Method of readying a card shuffler

Information

  • Patent Grant
  • 9623317
  • Patent Number
    9,623,317
  • Date Filed
    Wednesday, March 19, 2014
    10 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A playing card handling device is disclosed. The device includes a first side and a second opposite side. Components of the device include a card infeed tray, a card output tray and a card handling zone. The card infeed tray and card output tray are on the same first side of the device and an upper surface of the card infeed tray and an upper surface of the card output tray are in the same plane. Card handling devices of the present invention also include a touch screen display, as well as a movable card gate.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, the invention relates to an electromechanical machine for organizing or arranging playing cards into a plurality of randomly arranged groups of cards. All references cited in this entire document are herein incorporated by reference in their entirety.


Background of the Art


Wagering games based on the outcome of randomly generated arrangements of cards are well known. Such games are widely played in gaming establishments and often a single deck of 52 playing cards is used to play the game. Some games use multiple decks of cards (typically six or eight decks), such as blackjack and baccarat. Other games use two decks of cards, such as double deck blackjack. Many specialty games use single decks of cards, with or without jokers and with or without selected cards removed. Examples of such games include THREE CARD POKER®, LET IT RIDE®, CARIBBEAN STUD POKER™, SPANISH 21®, FOUR CARD POKER®, CRAZY 4 POKER® and others. As new games are developed, card shufflers are modified to be used in connection with the new games.


From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of hands placed, reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to increase the amount of revenue generated by a game without changing the game. One approach is to simply speed up play. One option is to decrease the time the dealer spends shuffling.


This approach has led to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, thereby increasing playing time. Such devices also add to the excitement of a game by reducing the amount of time the dealer or house has to spend in preparing to play the game.


Dealers appreciate using card shufflers that place the minimum strain on the dealer's hands, back and arms. Some existing shuffler designs put unnecessary strain on the muscles of the users. Dealers prefer shufflers that are low profile, especially when the shuffler dispenses cards into a game rather than shufflers that shuffle batches of cards for shoe games.


Numerous approaches have been taken to the design of card shufflers. Among them include random ejection designs (Sines et al., U.S. Pat. Nos. 6,299,167; 6,019,368; 5,676,372; and 5,584,483; Baker et al., U.S. Pat. Nos. 6,959,925 and 6,698,756, for example), stack separation and insertion (Johnson et al. U.S. Pat. Nos. 5,683,085 and 5,944,310), interleaving designs (Breeding U.S. Pat. Nos. 5,275,411 and 5,695,189), for example, random insertion using a blade (Blaha, U.S. Pat. No. 5,382,024) and designs that utilize multiple shuffling compartments.


One such example of a compartment shuffler is disclosed in Lorber et al., U.S. Pat. No. 4,586,712. The automatic shuffling apparatus disclosed is designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The container includes multiple card-receiving compartments, each one capable of receiving a single card.


Another shuffler having mixing compartments arranged in a carousel is disclosed in Johnson et al. U.S. Pat. No. 6,267,248. Cards are loaded into an infeed tray, fed sequentially past a card reading sensor and are inserted into compartments within a carousel to either randomize or sort cards into a preselected order. The carousel moves in two directions during shuffling. Johnson et al. U.S. Pat. No. 6,676,127 describes another variation of the shuffler, in which cards are inserted into and removed from a same side of the carousel, with the card infeed tray being located above the discard tray (see FIG. 3).


U.S. Pat. No. 3,897,954 (Erickson et al.) discloses a device for delivering cards, one at a time, into one of a number of vertically stacked card-shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player.


U.S. Pat. No. 4,770,421 (Hoffman) discloses a card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a finite number of distribution schedules sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Each distribution schedule comprises a preselected distribution sequence that is fixed as opposed to random. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the microprocessor completes the execution of a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir.


Breeding U.S. Pat. No. 5,275,411 discloses a machine for automatically shuffling and dealing hands of cards. Although this device does not shuffle cards by distributing cards to multiple compartments, the machine is the first of its kind to deliver randomly arranged hands of cards to a casino card game. A single deck of cards is shuffled and then cards are automatically dispensed into a hand-forming tray. The shuffler includes a deck-receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. The Breeding shuffler was originally designed to be used in connection with single deck poker style games such as LET IT RIDE® Stud Poker and a variant of Pai Gow Poker marketed as WHO'S FIRST™ Pai Gow Poker.


In an attempt to speed the rate of play of specialty table games equipped with a shuffler, the ACE® card shuffler as disclosed in U.S. Pat. Nos. 6,149,154, 6,588,750, 6,655,684 and 7,059,602 was developed. This shuffler operates at faster speeds than the Breeding shuffler described above, has fewer moving parts and requires much shorter set up time than the prior Breeding design. The shuffler includes a card infeed tray, a vertical stack of shuffling compartments and a card output tray. A first card moving mechanism advances cards individually from the infeed tray into a compartment. A processor randomly directs the placement of fed cards into the compartments, and an alignment of each compartment with the first card mover, forming random groups of cards within each compartment. Groups of cards are unloaded by a second card moving mechanism into the output tray.


Another compartment shuffler capable of delivering randomly arranged hands of cards to a casino card game is the ONE2SIX® shuffler (developed by Casino Austria Research & Development (CARD)). This shuffler is disclosed in U.S. Pat. Nos. 6,659,460 and 6,889,979. This shuffler is capable of delivering randomly arranged hands of cards when a first delivery end is attached, and is capable of delivering a continuous supply of cards from a shoe-type structure when a second delivery end is attached. Cards are fed from a feeder individually into compartments within a carousel to accomplish random ordering of cards.


Most of the known shuffler designs are high profile and require loading cards into the rear of the machine, and then removing cards from the front of the machine. The cards must be lifted over the top of the machine to return spent cards to the infeed tray, causing a dealer to lift his arm over the top of the machine at the conclusion of each round of play.


The present ACE® shuffler as well as its predecessor BG-3 are batch type shufflers. One characteristic of a (single or double deck) batch shuffler is that when all of the cards are dispensed in a round of play, the remaining cards in the pack (one or two decks) are removed and then reinserted. In use, while the game is being dealt with a first deck, a second deck of cards is being randomized and arranged into groups. A discard rack is typically provided on the table so that cards removed from the game are staged in the rack while the other deck of cards is being processed. Following this procedure avoids the possibility that cards will be returned to the input tray and that the two decks will be intermingled. The use of two separate decks (one at a time) speeds game play because shuffling occurs during play. It would be desirable to eliminate the use of a discard tray so that cards from the two decks cannot be accidentally intermixed when a dealer fails to use the discard rack.


Sines U.S. Pat. No. 6,959,925 discloses a single deck continuous card shuffler known in the trade as the Poker One. This shuffler avoids the alternating use of two different decks of cards during a specialty card game by providing a continuous supply of cards to a card game. Although this shuffler uses only one deck of cards, the shuffler does not verify that the correct number of cards (typically 52) are present prior to each shuffle, and consequently cheating by inserting extra cards would go undetected.


Shufflers that communicate with network-based game systems have been described in the art. An example is described in U.S. Patent Publication 2003/0064798 A1. A shuffler with an on-board microprocessor and communication port communicates with a local processor and/or a central processor. The local or central processor may manage a game system.


It would be advantageous to provide a shuffler that has all of the performance attributes of known shufflers, has state of the art security features, that eliminates the need for a discard rack and provides an ergonometric design for end users.


SUMMARY OF THE INVENTION

A playing card handling device is disclosed. The device has a first side, a second opposite side, a card infeed tray, a card output tray and a card handling zone. The card infeed tray and card output tray are on the same first side of the device. An upper edge of the card infeed tray and an upper edge of the card output tray are located in the same plane. One preferred card handling zone is a card shuffling zone. An example of a card shuffling zone is a carousel with compartments for receiving playing cards. Alternatively, the card shuffling zone comprises a vertical rack with compartments for receiving playing cards. Other examples of suitable card shuffling zones include a fan with compartments or a random ejection system.


In an example of the invention, the card infeed tray comprises a movable gate, the gate capable of providing a physical separation of cards being fed and cards being returned to the playing card input compartment after play. The movable gate also applies a downward force on cards being fed.


One preferred configuration of the device includes the upper surfaces of the card input tray and card output tray surface mounted on a gaming table surface. A preferred transportation path of cards moving towards the card handling zone is located beneath the output tray. In other forms of the invention, the transportation path passes above the output tray, and cards within the output tray are elevated to the gaming surface. In one embodiment of the invention, the transportation path is substantially linear.


A feature of an example of the invention is a graphical display with touch screen controls. The touch screen controls may be used to operate the machine as well as program the machine to display new game names and to dispense cards for new games.


