealant layer has very high electric insulating properties and thereby avoids effectively discharging and short-circuiting to nearby components. The formed overlay remains elastic and is resistant to a large number of liquid chemicals and is stable up to 500° C. before decomposing.
Insulation layer 23, heater element 24 and conductive layer 26, and optionally bond coat 22, of coating system 2 can be applied and masked as described in Embodiment 1. One of the sealants mentioned in Embodiment 1 and 2 can be applied on the full surface of coating system 2 in an amount so that excessive sealant forms a very thin film of up to 0.01-0.1 mm. A thin sheet of plastic that can withstand temperatures of 350° C. made from e.g., polyether ether ketone (PEEK), epoxy, glass, ceramic fiber (asbestos replacement), boron nitride, aluminum oxide, is placed on top of the excessive sealant film as a cover. The excessive sealant will act as an adhesive that bonds the cover smoothly to coating system 2, electrically insulates coating system 2 and protects coating system 2 from moisture pick-up and mechanical damage.
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
This application claims the benefit and priority of U.S. Provisional Application No. 63/153,631 filed Feb. 25, 2021, the disclosure of which is expressly incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/054651 | 2/24/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63153631 | Feb 2021 | US |