This disclosure relates to a method of quenching a steel pipe where quenching is performed by rapidly cooling a heated steel pipe, an apparatus for quenching a steel pipe, a method of manufacturing a steel pipe and a facility for manufacturing a steel pipe.
Conventionally, a steel pipe (for example, a seamless steel pipe, an electric resistivity welded steel pipe or the like) has been used in various applications, and properties to be satisfied by the steel pipe (for example, strength, toughness and the like) are prescribed corresponding to the application. A quenching apparatus is provided along with a steel pipe manufacturing line and, to acquire a steel pipe having predetermined properties corresponding to the application, quenching is performed after the steel pipe is manufactured or in the course of manufacturing the steel pipe.
For example, in a seamless steel pipe manufacturing line, a technique has been developed where piercing rolling is performed in hot working, crystal grains are made fine by performing elongation rolling in a non-recrystallization temperature region thus enhancing toughness and, subsequently, after elongation rolling is finished, quenching is performed by rapidly cooling a high-temperature seamless steel pipe (hereinafter, such quenching being referred to as direct quenching). Further, a technique has also been developed where a high-temperature seamless steel pipe discharged from a manufacturing line is cooled to room temperature and, thereafter, quenching is performed by reheating the steel pipe by a heating furnace.
With respect to an electric resistivity welded steel pipe, quenching is performed by heating an electric resistivity welded steel pipe of room temperature discharged from a manufacturing line by a heating furnace.
While various quenching techniques have been put into practice in this manner, in all quenching techniques, tempering is performed after quenching is performed to enable the steel pipe to acquire predetermined properties, (that is, strength, toughness and the like).
However, even when a temperature of a steel pipe before quenching is uniform, when the steel pipe is not uniformly rapidly cooled so that temperature irregularities occur in quenching, a steel pipe having uniform properties cannot be acquired. A steel pipe having irregularities in properties due to quenching can hardly eliminate such irregularities even when tempering is applied to the steel pipe after quenching.
In view of such circumstances, in performing quenching of a steel pipe, a technique for uniformly rapidly cooling a high-temperature steel pipe has been studied.
For example, Japanese Patent No. 5071537 discloses a technique where, in a state where a heated steel pipe is immersed in water, water flow is generated in a direction parallel to a pipe axis of the steel pipe (a longitudinal direction of the steel pipe) thus enabling uniform rapid cooling in the longitudinal direction of the steel pipe. However, in such a technique, it is necessary to take the steel pipe out of the water after rapid cooling is finished and discharge water in the steel pipe. That is, it takes a long time until the steel pipe is fed to a next step after rapid cooling is finished. Hence, the steel pipe is cooled by water in the steel pipe during a period that water is discharged from the steel pipe whereby it is difficult to control the temperature of the steel pipe within a predetermined range prescribed in association with an operation in a next step. Further, it is inevitably necessary to install a device (for example, an arm or the like) for grasping a steel pipe and immersing the steel pipe at predetermined position in water. Hence, it is unavoidable that the construction of a quenching apparatus becomes complicated. Further, to realize uniform rapid cooling in the longitudinal direction of the steel pipe, it is necessary to generate a high-speed water flow. Hence, the facility cost is increased.