Examples of commands that can be inputted through the touch screen include: a number of table positions, a number of cards per hand, a number of dealer cards, a number of common cards, a number of bonus cards and a game name.


A playing card shuffling device for use in a casino or card room is disclosed. The device comprises a playing card shuffler having a processor, a video or graphic display with integral touch screen controls. The video or graphic display is capable of automatically displaying information from the shuffler and the touch screen controls are capable of sending user inputted data to the processor to affect performance or activity of the shuffler. The touch screen controls are used to program the shuffler. The following types of information may be entered: a number of table positions, a number of cards per hand, a number of dealer cards, a number of common cards, a number of bonus cards and a game name.


The display of the present invention is capable of displaying alphanumeric information, graphical information, animation, video feed and the like. Examples of typically displayed information include: product name, a casino name, a table identification, a game name, a number of shuffles, a number of hands dealt, an error message, a warning message, an indication of use, a card jam, a need for service, and programming prompts. The display may be located on the end of the device closest to the dealer, and may be mounted below the gaming surface so that displayed information is available only to the dealer.


A casino table card gaming system comprises a playing card handling device. The playing card handling device is capable of forming groups of cards for delivery to a live card game, reading rank and suit; and transmitting data representing at least card group composition to a database via a network connection. Groups of delivered cards may be a player hand, a dealer hand, a partial player hand, a partial dealer hand, a bonus hand, and a group of community cards. The device may also be capable of transmitting to the database data relating to events occurring in the shuffler, such as start of card feeding, start deal, start shuffle, end shuffle, end dealing, shuffling complete, compartment full, compartment empty, shuffler unloaded, dealer activated signal, and shuffler loaded.


Data from the card handling device may be transmitted directly to an external computer or to a network computer via hard wire or wireless transmission. Examples of data transmitted include an internal shuffler command relating to starting or completing dealing of a round of play in a card game.


A card infeed module for a card shuffler is disclosed. The module includes a card infeed tray having a lower surface and at least two substantially upright walls for supporting cards and a card gate pivotally mounted above the lower surface. The gate is capable of applying a downward force in a lower position and is also capable of separating a first group of cards from a second group of cards, both groups located in the infeed tray. The infeed module includes a feed roller having a contact surface that extends through the lower surface to move a lowermost card out of the card infeed tray. A card gate is also provided in the card infeed module. The card gate is pivotally mounted about a horizontal axis. After card feeding is complete, the card gate automatically pivots upwardly to lower separated cards onto the lower surface of the infeed tray.


A bonusing system for live card games is disclosed. The system includes multiple card shufflers, each capable of dispensing bonus cards in response to a signal from a central computer. The system is controlled by a central computer. The central computer controls the dispensation of bonus cards. Each shuffler is capable of receiving a command from the central computer to dispense a bonus card. The system can be used for multiple like card games or multiple different card games.


A card shuffler is disclosed including a card infeed area, a card output area; a card shuffling mechanism and a processor. The processor is programmed to perform a diagnostic routine in response to the insertion of at least one card. In one example of the invention, the diagnostic routine is performed in response to the insertion of a single card.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a first embodiment of a shuffler of the present invention.



FIG. 1A is a perspective view of a second embodiment of a shuffler of the present invention.



FIG. 2 is a first side elevational view of the shuffler, with components removed.



FIG. 3 is a top plan view of the shuffler.



FIG. 4 is a detailed view of a packer arm assembly.



FIG. 5 is a second side elevational view of the shuffler, illustrating the structure of the carousel drive system and the unloading roller pair drive system.



FIG. 6 is a side elevational view of a second embodiment of the shuffler, illustrating an alternate carousel drive system.



FIG. 7 is a schematic view of the card infeed tray, card feed roller and a dual function gate.



FIG. 8 is a schematic view of an embodiment of the present invention, illustrating one location for a card sensing system.



FIG. 9 is a schematic diagram of a control system for one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is a card handling system designed for providing randomized groups of cards to card games. Many components of the system are conventional commercially available components unless otherwise indicated, including motors, belts, pulleys, rotational shafts, rollers, sprockets, gears, pinions, pulleys, cams, support structures and the like. The electrical components may include conventional circuitry, wires, fuses, soldered connections, chips, switches, boards, microprocessors, stepper motors, computers, and control system components.


Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as plastics, metal, metallic alloys, ceramics, fiberglass, elastomers, composites and the like.


A shuffler of the present invention includes major components that are physically arranged (for example, in a linear arrangement) in the following order: a) a playing card input compartment; b) a playing card retrieval compartment; and c) a playing card handling zone. Playing cards from the playing card input compartment are moved into the playing card handling zone, are handled and are then moved from the playing card handling zone into the playing card retrieval compartment.


A perspective view of a first exemplary playing card shuffler 20 of the present invention is shown in FIG. 1. The card shuffler 20 has a recessed card infeed tray 22 and an adjacent recessed card output tray 24 located near a first end 26 of the card shuffler 20, and a plurality of card shuffling compartments (shown in FIG. 2) arranged into a carousel structure 44 (shown in FIG. 2) positioned within card handling zone 23. A cover 28 in this embodiment has a curved upper surface 31 that is arched to enclose an upper portion of the carousel structure 44. The cover 28 includes a lock 30 to secure the cover 28 to the frame (not shown) to prevent the unauthorized access to cards in the carousel. This locking feature advantageously allows a casino operator to shut down a table with all of the cards loaded into the card shuffler 20. When the table is reopened, the operator can be assured that the cards held in the playing card shuffler 20 are secure. The key to the lock is held by pit management and the fact that the cover 28 is locked advantageously eliminates the need to unload and verify the rank and suit of each card before play is resumed. Securing the cards within the playing card shuffler 20 when the playing card shuffler 20 is not in use is a valuable time and labor saving feature. The lock 30 is located proximate a second end 32 of the playing card shuffler 20. Although an exemplary lock is a simple mechanical lock with rollers and a key, other locking systems may be used, such as electronic locks with keypad controls, locking systems that receive RFID signatures, computer-controlled locks and other known locking systems.


The shuffler 20 is mounted for use such that a portion of the shuffler 20, including the first end 26 is flush mounted on a gaming table. A second portion of the shuffler 20 may be supported near the second end 32 by means of a mounting bracket (not shown) secured to the table structure. Installation of the shuffler 20 into the table typically requires a cut-out in the table surface intersecting a rear edge of the table (the edge nearest the dealer). More details on mounting the shuffler 20 to the gaming table (not shown) are provided below.


For purposes of this disclosure, the “first end 26” refers to the end of the machine nearest the players when the shuffler 20 is installed in a table top, and the “second end 32” refers to the end facing the pit.


The relative arrangement of the card infeed tray 22, the card output tray 24 and the card handling zone 23 has certain advantages. Because the card infeed tray 22 and the card output tray 24 are located on the same side of the card handling zone 23, the cards are more accessible to the dealer, and the dealer no longer has to lift cards over the shuffling zone to place spent cards back into the playing card shuffler 20. The present design is therefore more ergonometric than known designs. Positioning the card infeed tray 22 at the table level also reduces the possibility that card faces will be accidentally flashed to players.


The placement of an upper edge 34 of the card infeed tray 22 and an upper edge 36 of the output tray 24 in the same plane (the plane lying on the gaming surface) also provides distinct ergonometric advantages. If the dealer moves his or her hands smaller distances during card handling, he or she is likely to experience fewer repetitive stress or strain injuries. So delivering spent cards to the shuffler at the gaming surface and then retrieving freshly randomized cards from the same location or nearby offers distinct user advantages.


The placement of the infeed tray 22 and the output tray 24 on the same side of a carousel-type playing card handling zone (in this case a carousel type compartment structure) also allows the user to place spent cards face-down in the infeed tray 22, and at the same time receive fresh cards to the output tray 24 face-down. This attribute has been previously described in Johnson U.S. Pat. No. 6,676,127. This feature improves the security of a carousel shuffler, since no cards are exposed during loading, shuffling or unloading.


A horizontally disposed center line intersecting the card infeed tray 22 and the card output tray 24 also advantageously intersect a center line of the card handling zone 23, as will be discussed in more detail below. This arrangement allows the machine to be fairly narrow in width and permits both card tray areas (but not the more bulky card handling zone 23) to be located on the playing table surface.


Only a portion of the shuffler defined by the card infeed tray 22 and output tray 24 is located on the gaming table surface in one preferred mounting arrangement. A gaming table surface may have a rectangular notch cut into an edge of the flat table facing the dealer. The shuffler 20 has a recess 38 that receives the notch in the table. The remainder of the shuffler 20 is supported by a support bracket beneath the table surface. The card shuffling zone is located behind the dealer, and is out of the way.


