Method of production of vibration absorbing metallic material

Information

  • Patent Grant
  • 4203195
  • Patent Number
    4,203,195
  • Date Filed
    Tuesday, December 20, 1977
    47 years ago
  • Date Issued
    Tuesday, May 20, 1980
    44 years ago
Abstract
One or a plurality of layers of a metallic raw material in plate form and one or a plurality of layers of wire netting are placed one over another in vertically stacked relation and then subjected to rolling to produce vibration absorbing metallic material. The metallic material produced in this way exhibits an excellent vibration damping performance.
Description

LIST OF PRIOR ART REFERENCES
The following references are cited to show the state of the art:
Japanese Laying-Open of Patent application No. 50-20913 (1975) "Alloy having large underdamping ability"
Japanese Laying-Open of Patent application No. 50-71512 (1975) "Underdamping Alloy"
Japanese Laying-Open of Patent application No. 51-26676 (1976) "Vibration absorbing composite steel plate"
Japanese Laying-Open of Patent application No. 51-54820 (1976) "Cast iron having large underdamping ability"
BACKGROUND OF THE INVENTION
This invention relates to a method of production of vibration absorbing metallic material which can achieve superb effects in vibration damping when used in fabricating equipment including industrial machinery and household appliances which might raise a problem with regard to vibration and noise.
Heretofore, a Mn-Cu alloy (Japanese Laying-Open of Patent application No. 50-20913), a Ti-Ni alloy, a Fe-Cr-Al alloy (Japanese Laying-Open of Patent application No. 50-71512), Mg, a Mg-Zr alloy and graphite flake cast iron (Japanese Laying-Open Patent application No. 51-54820) have been known as metallic materials having the property of absorbing vibration. Besides these materials, vibration absorbing material in laminate form consisting of a plate made from a synthetic resinous material and metallic raw materials sandwiching the resin plate therebetween is known as shown in Japanese Laying-Open of Patent application No. 51-26676.
However, of all the aforementioned materials, the materials other than cast iron and Mg materials are not widely in use due to the fact that they are generally quite expensive. Aside from being expensive, the Mn-Cu alloy raises problems in regard to temperature characteristics and changes in quality which occur with time. In the Fe-Cr-Al alloy, a problem arises in regard to its workability.
Cast iron and Mg materials are free from the aforesaid disadvantages. However, when attempts are made to improve the vibration damping ability of these materials, it brings the defect of strength of these materials being reduced. Thus a problem is encountered in putting these materials to practical use. Also, the aforesaid material in laminate from raises problems in regard to its ability to damp vibration, namely its temperature characteristics and its workability.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method of production of vibration absorbing metallic material which exhibits an improved vibration damping performance.
Another object is to provide vibration damping metallic material which has high mechanical strength and high workability.
The outstanding characteristics of the invention are that one or a plurality of layers of wire netting woven with a fine wire are placed on one or a plurality of layers of a metallic raw material in plate form, and then the stack is subjected to rolling. One or a plurality of layers of wire netting may be superposed on one side of a layer of the metallic raw material or on both sides thereof. The layers of the wire netting may be sandwiched between two layers of the metallic raw material, and the stack may be subjected to rolling.
The vibration absorbing metallic material produced by the method according to the invention shows a superb vibration damping performance. It is reasoned that friction interfaces formed between the metallic raw material and the wire netting or within the wire netting would be responsible for the excellent vibration damping ability of the vibration absorbing metallic material according to the invention. It is thought that when the material vibrates and undergoes slight deformation, deformation stress would be absorbed by the friction interfaces with the result that the vibration is damped.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view in explanation of the method of production of vibration absorbing metallic material comprising one embodiment of the present invention;
FIG. 2 is a view in explanation of the method comprising another embodiment of the invention;
FIG. 3 is a view in explanation of the method comprising still another embodiment of the invention; and
FIG. 4 is a view in explanation of the method comprising a further embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows one embodiment of the invention in which a layer of wire netting 2 is placed on one side of a metallic raw material 1 in plate form in superposed relation, and then rolling is carried out. By this processing, friction boundaries are formed between the raw material 1 and the wire netting 2 or within the wire netting 2.
In the embodiment shown in FIG. 2, four layers of wire netting 2 are placed on one side of the metallic raw material 1 in plate form in vertically stacked relation, and then rolling is carried out.
In FIG. 3, one layer of metallic raw material in plate form is sandwiched between two layers of wire netting 2 placed on one side thereof and two layers of wire netting 2 placed under the other side thereof, and then rolling is carried out.
In FIG. 4, one layer of metallic raw material 1 is placed on four layers of wire netting 2 while another layer of metallic raw material 1 is placed under the four layers of wire netting 2 so as to hold the wire netting 2 between the two layers of metallic raw material 1, and then rolling is carried out.