Japanese Patent No. 3624680 discloses a technique where an outer surface and an inner surface of a heated steel pipe are rapidly cooled by cooling water by rotating the steel pipe thus enabling uniform rapid cooling of the steel pipe in a circumferential direction. In that technique, however, the steel pipe is not immersed in water. Hence, as shown in
Japanese Unexamined Patent Application Publication No. 2005-298861 discloses a technique where, to rapidly cool an outer surface of a heated steel pipe, a plurality of spray nozzles are arranged in a circumferential direction of the steel pipe, and a refrigerant is jetted onto the outer surface of the steel pipe thus enabling uniform rapid cooling of the steel pipe in the circumferential direction. However, in such a technique, as described in
Further, with the technique disclosed in Japanese Unexamined Patent Application Publication No. 2005-298861, rapid cooling may be performed while moving the steel pipe 1 in a longitudinal direction. When it is necessary to largely lower the temperature of the steel pipe 1, it is necessary to ensure a time for cooling by reducing a conveyance speed of the steel pipe 1 or extending a header 4 in the longitudinal direction of the steel pipe 1 and also extending a conveyance unit (not shown) along with the extension of the header 4. However, when the conveyance speed of the steel pipe 1 is lowered, heat is radiated from a trailing end portion of the steel pipe 1 in an advancing direction for a long time. Hence, a refrigerant is jetted after a state is brought about where a temperature of the steel pipe 1 falls below a prescribed value of a temperature for starting rapid cooling (hereinafter, referred to as cooling start temperature). As a result, irregularities in quality occur in the steel pipe 1. On the other hand, when the header 4 is extended, the facility cost is increased.
Japanese Unexamined Patent Application Publication No. S54-018411 discloses a technique where, to cool an outer surface of a heated steel pipe, a plurality of spray nozzles are mounted on a spiral header, and cooling water is jetted onto the outer surface of the steel pipe thus enabling uniform rapid cooling of the steel pipe in a longitudinal direction. However, in such a technique, as shown in
It could therefore be helpful to provide a method of quenching a steel pipe where a steel pipe having excellent and uniform quality is acquired by uniformly rapidly cooling the steel pipe in a longitudinal direction and in a circumferential direction of the steel pipe using a simple unit, an apparatus for quenching a steel pipe, a method of manufacturing a steel pipe, and a facility for manufacturing a steel pipe.
We studied techniques of performing uniform rapid cooling of a steel pipe in a longitudinal direction as well as in a circumferential direction by jetting cooling water onto an outer surface of the steel pipe from spray nozzles. We found that a steel pipe can be uniformly rapidly cooled by arranging spray nozzles properly and by jetting cooling water while rotating the steel pipe about a pipe axis.
We thus provide a method of quenching a steel pipe where movements of a heated steel pipe in a direction parallel to and in a direction perpendicular to a pipe axis of the heated steel pipe are stopped, and cooling water is jetted onto an outer surface of the steel pipe from four or more spray nozzles arranged spirally at equal intervals outside the steel pipe while rotating the steel pipe about the pipe axis. In such a quenching method, it is preferable that the number of spray nozzles be 6 or more.
In the quenching method, it is preferable that the spiral arrangement of spray nozzles be provided in two or more rows. That is, it is preferable to provide two spirals which do not overlap with each other. It is preferable that a rotational speed of the steel pipe be 5 rpm or more and 300 rpm or less. It is preferable that cooling water be jetted onto the outer surface of the steel pipe from the spray nozzles positioned on sides opposite to each other with respect to the pipe axis on a plane perpendicular to the pipe axis of the steel pipe.
We also provide an apparatus for quenching a steel pipe which includes: two or more rotating rolls provided for rotating a heated steel pipe about a pipe axis of the steel pipe; six or more spray nozzles arranged spirally at equal intervals outside the steel pipe rotated by the rotating rolls and provided for spraying cooling water; and two or more headers provided for supplying cooling water to the spray nozzles.
In the quenching apparatus, it is preferable that the headers be arranged parallel to the pipe axis, and the spray nozzles be mounted on the header at an equal pitch PSN (mm). That is, it is preferable that the plurality of headers extending in the pipe axis direction be arranged at the equal intervals outside the steel pipe, and out of the spray nozzles arranged spirally, the spray nozzles arranged adjacently to each other in a direction parallel to the pipe axis be mounted on the same header. It is preferable that when n pieces of spray nozzles is arranged (n directions) as viewed in cross section perpendicular to the pipe axis of the steel pipe, the number of rows of spirals where the spray nozzles are arranged be smaller than n. When the number of rows of the spiral is equal to n, the spray nozzles are arranged on the same circumference as shown in
We further provide a method of manufacturing a steel pipe including a step of quenching a steel pipe by the above-mentioned quenching method.