As shown in FIG. 1, the portion of the playing card shuffler 20 that is inserted into the table may be flush mounted. The card infeed tray 22 and card output tray 24 may be surrounded by a substantially flat flange 40 intersecting the upper edges 34 and 36 of the card infeed tray 22 and the card output tray 24. In one example of the invention, the card output tray 24 is removable for maintenance. The shuffler 20 may be supported by the flange 40, or by a separate support structure attached to the table (not shown), known in the art as a table extension or both.


Near a second end 32 of the shuffler is a dealer display 42. In a preferred form of the invention, the dealer display includes touch screen controls. The operation of the display is described in more detail below.


A second embodiment of a shuffler of the present invention is shown in perspective view in FIG. 1A. The shuffler 100A has a card infeed compartment 102A, a card delivery compartment 104A near a first end 106A, a card handling zone 108A and a display 110A near a second end 112A. In this embodiment, a carousel (not shown) is enclosed within a cover 114A. The cover 114A is secured to the frame 116A and is removable for maintenance but is not intended to be removed by a user. In one example of the invention, the cover 114A is secured to the frame 116A with sheet metal screws. In this embodiment, a flange 118A intersects an upper edge 120A of the card infeed compartment 102A and the card delivery compartment 104A; and extends a portion of the way through the card handling zone 108A. This flange 118A may be mounted on the gaming table surface such that a portion of the card handling zone 108A is positioned within the outside perimeter of the gaming table. The display 110A is at an elevation below the gaming surface, as in the first example. The shuffler 100A may be supported by the flange 118A, a table extension (not shown), by a pedestal, by combinations of the above, or by other known support techniques.


Card Handling Zone


In one form of the invention, the card handling zone 23 is a playing card handling zone. This zone is capable of performing at least one of the following functions: a) shuffling, b) arranging cards into a desired order, c) verifying completeness of a group of cards, d) reading special markings on cards (such as casino i.d., manufacturer i.d., special bonus deck i.d., etc.), e) scanning cards for unauthorized markings, f) identifying cards lacking required markings, g) measuring card wear, h) decommissioning cards, i) applying markings to cards, j) scanning cards for unauthorized electronic devices, and many other useful functions.


One preferred shuffling zone format includes a multiple compartment carousel. Many other shuffling zones could be utilized, non-limiting examples including a random ejection shuffling zone as described in detail in U.S. Pat. No. 6,959,925 and assigned to VendingData, a vertical compartment shuffling zone as described in detail in U.S. Pat. No. 6,149,154, a plurality of compartments arranged in a fan shape or a vertical stack capable of being separated in randomly selected positions for insertion of cards as described in U.S. Pat. No. 6,651,981. The content of each patent referenced in this entire specification including background section is incorporated herein by reference.


Card Inspection Station


The card handling zone in one form of the invention includes a card inspection station that reads at least the conventional rank and suit markings on cards without changing an order of cards, while reversing an order of cards, or while shuffling. Non-limiting examples of suitable card readers include CMOS and CCD cameras. Other sensing systems such as CIS line scanning systems, such as the system disclosed in U.S. patent application Ser. No. 11/152,475, filed Jun. 13, 2005, now U.S. Pat. No. 7,769,232, issued Aug. 3, 2010, and in U.S. patent application Ser. No. 11/417,894, filed May 3, 2006, now U.S. Pat. No. 7,593,544, issued Sep. 22, 2009, may also be used. The content of this disclosure is herein incorporated by reference in its entirety. The card inspection station may alternately be equipped to read a) special markings on cards, such as bar codes, near IR markings, IR markings, b) embedded electronic devices, c) cards that have been marked in a way to facilitate cheating, d) card wear, e) physical card damage and the like. The cards may be standard unmarked conventional cards, or may be marked with UV, IR, near-IR or visible wavelength inks or may have embedded RFID tags, magnetic coding or may be marked by any other known means.


Display


Referring back to FIG. 1, the touch screen display 42 in this example of the invention is located below the gaming table surface. One preferred display may be obtained from Reach Technologies of Fremont, Calif., by specifying part number 42-0092-03. The location of the display 42 relative to the gaming table surface offers a number of distinct advantages not known in the art before the present invention. For example, the display may provide graphics such as the cards dealt into a player hand, allowing the dealer to assess whether the actual cards are different, without alerting the player. For example, if a deviation between an actual hand and a displayed hand were to occur, indicating a confirmed case of card switching, the dealer would want to notify security without the player's knowledge so that the cheater is apprehended. By providing a display that is concealed to the players, important information may be transferred to and from casino personnel without the knowledge of the players.


The display 42 includes touch screen user controls that can be used to program the microprocessor of the shuffler 20 to perform a number of operations. For example, the shuffler 20 is programmable to deliver a specified number of cards to a specified number of players. The shuffler 20 may further be programmed to deliver a specified amount of dealer cards, a specified amount of flop cards, a bonus hand, common cards or any other card or cards used in the play of a casino card game. The user controls may also be used to input and display a game name, so that the new name appears on a menu of user selectable games. Eliminating the need for factory programming each time a new casino card game is developed saves time, eliminates the need for resubmission of software to the various gaming agencies for approval and eliminates the need for upgrading software in the field.


For example, the device could be programmed by the operator to deliver cards to the game of THREE CARD POKER®, which requires that the players and dealer receive three cards each. If a new game that utilizes three player cards (each) and three dealer cards is developed in the future, the information, including the new game name can be input and added to a menu of games without requiring a software change.


The touch screen controls on the display 42 also provide a larger number of input options for the user, as compared to more standard push button controls. The display 42 is capable of displaying alphanumeric information, graphical information, animation, video feed and the like. In one form of the invention, a diagram of the card path and an indication of a location of a card jam is displayed when a card jam takes place.


Devices of the present invention may provide additional and useful functions. One such purpose is to deliver data, such as card composition, hand composition, rounds played, hands played, shuffler activated, shuffler deactivated, cards dealt, cards delivered to the carousel, and other game state and/or shuffler state information to a local processor and/or a network computer for analysis and reporting purposes. Since the carousel structure of the first described embodiment is capable of forming hands or partial hands of cards within the shuffler, the shuffler is capable of sending data to an external processor representing hand or partial composition.


A shuffler of the present invention may be incorporated into a table game management system by connecting the shuffler via a data port to a table game computer, a local table network or a casino network. The networks may be wired or wireless.


Card Feed System


Referring now to FIG. 2, a side elevational view of a preferred embodiment of the shuffler is illustrated. A multiple compartment carousel structure 44 is provided to receive cards from the card infeed tray 22 (shown in FIG. 1). A lowermost card 48 in the stack of spent cards comes into contact with card feed roller 50. Card feed roller 50 is rotationally driven by a motor (not shown) having a drive shaft 52. Mounted to drive shaft 52 is drive sprocket 54 carrying endless toothed belt 56. Also driven by the same motor is first advancing roller 58. A sprocket 60 on the shaft supporting card feed roller 50 is provided for rotating second advancing roller 61. Endless belt 66 meshes with sprocket 60 as well as sprocket 68 so that all three rollers 50, 58 and 61 are driven by the same motor. Opposing roller 59 adjacent idler roller 58 forms a first nip 62, and adjacent idler roller 61a forms a second nip 64. The card 48 is moved horizontally by roller 50 into the first nip 62 and then is moved into the second nip 64. A second drive sprocket 68 is provided generally to third and fourth advancing rollers 70, 72. The drive system includes a motor (not shown), a drive shaft 74, a first pulley 76, a second pulley 78, a third pulley 80 and an endless member 82. The system functions to drive rollers 70 and 72 in the same direction. Opposing rollers 71 and 73 are provided to form third and fourth nips 84 and 86. The upper roller 73 of the fourth nip 86 serves the purpose of deflecting each card upwardly and into an aligned compartment.


In operation, cards move from the infeed tray 22, past each of the four roller pairs and into an aligned compartment 88. The carousel then rotates to align the card feed system with the next randomly selected compartment.


In another embodiment, pulley 78 is in contact and driven by sprocket 54 by means of a toothed belt (not shown), rather than endless member 82. This arrangement provides another method of driving the card advancing rollers in order to consistently move cards individually into the carousel structure 44.


Carousel


The carousel structure 44 in a preferred form of the invention has thirty-eight equally sized compartments, each capable of holding up to ten conventional cards. Other carousel structures with fewer or more compartments may be used. Each compartment has at least one beveled surface 90 for deflecting cards into the aligned compartment 88 during insertion. Another feature of the carousel structure 44 is that each compartment 88 is equipped with a leaf spring 92 that holds cards tightly within the compartment 88 after insertion so that when the carousel structure 44 rotates (as shown by arrow 94) in either direction during loading, shuffling or unloading, cards remain securely within the selected compartment.