In all the embodiments shown in FIGS. 1 to 4, one layer of metallic raw material 1 is brought into intimate contact with one layer of wire netting 2 or a plurality of layers of wire netting 2 are brought into contact with each other by rolling. By this processing, good friction interfaces are formed between the layers of metallic raw material 1 and wire netting 2, but macroscopically no diffusion joints are formed therebetween.
Generally, an increase in rolling reduction [the value expressed by (D-3.0)/D where D is the thickness of the metallic raw material in plate form] results in an increased vibration damping performance in many cases. However, this is not always the case, so that it is necessary to select a suitable rate of rolling reduction. Also, metallic material produced by placing one or a plurality of layers of wire netting 2 on a layer of metallic raw material 1 has been found to show a better vibration damping performance than metallic material produced by sandwiching wire netting 2 by two layers of raw material 1.
It has also been found that the metallic material shows a higher vibration damping performance when the resistance offered by the wire netting to deformation is greater than the resistance offered by the metallic raw material to deformation.
EXAMPLE
Plates of dimensions of 6 or 15.times.150.times.150 mm of pure aluminum and a metal of SS41 (which is an ordinary structural rolled steel so designated according to the Japanese Industrial Standards consisting of 0.18% carbon, 0.31% silicon, 0.60% manganese, 0.035% phosphorus, 0.019% sulfur and the balance iron and having tensile strength greater than 41 kg/mm.sup.2) were used as raw materials, and a piece of wire netting (either of a plain woven pattern or a diamond-shaped woven pattern) woven with a wire of a diameter of 0.8 mm and having meshes of 4 mm was placed on the plate of metallic raw material as shown in FIG. 1. The wire netting was woven with a wire of zinc-plated mild steel consisting of 0.10% carbon, 0.35% silicon, 0.45% manganese, 0.031% phosphorus, 0.018% sulfur and the balance iron, or with a piano wire consisting of 0.75% carbon, 0.23% silicon, 0.48% manganese, 0.015% phosphorus, 0.017% sulfur, 0.03% copper and the balance iron. After each piece of wire netting was placed on one of the plates of metallic raw materials, rolling was carried out to reduce the thickness to 3 mm. From the products produced in this way, specimens of 3.times.10.times.150 mm were obtained, and a square metallic piece of 30 mm was welded to one end of each specimen. In measuring the ability to damp vibration, each metallic piece was gripped by a fixing jig and held in position and vibration was applied to the other end or free end thereof by using an electromagnetic force.
The table shows logarithmic decrement .delta. [the value expressed by ln (A.sub.n /A.sub.n+1) where A.sub.n is the n-th amplitude by a vibration and A.sub.n+1 is the n+1 th amplitude thereof] of tests performed in this way. When a piece of wire netting woven with a wire of mild steel was placed on the plate of SS41 and rolled, it was impossible to bring the wire netting into intimate contact with the plate of SS41. Thus no vibration absorbing material was obtained by this combination.
It will be seen from the following table that the vibration absorbing material according to the invention shows a vibration damping capability which is at least 100 times greater than that of the raw materials.
Table__________________________________________________________________________Logarithmic Decrements of Various Materials (.delta. .times. 10.sup.2) Wire Netting of Wire Netting of Plain Woven Pattern Diamond-shaped Pattern Soft Steel Piano Wire Soft Steel Piano WireRaw Rolling Rolling Rolling RollingMate- Reduction* Reduction Reduction Reductionrials Shape of Specimens 50% 80% 50% 80% 50% 80% 50% 80%__________________________________________________________________________Pure Material of FIG. 1 2.3 1.7 2.5 2.0 3.1 2.2 3.4 2.3Aluminum Material of FIG. 2 12.4 2.8 13.4 8.8 15.8 10.5 17.2 11.5 Material of FIG. 3 18.7 3.9 21.9 10.1 23.2 13.6 23.6 14.4 Material of FIG. 4 8.1 2.6 10.0 7.6 11.7 9.7 12.4 10.8SS41 Material of FIG. 1 -- -- 2.3 1.5 -- -- 3.2 2.0 Material of FIG. 2 -- -- 11.1 7.7 -- -- 16.8 11.4 Material of FIG. 3 -- -- 15.6 9.0 -- -- 21.5 13.9 Material of FIG. 4 -- -- 7.5 5.3 -- -- 12.3 10.1__________________________________________________________________________ *The value expressed by (D-3.0)/D where D is the thickness of the plate o metallic raw material.
Claims
  • 1. A method of production of vibration absorbing metallic material comprising the steps of:
  • placing at least one layer of wire netting over at least one layer of a metallic raw material in plate form in vertically stacked relation, wherein said metallic raw material is an ordinary structural rolled steel; and
  • subjecting the stack of wire netting and metallic raw material to rolling, thereby forming friction interfaces between said metallic raw material and said wire netting or within the wire netting, whereby a vibration absorbing material having a vibration damping capacity larger than said metallic raw material is formed.
  • 2. A method as set forth in claim 1, wherein said wire netting is woven with a soft steel.
  • 3. A method as set forth in claim 1, wherein said wire netting is woven with a piano wire.
  • 4. A method as set forth in claim 1, wherein a plurality of layers of wire netting is placed over said at least one layer of metallic material.
  • 5. A method as set forth in claim 1, wherein the resistance to deformation of the wire netting is greater than the resistance to deformation of the metallic raw material.
Priority Claims (1)
Number Date Country Kind
52-125739 Oct 1977 JPX
US Referenced Citations (6)
Number Name Date Kind
2009059 Brennan et al. Jul 1935
2290554 Hack Jul 1942
2472767 Zetka Jun 1949
2861372 Hunt Nov 1958
3161407 Robin Dec 1964
3713201 Evans Jan 1973
Foreign Referenced Citations (1)
Number Date Country
969893 May 1950 FRX