We still further provide a facility for manufacturing a steel pipe including the above-mentioned quenching apparatus.
It is thereby possible to acquire a steel pipe having excellent and uniform quality by performing uniform rapid cooling in a longitudinal direction and in a circumferential direction of the steel pipe using a simple unit. Hence, we can acquire industrially outstanding advantageous effects.
1: steel pipe
2: cooling water
3: spray nozzle
4: header
5: rotating roll
A type of steel pipe is not particularly limited, and steel pipe may be a seamless steel pipe, an electric resistivity welded steel pipe, an UOE steel pipe or the like, for example.
As the spray nozzle 3, it is preferable that a spray nozzle can jet cooling water 2 in a range wider than a diameter of a jetting port, and the spray nozzles 3 are arranged such that jetting regions of cooling water 2 overlap with each other spirally (see
It is preferable that the spray nozzles 3 be arranged such that a center axis of the jetting port of the spray nozzle 3 intersects the pipe axis of the steel pipe 1 perpendicularly. The reason is that when cooling water 2 is jetted in a tangential direction of the steel pipe 1 (see
As described previously, the spray nozzles 3 are arranged spirally at equal intervals outside the steel pipe. Accordingly, the plurality of spray nozzles 3 are arranged in a direction parallel to the pipe axis (see
With such a configuration, movements of the steel pipe 1 in a direction parallel to and in a direction perpendicular to the pipe axis of the steel pipe 1 are stopped at a predetermined position and rapid cooling can be performed while rotating the steel pipe 1 about the pipe axis. As a result, the steel pipe 1 can be cooled over the whole length simultaneously. Further, it is unnecessary to install a header or a conveyance unit having an excessively large length. Hence, uniform rapid cooling can be performed in the longitudinal direction and in the circumferential direction of the steel pipe 1 using a simple unit. “Movements of the steel pipe 1 in a direction parallel to and in a direction perpendicular to the pipe axis of the steel pipe 1 are stopped at a predetermined position” means that the steel pipe is not positively moved in the pipe axis direction and in the direction perpendicular to the pipe axis direction when the steel pipe is rapidly cooled. Vibrations of the steel pipe generated due to rotation of the steel pipe about the pipe axis and unavoidable unintended movements of the steel pipe in the pipe axis direction and in the direction perpendicular to the pipe axis direction that may be generated due to such vibrations are included in a state “movements of the steel pipe 1 in a direction parallel to and in a direction perpendicular to the pipe axis of the steel pipe 1 are stopped at a predetermined position”.
When the rotational speed of the steel pipe 1 is excessively small, there is a possibility that elimination of irregularities in temperature in the circumferential direction of the steel pipe becomes difficult. On the other hand, when the rotational speed of the steel pipe 1 is excessively large, there is a possibility that the steel pipe 1 jumps out from the quenching apparatus. Accordingly, it is desirable to set the rotational speed of the steel pipe 1 to a value falling within a range from 5 rpm or more to 300 rpm or less. From a viewpoint of suppressing irregularities in temperature in a circumferential direction of the steel pipe, it is more desirable that the rotational speed be 10 rpm or more. It is more preferable that the rotational speed be 30 rpm or more. It is still further preferable that the rotational speed be 50 rpm or more. From a viewpoint of further reducing the possibility that the steel pipe jumps out from a quenching apparatus by suppressing excessive vibrations when the steel pipe rotates about the pipe axis, it is more preferable that the rotational speed be less than 300 rpm and it is further preferable that the rotational speed be 250 rpm or less. It is still further preferable that the rotational speed be 200 rpm or less.
As shown in
Assuming a pitch of the rotating rolls 5 as PRL (mm) and a pitch of spray nozzles 3 arranged on the header 4 as PSN (mm), it is preferable to arrange the rotating rolls 5 such that formula (1) is satisfied. In formula (1), N is an arbitrary integer. N can be suitably selected corresponding to the length of cooling water 2 in a pipe axis direction or a rotational ability of the rotating rolls 5 which rotate the steel pipe. When N becomes excessively large, rotational ability required for each rotating roll 5 becomes excessively large. Hence, facility cost is increased. Accordingly, it is preferable to set N to 5 or less. Further, the larger the number of rotating rolls 5 is, the more stable the rotation of the steel pipe becomes. Accordingly, a lower limit of N is 1.