According to a preferred mode of operation, half of the compartments are used for random card insertion, while at the same time the other half of the compartments are used for random group delivery. Although in one example of the invention, all of the compartments used for loading are adjacent to one another, in other forms of the invention, the selection of compartments utilized at a given time for loading is according to a pattern, or is randomly dispersed. In one example of the invention, a number of compartments are preassigned to collect discards, and others are designated to receive bonus cards. Bonus cards may be manually inserted by first removing the cover 28 (shown in FIG. 1), may be inserted through a secure opening in the cover (not shown) or may be inserted through the same card infeed tray 22 used to insert the regular playing cards. Bonus cards may be fed before or after the playing cards, or may be intermixed with the playing cards, detected and diverted to the designated compartment.


In a preferred example, the location of discard trays is dispersed amongst the group-forming trays so that the travel of the carousel structure 44 is minimized during random distribution. The assigned location of the discard trays may be different for different card games. In the first example of the invention, all of the compartments 88 are of equal size, making it possible to assign different compartments to the discard collection function for different numbers of cards per hand being assembled.


A novel feature of this embodiment is that the card path is substantially straight and substantially horizontal. The cards move the least distance following a straight path from the card infeed area to the aligned compartment 88. When the cards reach the last set of advancing rollers, the card is deflected slightly upwardly and into the compartment. The length of the path is kept to a minimum to minimize the length of the device, and to maximize the speed of delivery. Another novel feature of this embodiment is that the infeed card path is positioned beneath output card path and output tray 24 (FIG. 1), as will be described in more detail below. Layering the output card path and/or output tray 24 above the infeed path advantageously allows both the infeed tray 22 (FIG. 1) and the output tray 24 to be positioned on the same side of the machine. This physical arrangement of card paths has not been implemented before in the art to the knowledge of the present inventors. Alternatively, the device could be configured such that the card output path passes beneath the card input path.


Referring now to FIG. 3, a top plan view of the exemplary card shuffler 20 is shown. The card infeed tray 22 is positioned centrally along axis 96, as is adjacent card output tray 24, the card handling zone 23 and the touch screen display 42. The card infeed tray 22 is equipped with a dual function gate 98 whose functions will be described in more detail below. The card infeed tray 22 also includes a card present sensor 100, located on a lower surface.


Declining finger cut-outs 102, 104, 106, 108 are provided in the interior surfaces of the card infeed tray 22 and the card output tray 24 to facilitate handling of cards. Preferably the cut-outs 102, 104, 106, 108 are of a size and shape to accommodate a user's fingers, providing an additional ergonomic feature.


Another advantage of providing a carousel as part of the playing card handling zone is that the machine has a low profile on the table. Approximately half of the carousel may be located beneath the table surface of a gaming table when playing card shuffler 20 is installed in a table top.


Packer Arm


Referring back to FIG. 2, cards move along a card path until being inserted into an aligned compartment 88. In a shuffling mode, the microprocessor randomly assigns a compartment to each card being inserted in the pack of cards. Once the card 48 leaves the adjacent roller pair 72, 73, additional means are provided to overcome the force of leaf spring 92 and fully insert a card. Packer arm 110 proximate advancing roller pair 72, 73 provides this needed force. A detailed side elevational view of packer arm 110 from the opposite side is shown in FIG. 4. A motor 111, mounted to the frame 112 of a shuffler (see FIG. 5) rotates shaft 114. Mounted to shaft 114 is an eccentric cam 117. The packer arm 110 is elongated. A first end of the packer arm 110 is pivotally mounted at pivot 113 to the cam 117. At a midpoint of packer arm 110 is located at pivot point 116. A second arm 118 connects the packer arm 110 and pivot point 116 to the frame 112 at pivot point 120.


In operation, when the motor is energized, shaft 114 rotates, causing the upper end 122 of packer arm 110 to move back and forth in directions designated by arrow 124 in an arc-shaped path. The upper end 122 comes into contact with cards present in the aligned compartment 88 (FIG. 2), forcing the cards completely into the compartment 88. As the cam 117 continues to rotate, the packer arm 110 retracts. Typically, the packer arm 110 retracts while the carousel is rotating and extends when the carousel is stationary.


Card Pack Removal


Once the distribution of cards into compartments is complete, according to the programming of the microprocessor, the compartments become available for unloading. Alternatively, as soon as a specified number of cards has been delivered to a compartment, that compartment is available for unloading, even if the other compartments have not been filled. Preferably, available compartments are selected randomly for unloading. Referring back to FIG. 2, the card unloading process is facilitated by means of a card pack removal device 125. The removal device 125 comprises a pivotal swing arm 126 that pivots about horizontal axis 128. The swing arm 126 is equipped with a retractable inwardly projecting tab (going into the paper) at its upper end 130 that extends inwardly into a compartment while the arm is swinging toward the output tray 24, but that retracts when the arm swings back to a resting position near an inner circumference 132 of the compartments. In the extended position, the tab contacts the cards. The swing arm is driven by a stepper motor 134, having a rotational shaft 136 supporting pulley 138. Two idler pulleys 137, 139 are also mounted for rotation on the support frame 112. Endless member 140 contacts pulleys 137, 138 and 139 and is securely attached to the swing arm 126 at point 142 such that when stepper motor 134 is energized, the swing arm moves towards the output tray 24 and moves the group of cards into unloading roller pair 146, 148. The attachment point 142 is a clamp but could be any other known manner of securing a belt to a moving object. The direction of rotation of rotational shaft 136 is reversed to bring the swing arm back to its original position.


The inner tab of the swing arm retracts as it comes into contact with stationary tab 150 mounted to the frame 112.


Card Feed Path


The path of each card or cards leaving a selected compartment is substantially horizontal and above the card infeed path. Cards move out of the compartment aligned with the roller pair 146, 148 and then fall into output tray 24 where the cards are accessible by the end user. A card present sensor 152 is located on the bottom surface of output tray 24 and serves to notify the processor that no cards are present. The processor then responds by signaling the device to deliver another group of cards. After the last group is delivered, the remaining cards in the group or set automatically unload.


Carousel Drive


Referring now to FIG. 5, an exemplary drive mechanism for rotating the carousel is illustrated. Pivotally mounted at shaft 168 for rotation with respect to the frame 112 is the carousel structure 44. The carousel structure 44 is preferably mounted for easy removal and replacement such as by means of threaded hand screws or by a locking/release mechanism. The carousel structure 44 is driven in two directions by drive system 153. Drive system 153 includes a motor 154 mounted to the frame 112, a drive shaft 156 and a pulley 158 mounted to the shaft 156. Also mounted to the frame 112 and spaced apart from the motor is driven shaft 160. A pinion gear 162 is fixedly mounted to the shaft 160. Also mounted to the driven shaft 160 is a pulley (not shown). This pulley, as well as the drive shaft pulley 158, contacts endless member 164 to cause rotation of pinion gear 162. The pinion gear 162 meshes with the toothed edge 166 of the carousel structure 44 to cause rotation of the carousel about the axis of the shaft 168.


Card Unloading Roller Pair Drive


The roller pair 146, 148 as shown in FIG. 2 is driven by motor 170 affixed to the frame 112. A pulley 172 is affixed to the shaft 174 of the motor 170, driving unloading roller pair 146, 148. On an opposite side of the device are meshing gears 176 that cause roller pair 146, 148 to be driven in unison. Endless member 178 contacts pulley 180 on shaft 182 supporting roller 146. When motor 170 is energized, roller pair 146 and 148 rotates to move and deposit a card or a group of cards (whatever is in the compartment) into the output tray 24.


Example II of a Carousel Drive Mechanism


In another example of the invention, as shown in FIG. 6, a pinion gear 200 is mounted on a toothed inner race 202 on the carousel 206. A drive motor 208 drives the pinion gear 200 in a conventional manner causing the carousel 206 to rotate about shaft 209. Drive motor 208 drives shaft 209 in a forward and reverse direction during at least one of shuffling, during loading and during unloading.


