The invention relates to a process for reducing the alcohol content in (meth)acrylates and to their uses.
(Meth)acrylates have a wide variety of fields of use. (Meth)acrylates are monomers which can be converted in polymerization reactions, for example to polymethacrylates. (Meth)acrylate polymers can also be used as binders or additives in paints, varnishes, coatings, etc. (Meth)acrylates are also utilized in the form of their polymers in the pharmaceutical industry, for example to coat tablets. A high purity is usually very advantageous.
In the literature, various ways can be found of purifying (meth)acrylates. In addition to distillation, treatment with adsorbents and extraction with solvents are described.
JP 2003261509 describes a transesterification in the presence of Sn catalysts. To remove the catalyst, the reaction mixture is treated with acidic ion exchange resin.
JP 01052747 describes the preparation of isocyanate-containing methacrylates. They are purified by distilling and Cl-containing impurities are removed by working with a molecular sieve (NaA zeolite). However, this process can only remove hydrolysable compounds.
JP 2003048866 describes a transesterification in the presence of titanates and treatment with alumina to remove the catalyst.
It was an object of the invention to prepare (meth)acrylates in high purity and with high yields.
The object was achieved by a process for working-up (meth)acrylates, characterized in that an isocyanate/catalyst mixture is added and then the mixture is distilled.
It has been found that the resulting product comprises only small amounts of alcohol. It has not been possible with conventional purification processes to prepare residual alcohol contents below 0.1% by weight. For many sensitive reactions, for example anionic polymerizations, this is too high a residual alcohol content. The process according to the invention can achieve residual alcohol contents of <0.01% by weight.
It has been found that, surprisingly, the work-up proceeds stably. No polymers are found as an impurity, since there was a risk of a side reaction of the isocyanates with the phenolic stabilizers.
It has been found that the purities can be increased, depending on the reactant, in some cases 99.9%.
An isocyanate/catalyst mixture is used.
The isocyanates used may be all mono- or polyfunctional isocyanates. Preference is given to all common diisocyanates such as toluene diisocyanate, hexane diisocyanate, isophorone diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate.
The catalysts used may be all known isocyanate activators. Preference is given to using amines, particular preference to using diazabicyclooctane. However, preference is also given to using organotin compounds, more preferably dioctyltin oxide, tin dilaurate or tin diethylhexanoate.
The isocyanate/catalyst mixture is composed of the calculated amounts of isocyanate and 0.01 to 1% catalyst, based on the monomer weighed in.
The isocyanate is added in equimolar amounts, but preferably in excess, relative to the concentration of impurities such as water and/or alcohol.
The quantitative ratio is 1:1 to 10:1, more preferably 1:1 for diisocyanates (isocyanate:impurity).
The purification is effected in two steps. First, the (meth)acrylates are stirred at 60 to 90° C., preferably at 80° C., for 1 to 6 hours after the addition of isocyanates.
Subsequently, the (meth)acrylates are distilled. Depending on the (meth)acrylate, the distillation is effected at standard pressure or under reduced pressure. The distillation is preferably carried out at conditions of 60 to 140° C. and 0.1 to 10 mbar.
The notation (meth)acrylate here means both methacrylate, for example methyl methacrylate, ethyl methacrylate, etc., and acrylate, for example methyl acrylate, ethyl acrylate, etc., and mixtures of the two.
The particularly low residual alcohol content enables many fields of use of the (meth)acrylates purified by the present process. These (meth)acrylates may preferably be used in anionic polymerizations, group transfer polymerization (GTP), ATRP, RAFT and all polymerization techniques which are sensitive towards impurities.
The examples given below are given for better illustration of the present invention, but are not capable of restricting the invention to the features disclosed herein.
The mixture is weighed in. The monomers are admixed with 50-100 ppm of HQME (hydroquinone monomethyl ether). The product is distilled using a column. After first runnings, the main fraction is obtained as methacrylate/product.
The mixture is weighed in without catalyst and the isocyanate is added in a molar excess, compared with the sum of residual alcohol and water content. The monomers are admixed with 50-100 ppm of HQME (hydroquinone monomethyl ether). After stirring at approx. 80° C. for three hours, the product is distilled through a column. After first runnings, the main fraction is obtained as methacrylate/product with reduced alcohol content.
The mixture is weighed in and the isocyanate is added in a molar excess, compared with the sum of residual alcohol and water content. The monomers are admixed with 50-100 ppm of HQME (hydroquinone monomethyl ether). After stirring at approx. 80° C. for three hours, the product is distilled through a column. After first runnings, the main fraction is obtained as methacrylate/product with minimized alcohol content.
The mixture is weighed in and the isocyanate is added in a molar excess, compared with the sum of residual alcohol and water content. The monomers are admixed with 50-100 ppm of HQME (hydroquinone monomethyl ether). After stirring at approx. 80° C. for three hours, the product is distilled through a column. After first runnings, the main fraction is obtained as methacrylate/product with minimized alcohol content.
All further experiments are calculated analogously.
Mixture Calculation:
Analysis:
Comparative Example 1 shows that a normal column distillation does not lead to improved product quality with regard to the residual alcohol content.
Comparative Example 2 shows that treatment of the starting material with isocyanate without the customary isocyanate catalyst with subsequent column distillation likewise does not lead to any product improvement.
Examples 3 to 7 show that the inventive work-up of the (meth)acrylates leads to a minimization of the residual alcohol content and hence to an optimization of the product quality.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 007 771 | Jan 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/067293 | 10/11/2006 | WO | 00 | 5/15/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/087903 | 8/9/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6080794 | Auschra et al. | Jun 2000 | A |
6409778 | Auschra et al. | Jun 2002 | B1 |
6458750 | Dardin et al. | Oct 2002 | B1 |
6639099 | Knebel et al. | Oct 2003 | B1 |
7429555 | Scherer et al. | Sep 2008 | B2 |
7452932 | Scherer et al. | Nov 2008 | B2 |
20060142168 | Kinker et al. | Jun 2006 | A1 |
20060189490 | Dardin et al. | Aug 2006 | A1 |
20070191238 | Fischer et al. | Aug 2007 | A1 |
20070213237 | Scherer et al. | Sep 2007 | A1 |
20080132663 | Acker et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
101 27 941 | May 2002 | DE |
10 2004 014 684 | Oct 2005 | DE |
0 736 510 | Oct 1996 | EP |
411228523 | Aug 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20080300373 A1 | Dec 2008 | US |