PRL=N×PSN (1)
By setting the pitch PRL of the rotating rolls 5 and the pitch PSN of the spray nozzles 3 such that the pitches satisfy formula (1), as shown in
Also when the rotating rolls are arranged in the apparatus for quenching a steel pipe shown in
It is preferable that 2 to 32 spray nozzles be arranged at equal intervals on a cross section perpendicular to the pipe axis of the steel pipe. It is more preferable that 4 to 16 spray nozzles be arranged at equal intervals on a cross section perpendicular to the pipe axis of the steel pipe.
The number of spray nozzles may be suitably selected corresponding to a length of a steel pipe to be cooled. For example, when a length of a steel pipe is 4 to 8 m, it is preferable to set the number of spray nozzles to 8 to 1280.
By manufacturing a steel pipe using the method of quenching a steel pipe, a steel pipe can be more uniformly cooled than the prior art at the time of quenching. Hence, uniformity of a material of a steel pipe can be also enhanced. Accordingly, our method of quenching a steel pipe is desirable.
Our method of manufacturing a steel pipe has a technical feature in the above-mentioned step of quenching the steel pipe. Accordingly, other steps can be suitably selected by taking into account conditions, properties and the like of a steel pipe to be manufactured.
For example, in manufacturing a seamless steel pipe, the seamless steel pipe can be manufactured through a piercing rolling step, an elongation rolling step, a heat treatment step and the like.
For example, in manufacturing an electric resistivity welded steel pipe, the electric resistivity welded steel pipe can be manufactured through an uncoiling step, a forming step, a welding step, a heat treatment step and the like.
By manufacturing a steel pipe using a facility to manufacture a steel pipe including the apparatus for quenching a steel pipe, the steel pipe can be more uniformly cooled than the prior art. Hence, at the time of quenching, uniformity of a material of the steel pipe can be also enhanced. Accordingly, such manufacture of the steel pipe is preferable. The facility for manufacturing a steel pipe has the technical feature in the above-mentioned apparatus for manufacturing a steel pipe. Accordingly, other apparatuses can be suitably selected by taking into account conditions, properties and the like of a steel pipe to be manufactured.
For example, when a seamless steel pipe is manufactured, as shown in
Further, for example, when an electric resistivity welded steel pipe is manufactured, as shown in
Examples are described hereinafter. However, the technical scope of this disclosure is not limited by the following examples.
A direct quenching simulation test was carried out such that a seamless steel pipe (outer diameter: 210 mm, inner diameter: 130 mm, pipe thickness: 40 mm, pipe length: 8 m) was produced by applying piercing rolling to a billet heated by a heating furnace using a piercer testing machine and, subsequently, the seamless steel pipe was rapidly cooled by jetting cooling water (cooling start temperature: 1150° C., cooling stop temperature: 850° C.).
Hereinafter, the steps of the simulation test are described. In all examples, water quantity density of cooling water was set to 1 m3/(m2·min), and other set conditions were set as shown in Table 1.
Example 1 is an example where spray nozzles were arranged at intervals of 90° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in one row, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 10 rpm, and the total number of arranged spray nozzles set to 112 such that a pitch PRL of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles do not satisfy formula (1) (that is, the rotating rolls and cooling water interfere with each other). After rapid cooling was stopped, a temperature of a seamless steel pipe was measured (8 places in the circumferential direction and 4 places in the longitudinal direction) using infrared thermometers. The difference between a maximum value and a minimum value is also shown in Table 1 as temperature deviation. As shown in Table 1, the temperature deviation in Example 1 is 18° C. in the longitudinal direction and 17° C. in the circumferential direction. That is, irregularities in temperature were suppressed to a value falling within an allowable range to acquire uniform properties (qualified when the temperature deviation in the longitudinal direction is 40° C. or below, qualified when the temperature deviation in the circumferential direction is 20° C. or below).