Card Infeed Tray Gate


Referring now to FIG. 7, a pivotal gate 98 is provided within the card infeed tray 22. The gate advantageously serves a number of important functions. The gate 98 preferably extends a length (from side-to-side of the machine) of the card infeed tray 22 and pivots about pivotal axis 300 from a first upright and retracted pivotal position (not shown) to a second downwardly angled engaged position 302. At an edge opposite the pivotal axis 300 is a roller 304 whose purpose is to reduce frictional contact with cards in the infeed tray 22. As the number of cards in the infeed tray 22 is reduced, the weight of the cards is lessened, reducing the frictional forces between the lowermost card in the card infeed tray 22 and the feed roller 50. One example of the device adjusts a force on the cards to increase as the number of remaining cards decreases, resulting in a constant force applied to the lowest card. The gate 98 provides additional weight against the cards, improving the frictional contact and assuring the last few cards will be taken into the first nip 62.


The second important function of the pivotal gate 98 is that it provides a physical separation barrier between cards belonging to different decks, or between different types of cards (such as regular cards and bonus cards, for example). When cards remain in the infeed tray 22 and the shuffler is actively taking in cards for shuffling, the gate is in the down position. At the same time, the dealer may be collecting spent cards from the table. Because the gate is in the down position, the dealer can put the spent cards from the deck in play (deck A) on the top of the gate, while the unfed cards from the other deck (deck B) are being fed. Embodiments of the present invention allow the user to load cards from a first deck while feeding cards from a second deck. The gate 98 permits the casino to eliminate the physical discard rack that is typically mounted on the gaming surface, since spent cards can now be placed directly into the infeed tray 22. Once the last of the cards from deck B are fed, the gate rotates about axis 300, releasing the cards previously suspended above the gate 98 to the area below. In the retracted position, the gate 98 does not obstruct the user from inserting additional cards. Another aspect of the gate design is the relative positioning of the pivotal axis 300 relative to the base 306 of the card infeed tray 22, as well as the length of the gate 98 with respect to the width of the cards. The pivotal axis 300 is below an upper surface of the infeed tray 22 in order to remain clear of the end user. The axis is spaced apart from the lower surface 308 of the infeed tray 22 so that an entire deck (or multiple decks) of cards can be received in the infeed tray 22. The length 310 is short enough so that the cards will lift as the gate 98 pivots upwardly (arrow 312) and then release and fall without flipping over cards in the infeed tray 22. A preferred gate length is about one-third the width of the cards. A stepper motor (not shown) located in base 306 drives the rotation of the gate 98 in a conventional manner.


Imaging System


A schematic diagram of a card handling system equipped with card recognition hardware and software including a sensor 400 is shown in FIG. 8. An exemplary card sensing device is a video camera imaging system of the type described in U.S. Patent Publication US 2004/0067789 A1, application Ser. No. 10/623,223, filed Jul. 17, 2003, now U.S. Pat. No. 7,677,565, issued Mar. 16, 2010. A desirable set of image capture devices (e.g., a CCD automatic camera) and sensors (e.g., light-emitting devices and light capture devices) is described, although a wide variety of commercial technologies and commercial components are available. One preferred camera is the DRAGONFLY® automatic camera provided by Point Grey Research, Inc., and includes a six-pin IEEE-1394 interface, asynchronous trigger, multiple frame rates, 640×480 or 1024×724 24-bit true color or eight-bit grayscale images, image acquisition software and plug-and-play capability. This can be combined with commercially available symbol recognition software that typically runs on an external computer (not shown). The commercially available image recognition software is trained on card symbols and taught to report image patterns as specific card suits and ranks. Once a standard card suit/rank recognition program has been developed, the training from one format of cards to another becomes more simply effected and can be done at the casino table or by a security team before the shuffler is placed on the table. Position sensors can be provided and enhanced by one of ordinary skill in the art from commercially available components that can be fitted by one ordinarily skilled in the art. For example, various optics such as SICK® WT2S-N111 or WL2S-E11; OMRON® EE-SPY302; or OPTEK® OP506A, may be used. A useful encoder can be purchased as US Digital encoder 24-300-B. An optical response switch can be provided, such as MICROSWITCH™ SS541A.


Other sensing systems such as the CIS contact imaging systems with FPGA control logic as disclosed in U.S. application Ser. No. 11/417,894, filed May 3, 2006, titled “Manual Dealing Shoe with Card Feed Limiter,” now U.S. Pat. No. 7,593,544, issued Sep. 22, 2009, may also be advantageously incorporated and used as a card sensing module. This type of system is small enough to be incorporated into the structure of the shuffler without the addition of an external computer for image processing.


Yet other sensing devices such as bar code readers, magnetic strip readers, object presence sensors, optical sensing devices, sensors for reading near IR and IR wavelengths, sensors for sensing cuts, abrasions, bends, dirt, debris, color, thickness, reflectivity, mass or any other sensor useful in the art of card handling can be utilized as a part of the card handling devices of the present invention.


Bonusing System


One aspect of the present invention is to provide a card handling device capable of dispensing bonus or promotional cards used to provide a prize, incentive or compensation to a player. According to the invention, promotional cards are either inserted into designated compartments within the machine manually by removing the cover, or by inserting the cards into the input tray of the shuffler. The shuffler may be preprogrammed to insert the bonus cards into a preselected compartment or compartments. Typically only one bonus card is placed in a compartment, and a limited number of compartments (such as six to eight, for example) are designated as bonus compartments. Bonus cards may be dispensed in response to events such as a) a jackpot reaching a predetermined amount, b) according to a preselected date and time, c) randomly, d) in response to a game event such as receiving a royal flush in a poker game, e) when a player loyalty account reaches a certain balance, f) in response to a signal from a back house computer to dispense a card, or by any other means. Any card game player can receive a bonus card, regardless of the type of game. For example, a casino might link together 80 live tables, including blackjack, baccarat, THREE CARD POKER® and other games.


The dispensing of a bonus card to players can occur more or less frequently. A casino may wish to run a “free buffet” promotion for THREE CARD POKER® players during the dinner hour on Saturday nights. The device may be programmed to dispense a bonus card entitling the player to two buffet passes when the player obtains a three of a kind hand. Or perhaps the casino would like to give away a car based on a random bonus event. In this case, a bonusing system with a central server is in communication with all shufflers that dispense bonus cards. When the random event occurs, the bonusing system sends only one signal to a single shuffler to dispense a bonus card. The selected shuffler may be randomly selected or may be selected according to a schedule.


The presence of the gate 98 in the card infeed tray 22 (FIG. 7) allows the casino operator to load a designated number of bonus cards from the card infeed tray 22 either before or after loading regular cards without interrupting game play. Preferably, the display 42 (FIG. 1) provides an indication of when the card shuffler 20 (FIG. 1) is out of bonus cards. In a preferred form of the invention, the bonus card carries a designation (such as a specific marking or color) that is capable of being read by one or more sensors and the processor is capable of keeping track of the number of bonus cards left in the machine.


Control System


Referring now to FIG. 9, a schematic block diagram of an exemplary control system is shown. Preferably, the entire control system is located within the playing card shuffler 20 (FIG. 1). In other forms of the invention, an external computer is provided to perform functions such as image processing, bonus system management, network communication and the like.


Central to the control of the preferred card handling system is a shuffler microprocessor 401. The microprocessor 401 controls all functions of the shuffler, including operation of electrical devices such as motors 402, controlling the images displayed on the display 404 (which may comprise a touch screen), processing signals received from all internal sensors 406 such as optical object presence sensors, motion sensors and the like. The display 404 includes touch screen controls and is further a user interface for programming the microprocessor 401 to display additional game names and to dispense cards according to user inputted data.


A card recognition microprocessor 408 is shown as a separate processing component but could be integrated into the shuffler microprocessor. The card recognition microprocessor 408 interprets signals received from a camera 410 to determine rank and or the suit of a card being read.


Network Capability


As mentioned above, the device of the present invention is at least capable of recognizing the presence of cards, counting cards, and reading rank and suit information. As each card is passed from the card infeed tray into the shuffling compartment, the completeness of the deck may also be verified. In the event a card is missing or extra cards are present, a warning signal is displayed on the display or optionally an alarm signal is sent via a network connection to a pit management computer.


The shuffler microprocessor 401 and the card recognition microprocessor 408 (either individually or as a combined processor) include a network connection and are capable of sending and receiving information on a local network 412 such as an Ethernet.


In the example shown in FIG. 9, only the card recognition microprocessor communicates with the network. The shuffler itself may send and receive information related to needed maintenance or repair. The Ethernet may also collect and/or process data from other data collection devices on a gaming table such as RFID wager amount sensors, object sensors, chip tray inventory sensors, and the like. Data may be collected on the table and sent to a distal database for later analysis and processing, or may be analyzed in real time.


The card handling device of the present invention may include a data port 414 in communication with the shuffler microprocessor 401, card recognition processor 408, or both. This communication port can output information directly to a separate printer 416 or a printer may be incorporated into the shuffler itself.


Other Functions


Card handling devices of the present invention are capable of performing a variety of functions not known prior to this invention. For example, the device may be configured to access a wireless or wired communication network and communicate information to the equipment supplier or user relating to maintenance, repair, machine serial number, current or past operation, performance or usage.


The card handling device may also be programmed to operate in multiple modes (i.e., setup, run, service) and switch between modes without powering down.


Further, the shuffler may be programmed to run a self-diagnosis when either the shuffler is in a service mode and a user inputs a request for a self-diagnosis, or when a single card is fed into the shuffler and creates a report of the function of all operational elements. This information can be sent to a printer attached to the shuffler or incorporated into the shuffler.


The above examples of the present invention are meant to be non-limiting. Many other variations of the invention are possible. For example, providing a card handling zone capable of deck verification only, capable of ordering cards, capable of decommissioning cards, and the like, is clearly contemplated. Numerous card reading systems and schemes can be used in place of the disclosed sensing systems. The touch screen display may be used to input any information needed to program the shuffler for use in a casino. Furthermore, many different arrangements of data collection and analysis hardware and software may be used in connection with the shuffler of the present invention to gain information relating to player performance and win/loss information on a casino game.

Claims
  • 1. A method of making a playing card shuffling device for use in a casino or card room, the method comprising: providing a playing card shuffler device having a card infeed tray, a card output tray, a card handling zone, and a processor in communication with a graphic display, touch screen controls integrated in the graphic display, wherein providing the playing card shuffler device comprises locating the graphic display on the playing card shuffler device proximate a card carousel, and locating the graphic display on a side of the card carousel opposite the card infeed tray and the card output tray;programming the processor to cause the graphic display to automatically display information; andconfiguring the processor to receive user inputted data from the touch screen controls to affect at least one of performance, activity and mode of operation of the playing card shuffler device on playing cards located in the card handling zone prior to the playing card shuffler device outputting the playing cards to the card output tray.
  • 2. The method of claim 1, further comprising: entering at least one of the following types of information using the touch screen controls: a number of table positions, a number of cards per hand, a number of dealer cards, a number of common cards, a number of bonus cards, a number of cards per deck and a game name; andwherein programming the processor to cause the graphic display to automatically display information comprises programming the processor using the touch screen controls.
  • 3. The method of claim 1, wherein programming the processor to cause the graphic display to automatically display information comprises programming the processor to cause the graphic display to automatically display at least one of the following: a product name, a casino name, a table identification, a game name, a number of shuffles, a number of hands dealt, an error message, a warning message, an indication of use, a card jam, a need for service, and programming prompts.
  • 4. The method of claim 1, further comprising mounting the playing card shuffler device on a gaming table such that the graphic display screen is located below a gaming table surface.
  • 5. The method of claim 1, wherein programming the processor to cause the graphic display to automatically display information comprises programming the processor to cause the graphic display to automatically display information from the playing card shuffler device.
  • 6. The method of claim 5, further comprising: linking the processor in communication with a card reading device, the card reading device configured to acquire card data and send the card data to the processor;the processor configured to process the card data; andthe graphic display configured to automatically display graphics of cards dealt into a player hand.
  • 7. The method of claim 1, wherein the information includes graphics of cards dealt into a player hand.
  • 8. The method of claim 1, wherein the touch screen controls are adapted to program the playing card shuffler device to deliver one or more of a specific amount of dealer cards, a specific amount of flop cards, a bonus hand and common cards in the play of a casino card game.
  • 9. The method of claim 1, wherein the graphic display is configured to display one or more of alphanumeric information, graphical information, animation and video feed.
  • 10. The method of claim 1, wherein programming the processor to cause the graphic display to automatically display information comprises programming the processor to cause the graphic display to automatically display, in the event of a card jam, a diagram of a card path and an indication of a location of the card jam.
  • 11. The method of claim 1, further comprising linking the processor in communication with a card reading device, the card reading device comprising one or more of a CMOS camera, a CCD camera and an RFID receiver.
  • 12. The method of claim 1, further comprising linking a camera in communication with one or more of the processor and the graphic display.
  • 13. The method of claim 1, wherein the processor is adapted to execute image recognition software.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/714,211, filed Dec. 13, 2012, now U.S. Pat. No. 8,702,101, issued Apr. 22, 2014, which in turn, is a divisional of U.S. patent application Ser. No. 11/481,407, filed Jul. 5, 2006, now U.S. Pat. No. 8,342,525, issued Jan. 1, 2013. This application is also related to U.S. patent application Ser. No. 12/848,631, filed Aug. 2, 2010, now U.S. Pat. No. 8,141,875, issued Mar. 27, 2012, which is a divisional of U.S. patent application Ser. No. 11/598,259, filed Nov. 9, 2006, now U.S. Pat. No. 7,766,332, issued Aug. 3, 2010, and related to U.S. patent application Ser. No. 11/810,864, filed Jun. 6, 2007, now U.S. Pat. No. 8,070,574, issued Dec. 6, 2011; the contents of each of which are incorporated by reference in their entirety herein.