Example 2 is an example where spray nozzles were arranged at intervals of 60° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in one row, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 10 rpm, and the total number of arranged spray nozzles set to 168 such that a pitch PRL of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles do not satisfy formula (1). As a result, the temperature deviation after rapid cooling was 14° C. in the longitudinal direction and 17° C. in the circumferential direction. Since the number of spray nozzles was increased in Example 2, irregularities in temperature in the longitudinal direction were reduced compared to Example 1.
Example 3 is an example where spray nozzles were arranged at intervals of 45° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in one row, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 10 rpm, and the total number of arranged spray nozzles set to 224 such that a pitch PRL of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles do not satisfy formula (1). As a result, the temperature deviation after rapid cooling was 12° C. in the longitudinal direction and 17° C. in the circumferential direction. Since spray nozzles were arranged densely by further increasing the number of spray nozzles in Example 3, irregularities in temperature in the longitudinal direction were reduced compared to Example 2.
Example 4 is an example where spray nozzles were arranged at intervals of 90° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in one row, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 30 rpm, and the total number of arranged spray nozzles set to 112 such that a pitch PRL of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles do not satisfy formula (1). As a result, the temperature deviation after rapid cooling was 14° C. in the longitudinal direction and 13° C. in the circumferential direction. Since rotational speed of a steel pipe was increased in Example 4, irregularities in temperature in the longitudinal direction as well as in the circumferential direction were reduced compared to Example 1.
Example 5 is an example where spray nozzles were arranged at intervals of 90° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in two rows. The spray nozzles of the respective spirals are arranged such that the spray nozzles face each other with respect to the pipe axis of the steel pipe in a plane perpendicular to the pipe axis, and this arrangement is repeated in the longitudinal direction. Example 5 is an example where the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe under such conditions. In other words, Example 5 is an example where the spray nozzles were arranged at positions opposite to each other with respect to the pipe axis in a plane which is perpendicular to the pipe axis direction of the steel pipe and includes the spray nozzles. Rotational speed of the steel pipe was set to 30 rpm, and the total number of arranged spray nozzles set to 112 such that a pitch PRL of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles do not satisfy formula (1). As a result, the temperature deviation after rapid cooling was 14° C. in the longitudinal direction and 10° C. in the circumferential direction. Since the spray nozzles arranged spirally in two rows were more properly arranged and rotational speed of the steel pipe was increased in Example 5, camber of the steel pipe after cooling was reduced compared to Example 1.
Example 6 is an example where spray nozzles were arranged at intervals of 90° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in two rows, the spray nozzles of the respective spirals are arranged such that the spray nozzles face each other with respect to the pipe axis of the steel pipe in a plane perpendicular to the pipe axis, and this arrangement is repeated in the longitudinal direction. Rotational speed of the steel pipe was set to 30 rpm, and the total number of arranged spray nozzles set to 112 such that a pitch PRL (=900 mm) of rotating rolls for rotating the steel pipe and a pitch PSN (=300 mm) of the spray nozzles satisfy formula (1) (that is, the rotating rolls and cooling water do not interfere with each other). As a result, the temperature deviation after rapid cooling was 10° C. in the longitudinal direction and 11° C. in the circumferential direction. Since the rotating rolls and cooling water do not interfere with each other in Example 6, irregularities in temperature in the longitudinal direction were reduced compared to Example 5.
Example 7 is an example where spray nozzles were arranged at intervals of 60° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in three rows, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 60 rpm, and the total number of arranged spray nozzles set to 168 such that a pitch PRL (=1200 mm) of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles satisfy formula (1). As a result, the temperature deviation after rapid cooling was 8° C. in the longitudinal direction and 7° C. in the circumferential direction. Since the spray nozzles are densely arranged by increasing the number of spray nozzles and rotational speed of a steel pipe was increased in Example 7, irregularities in temperature in the longitudinal direction as well as in the circumferential direction were reduced compared to Example 6.
Example 8 is an example where spray nozzles were arranged at intervals of 45° as viewed in cross section perpendicular to a pipe axis of a steel pipe spirally in four rows, and the steel pipe was rapidly cooled by jetting cooling water to an outer surface of the steel pipe while rotating the steel pipe. Rotational speed of the steel pipe was set to 200 rpm, and the total number of arranged spray nozzles set to 224 such that a pitch PRL (=1200 mm) of rotating rolls and a pitch PSN (=300 mm) of the spray nozzles satisfy formula (1). As a result, the temperature deviation after rapid cooling was 5° C. in the longitudinal direction and 3° C. in the circumferential direction. Since the spray nozzles are densely arranged by further increasing the number of spray nozzles and rotational speed of a steel pipe was further increased in Example 8, irregularities in temperature in the longitudinal direction as well as in the circumferential direction were reduced compared to Example 7.
Comparison example 1 is an example where an inner surface of a steel pipe is rapidly cooled by making cooling water flow through the steel pipe (see
Comparison example 2 is an example where spray nozzles are arranged at intervals of 45° on the same circumference in cross section perpendicular to a pipe axis of a steel pipe, and 224 spray nozzles in total were arranged along a longitudinal direction of the steel pipe (see
Number | Date | Country | Kind |
---|---|---|---|
JP2015-022230 | Feb 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/000030 | 1/6/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/125425 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2776230 | Scott | Jan 1957 | A |
2879192 | Gogan | Mar 1959 | A |
3189490 | Scott | Jun 1965 | A |
3407099 | Schell | Oct 1968 | A |
3671028 | Hemsath | Jun 1972 | A |
3889507 | Kranenberg | Jun 1975 | A |
3997376 | Hemsath | Dec 1976 | A |
4065252 | Hemsath | Dec 1977 | A |
4204880 | Schwitzgobel | May 1980 | A |
4444556 | Andersson | Apr 1984 | A |
4834344 | Hoetzl et al. | May 1989 | A |
20130160903 | Seo | Jun 2013 | A1 |
20140007994 | Sakamoto et al. | Jan 2014 | A1 |
20170283898 | Della Putta | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
54-18411 | Feb 1979 | JP |
7-48620 | Feb 1995 | JP |
3624680 | Mar 2005 | JP |
2005-298861 | Oct 2005 | JP |
5071537 | Nov 2012 | JP |
2015-67838 | Apr 2015 | JP |
2012127811 | Sep 2012 | WO |
2016035103 | Mar 2016 | WO |
Entry |
---|
Knotted fields and explicit fibrations for lemniscate knots—Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Closing-a-helical-braid-on-a-cylinder-to-a-torus-knot-a-The-strands-of-the-2-strand_fig5_309766514 [accessed Nov. 22, 2019] (Year: 2016). |
Mascarenhas et al., “Analytical and computational methodology for modeling spray quenching of solid alloy cylinders,” International Journal of Heat and Mass Transfer, vol. 53, Issues 25-26, 2010, pp. 5871-5883, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.055. (Year: 2010). |
Supplementary European Search Report dated Dec. 12, 2017, of corresponding European Application No. 16746259.7. |
European Office Action dated Aug. 10, 2018, from counterpart European Patent Application No. 16746259.7. |
Chinese Office Action dated Jan. 14, 2019, from counterpart Chinese Application No. 201680008575.5, along with a Concise Statement of Relecance of Office Action in English. |
Chinese Office Action dated Apr. 23, 2018, from corresponding Chinese Patent Application No. 20168008575.5, including a concise statement of relevance of Office Action in English. |
Chinese Office Action dated Jun. 21, 2019, from counterpart Chinese Application No. 201680008575.5, along with a Concise Statement of Relevance of Office Action in English. |
Number | Date | Country | |
---|---|---|---|
20170349965 A1 | Dec 2017 | US |