US Referenced Citations (907)
Number Name Date Kind
130281 Coughlik Aug 1872 A
205030 Ash Jun 1878 A
609730 Booth Aug 1898 A
673154 Bellows Apr 1901 A
793489 Williams Jun 1905 A
892389 Bellows Jul 1908 A
1014219 Hall Jan 1912 A
1043109 Hurm Nov 1912 A
1157898 Perret Oct 1915 A
1556856 Lipps Oct 1925 A
1850114 McCaddin Mar 1932 A
1885276 Mckay Nov 1932 A
1955926 Matthaey Apr 1934 A
1992085 McKay Feb 1935 A
1998690 Shepherd et al. Apr 1935 A
2001220 Smith May 1935 A
2001918 Nevius May 1935 A
2016030 Woodruff et al. Oct 1935 A
2043343 Warner Jun 1936 A
2060096 McCoy Nov 1936 A
2065824 Plass Dec 1936 A
2159958 Sachs May 1939 A
2185474 Nott Jan 1940 A
2254484 Hutchins Sep 1941 A
D132360 Gardner May 1942 S
2328153 Laing Aug 1943 A
2328879 Isaacson Sep 1943 A
D139530 Schindler Nov 1944 S
2364413 Wittel Dec 1944 A
2525305 Lombard Oct 1950 A
2543522 Cohen Feb 1951 A
2588582 Sivertson Mar 1952 A
2659607 Skillman et al. Nov 1953 A
2661215 Stevens Dec 1953 A
2676020 Ogden Apr 1954 A
2692777 Miller Oct 1954 A
2701720 Ogden Feb 1955 A
2705638 Newcomb Apr 1955 A
2711319 Morgan et al. Jun 1955 A
2714510 Oppenlander et al. Aug 1955 A
2717782 Droll Sep 1955 A
2727747 Semisch, Jr. Dec 1955 A
2731271 Brown Jan 1956 A
2747877 Howard May 1956 A
2755090 Aldrich Jul 1956 A
2757005 Nothaft Jul 1956 A
2760779 Ogden et al. Aug 1956 A
2770459 Wilson et al. Nov 1956 A
2778643 Williams Jan 1957 A
2778644 Stephenson Jan 1957 A
2782040 Matter Feb 1957 A
2790641 Adams Apr 1957 A
2793863 Liebelt May 1957 A
2815214 Hall Dec 1957 A
2821399 Heinoo Jan 1958 A
2914215 Neidig Nov 1959 A
2937739 Levy May 1960 A
2950005 MacDonald Aug 1960 A
RE24986 Stephenson May 1961 E
3067885 Kohler Dec 1962 A
3107096 Osborn Oct 1963 A
3124674 Edwards et al. Mar 1964 A
3131935 Gronneberg May 1964 A
3147978 Sjostrand Sep 1964 A
D200652 Fisk Mar 1965 S
3222071 Lang Dec 1965 A
3235741 Plaisance Feb 1966 A
3288308 Gingher Nov 1966 A
3305237 Granius Feb 1967 A
3312473 Friedman et al. Apr 1967 A
3452509 Hauer Werner Jul 1969 A
3530968 Palmer Sep 1970 A
3588116 Miura Jun 1971 A
3589730 Slay Jun 1971 A
3595388 Castaldi Jul 1971 A
3597076 Hubbard Aug 1971 A
3618933 Roggenstein Nov 1971 A
3627331 Erickson Dec 1971 A
3666270 Mazur May 1972 A
3680853 Houghton Aug 1972 A
3690670 Cassady et al. Sep 1972 A
3704938 Fanselow Dec 1972 A
3716238 Porter Feb 1973 A
3751041 Seifert Aug 1973 A
3761079 Azure Sep 1973 A
3810627 Levy May 1974 A
D232953 Oguchi Sep 1974 S
3861261 Maxey Jan 1975 A
3897954 Erickson Aug 1975 A
3909002 Levy Sep 1975 A
3929339 Mattioli et al. Dec 1975 A
3944077 Green Mar 1976 A
3944230 Fineman Mar 1976 A
3949219 Crouse Apr 1976 A
3968364 Miller Jul 1976 A
4023705 Reiner et al. May 1977 A
4033590 Pic Jul 1977 A
4072930 Lucero et al. Feb 1978 A
4088265 Garczynski May 1978 A
4151410 McMillan et al. Apr 1979 A
4159581 Lichtenberg Jul 1979 A
4162649 Thornton Jul 1979 A
4166615 Noguchi et al. Sep 1979 A
4232861 Maul Nov 1980 A
4280690 Hill Jul 1981 A
4283709 Lucero et al. Aug 1981 A
4310160 Willette Jan 1982 A
4339134 Macheel Jul 1982 A
4339798 Hedges et al. Jul 1982 A
4361393 Noto Nov 1982 A
4368972 Naramore Jan 1983 A
4369972 Parker Jan 1983 A
4374309 Walton Feb 1983 A
4377285 Kadlic Mar 1983 A
4385827 Naramore May 1983 A
4388994 Suda et al. Jun 1983 A
4397469 Carter Aug 1983 A
4421312 Delgado et al. Dec 1983 A
4421501 Scheffer Dec 1983 A
D273962 Fromm May 1984 S
D274069 Fromm May 1984 S
4467424 Hedges et al. Aug 1984 A
4494197 Troy et al. Jan 1985 A
4497488 Plevyak et al. Feb 1985 A
4512580 Matviak Apr 1985 A
4513969 Samsel Apr 1985 A
4515367 Howard May 1985 A
4531187 Uhland et al. Jul 1985 A
4534562 Cuff et al. Aug 1985 A
4549738 Greitzer Oct 1985 A
4566782 Britt et al. Jan 1986 A
4575367 Karmel Mar 1986 A
4586712 Lorber et al. May 1986 A
4659082 Greenberg Apr 1987 A
4662637 Pfeiffer et al. May 1987 A
4662816 Fabrig May 1987 A
4667959 Pfeiffer et al. May 1987 A
4741524 Bromage May 1988 A
4750743 Nicoletti Jun 1988 A
4755941 Bacchi Jul 1988 A
4759448 Kawabata Jul 1988 A
4770412 Wolfe Sep 1988 A
4770421 Hoffman Sep 1988 A
4807884 Breeding Feb 1989 A
4822050 Normand et al. Apr 1989 A
4832342 Plevyak May 1989 A
4858000 Lu Aug 1989 A
4861041 Jones et al. Aug 1989 A
4876000 Mikhail Oct 1989 A
4900009 Kitahara et al. Feb 1990 A
4904830 Rizzuto Feb 1990 A
4921109 Hasuo et al. May 1990 A
4926327 Sidley May 1990 A
4948134 Suttle et al. Aug 1990 A
4951950 Normand et al. Aug 1990 A
4969648 Hollinger et al. Nov 1990 A
4993587 Abe Feb 1991 A
4995615 Cheng et al. Feb 1991 A
5000453 Stevens et al. Mar 1991 A
5039102 Miller et al. Aug 1991 A
5067713 Soules et al. Nov 1991 A
5078405 Jones et al. Jan 1992 A
5081487 Hoyer et al. Jan 1992 A
5096197 Embury Mar 1992 A
5102293 Schneider Apr 1992 A
5118114 Tucci et al. Jun 1992 A
5121192 Kazui Jun 1992 A
5121921 Friedman Jun 1992 A
5154429 LeVasseur et al. Oct 1992 A
5179517 Sarbin et al. Jan 1993 A
5197094 Tillery et al. Mar 1993 A
5199710 Lamle Apr 1993 A
5209476 Eiba et al. May 1993 A
5224712 Laughlin et al. Jul 1993 A
5240140 Huen Aug 1993 A
5248142 Breeding et al. Sep 1993 A
5257179 DeMar et al. Oct 1993 A
5259907 Soules et al. Nov 1993 A
5261667 Breeding Nov 1993 A
5267248 Reyner Nov 1993 A
5275411 Breeding Jan 1994 A
5276312 McCarthy et al. Jan 1994 A
5283422 Storch et al. Feb 1994 A
5288081 Breeding et al. Feb 1994 A
5299089 Lwee et al. Mar 1994 A
5303921 Breeding Apr 1994 A
5344146 Lee Sep 1994 A
5356145 Verschoor Oct 1994 A
5362053 Miller et al. Nov 1994 A
5374061 Albrecht et al. Dec 1994 A
5377973 Jones et al. Jan 1995 A
5382024 Blaha Jan 1995 A
5382025 Sklansky et al. Jan 1995 A
5390910 Mandel et al. Feb 1995 A
5397128 Hesse et al. Mar 1995 A
5397133 Penzias et al. Mar 1995 A
5416308 Hood et al. May 1995 A
5431399 Kelley et al. Jul 1995 A
5431407 Hofberg et al. Jul 1995 A
5437462 Breeding et al. Aug 1995 A
5445377 Steinbach Aug 1995 A
5470079 LeStrange et al. Nov 1995 A
D365853 Zadro Jan 1996 S
5489101 Moody et al. Feb 1996 A
5515477 Sutherland May 1996 A
5524888 Heidel Jun 1996 A
5531448 Moody et al. Jul 1996 A
5544892 Breeding et al. Aug 1996 A
5575475 Steinbach Nov 1996 A
5584483 Sines et al. Dec 1996 A
5586766 Forte et al. Dec 1996 A
5586936 Bennett et al. Dec 1996 A
5605334 McCrea et al. Feb 1997 A
5613912 Slater et al. Mar 1997 A
5632483 Garczynski et al. May 1997 A
5636843 Roberts et al. Jun 1997 A
5651548 French et al. Jul 1997 A
5655961 Acres et al. Aug 1997 A
5669816 Garczynski et al. Sep 1997 A
5676231 Legras et al. Oct 1997 A
5676372 Sines et al. Oct 1997 A
5681039 Miller et al. Oct 1997 A
5683085 Johnson et al. Nov 1997 A
5685543 Garner et al. Nov 1997 A
5690324 Otomo et al. Nov 1997 A
5692748 Frisco Dec 1997 A
5695189 Breeding et al. Dec 1997 A
5701565 Morgan Dec 1997 A
5707286 Carlson Jan 1998 A
5707287 McCrea et al. Jan 1998 A
5711525 Breeding et al. Jan 1998 A
5718427 Cranford et al. Feb 1998 A
5719288 Sens et al. Feb 1998 A
5720484 Hsu et al. Feb 1998 A
5722893 Hill et al. Mar 1998 A
5735525 McCrea et al. Apr 1998 A
5735742 French et al. Apr 1998 A
5743798 Adams et al. Apr 1998 A
5768382 Schneier et al. Jun 1998 A
5770533 Franchi et al. Jun 1998 A
5770553 Kroner et al. Jun 1998 A
5772505 Garczynski et al. Jun 1998 A
5779546 Meissner et al. Jul 1998 A
5781647 Fishbine et al. Jul 1998 A
5785321 van Putten et al. Jul 1998 A
5788574 Ornstein et al. Aug 1998 A
5791988 Nomi et al. Aug 1998 A
5802560 Joseph et al. Sep 1998 A
5803808 Strisower Sep 1998 A
5810355 Trilli Sep 1998 A
5813326 Salomon et al. Sep 1998 A
5813912 Shultz et al. Sep 1998 A
5814796 Benson et al. Sep 1998 A
5836775 Hiyama et al. Nov 1998 A
5839730 Pike Nov 1998 A
5845906 Wirth et al. Dec 1998 A
5851011 Lott et al. Dec 1998 A
5867586 Liang Feb 1999 A
5879233 Stupero Mar 1999 A
5883804 Christensen Mar 1999 A
5890717 Rosewarne et al. Apr 1999 A
5892210 Levasseur Apr 1999 A
5911626 McCrea et al. Jun 1999 A
5919090 Mothwurf Jul 1999 A
D412723 Hachuel et al. Aug 1999 S
5936222 Korsunsky et al. Aug 1999 A
5941769 Order Aug 1999 A
5944310 Johnson et al. Aug 1999 A
D414527 Tedham Sep 1999 S
5957776 Hoehne et al. Sep 1999 A
5974150 Kaish et al. Oct 1999 A
5985305 Peery et al. Nov 1999 A
5989122 Roblejo et al. Nov 1999 A
5991308 Fuhrmann et al. Nov 1999 A
6015311 Benjamin et al. Jan 2000 A
6019368 Sines et al. Feb 2000 A
6019374 Breeding et al. Feb 2000 A
6039650 Hill et al. Mar 2000 A
6050569 Taylor Apr 2000 A
6053695 Longoria et al. Apr 2000 A
6061449 Candelore et al. May 2000 A
6068258 Breeding et al. May 2000 A
6069564 Hatano et al. May 2000 A
6071190 Weiss et al. Jun 2000 A
6093103 McCrea et al. Jul 2000 A
6113101 Wirth et al. Sep 2000 A
6117012 McCrea et al. Sep 2000 A
D432588 Tedham Oct 2000 S
6126166 Lorson et al. Oct 2000 A
6127447 Mitry et al. Oct 2000 A
6131817 Miller Oct 2000 A
6139014 Breeding et al. Oct 2000 A
6149154 Grauzer et al. Nov 2000 A
6154131 Jones et al. Nov 2000 A
6165069 Sines et al. Dec 2000 A
6165072 Davis et al. Dec 2000 A
6183362 Boushy Feb 2001 B1
6186895 Oliver Feb 2001 B1
6200218 Lindsay Mar 2001 B1
6210274 Carlson Apr 2001 B1
6213310 Wennersten et al. Apr 2001 B1
6217447 Lofink et al. Apr 2001 B1
6234900 Cumbers May 2001 B1
6236223 Brady et al. May 2001 B1
6250632 Albrecht Jun 2001 B1
6254002 Litman Jul 2001 B1
6254096 Grauzer et al. Jul 2001 B1
6254484 McCrea, Jr. Jul 2001 B1
6257981 Acres et al. Jul 2001 B1
6267248 Johnson et al. Jul 2001 B1
6267648 Katayama et al. Jul 2001 B1
6267671 Hogan Jul 2001 B1
6270404 Sines et al. Aug 2001 B2
6272223 Carlson Aug 2001 B1
6293546 Hessing et al. Sep 2001 B1
6293864 Romero Sep 2001 B1
6299167 Sines et al. Oct 2001 B1
6299534 Breeding et al. Oct 2001 B1
6299536 Hill Oct 2001 B1
6308886 Benson et al. Oct 2001 B1
6313871 Schubert Nov 2001 B1
6325373 Breeding et al. Dec 2001 B1
6334614 Breeding Jan 2002 B1
6341778 Lee Jan 2002 B1
6342830 Want et al. Jan 2002 B1
6346044 McCrea, Jr. Feb 2002 B1
6361044 Block et al. Mar 2002 B1
6386973 Yoseloff May 2002 B1
6402142 Warren et al. Jun 2002 B1
6403908 Stardust et al. Jun 2002 B2
6443839 Stockdale et al. Sep 2002 B2
6446864 Kim et al. Sep 2002 B1
6454266 Breeding et al. Sep 2002 B1
6460848 Soltys et al. Oct 2002 B1
6464584 Oliver Oct 2002 B2
6490277 Tzotzkov Dec 2002 B1
6508709 Karmarkar Jan 2003 B1
6514140 Storch Feb 2003 B1
6517435 Soltys et al. Feb 2003 B2
6517436 Soltys et al. Feb 2003 B2
6520857 Soltys et al. Feb 2003 B2
6527271 Soltys et al. Mar 2003 B2
6530836 Soltys et al. Mar 2003 B2
6530837 Soltys et al. Mar 2003 B2
6532297 Lindquist Mar 2003 B1
6533276 Soltys et al. Mar 2003 B2
6533662 Soltys et al. Mar 2003 B2
6561897 Bourbour et al. May 2003 B1
6568678 Breeding et al. May 2003 B2
6579180 Soltys et al. Jun 2003 B2
6579181 Soltys et al. Jun 2003 B2
6581747 Charlier et al. Jun 2003 B1
6582301 Hill Jun 2003 B2
6582302 Romero Jun 2003 B2
6585586 Romero Jul 2003 B1
6585856 Zwick et al. Jul 2003 B2
6588750 Scheper et al. Jul 2003 B1
6588751 Grauzer et al. Jul 2003 B1
6595857 Soltys et al. Jul 2003 B2
6609710 Order Aug 2003 B1
6612928 Bradford et al. Sep 2003 B1
6616535 Nishizaki et al. Sep 2003 B1
6619662 Miller Sep 2003 B2
6622185 Johnson Sep 2003 B1
6626757 Oliveras Sep 2003 B2
6629019 Legge et al. Sep 2003 B2
6629591 Griswold et al. Oct 2003 B1
6629889 Mothwurf Oct 2003 B2
6629894 Purton Oct 2003 B1
6637622 Robinson Oct 2003 B1
6638161 Soltys et al. Oct 2003 B2
6645068 Kelly et al. Nov 2003 B1
6645077 Rowe Nov 2003 B2
6651981 Grauzer et al. Nov 2003 B2
6651982 Grauzer et al. Nov 2003 B2
6651985 Sines et al. Nov 2003 B2
6652379 Soltys et al. Nov 2003 B2
6655684 Grauzer et al. Dec 2003 B2
6655690 Oskwarek Dec 2003 B1
6658135 Morito et al. Dec 2003 B1
6659460 Blaha et al. Dec 2003 B2
6659461 Yoseloff et al. Dec 2003 B2
6659875 Purton Dec 2003 B2
6663490 Soltys et al. Dec 2003 B2
6666768 Akers Dec 2003 B1
6671358 Seidman et al. Dec 2003 B1
6676127 Johnson et al. Jan 2004 B2
6676517 Beavers Jan 2004 B2
6680843 Farrow et al. Jan 2004 B2
6685564 Oliver Feb 2004 B2
6685567 Cockerille et al. Feb 2004 B2
6685568 Soltys et al. Feb 2004 B2
6688597 Jones Feb 2004 B2
6688979 Soltys et al. Feb 2004 B2
6690673 Jarvis Feb 2004 B1
6698756 Baker et al. Mar 2004 B1
6698759 Webb et al. Mar 2004 B2
6702289 Feola Mar 2004 B1
6702290 Buono-Correa et al. Mar 2004 B2
6709333 Bradford et al. Mar 2004 B1
6712696 Soltys et al. Mar 2004 B2
6719288 Hessing et al. Apr 2004 B2
6719634 Mishina et al. Apr 2004 B2
6722974 Sines et al. Apr 2004 B2
6726205 Purton Apr 2004 B1
6732067 Powderly May 2004 B1
6733012 Bui et al. May 2004 B2
6733388 Mothwurf May 2004 B2
6746333 Onda et al. Jun 2004 B1
6747560 Stevens, III Jun 2004 B2
6749510 Giobbi Jun 2004 B2
6758751 Soltys et al. Jul 2004 B2
6758757 Luciano, Jr. et al. Jul 2004 B2
6769693 Huard et al. Aug 2004 B2
6774782 Runyon et al. Aug 2004 B2
6789801 Snow Sep 2004 B2
6802510 Haber Oct 2004 B1
6804763 Stockdale et al. Oct 2004 B1
6808173 Snow Oct 2004 B2
6827282 Silverbrook Dec 2004 B2
6834251 Fletcher Dec 2004 B1
6840517 Snow Jan 2005 B2
6842263 Saeki Jan 2005 B1
6843725 Nelson Jan 2005 B2
6848616 Tsirline et al. Feb 2005 B2
6848844 McCue, Jr. et al. Feb 2005 B2
6848994 Knust et al. Feb 2005 B1
6857961 Soltys et al. Feb 2005 B2
6874784 Promutico Apr 2005 B1
6874786 Bruno Apr 2005 B2
6877657 Ranard et al. Apr 2005 B2
6877748 Patroni Apr 2005 B1
6886829 Hessing et al. May 2005 B2
6889979 Blaha May 2005 B2
6893347 Zilliacus et al. May 2005 B1
6899628 Leen et al. May 2005 B2
6902167 Webb Jun 2005 B2
6905121 Timpano Jun 2005 B1
6923446 Snow Aug 2005 B2
6938900 Snow Sep 2005 B2
6941180 Fischer et al. Sep 2005 B1
6950948 Neff Sep 2005 B2
6955599 Bourbour et al. Oct 2005 B2
6957746 Martin et al. Oct 2005 B2
6959925 Baker et al. Nov 2005 B1
6959935 Buhl et al. Nov 2005 B2
6960134 Hartl et al. Nov 2005 B2
6964612 Soltys et al. Nov 2005 B2
6986514 Snow Jan 2006 B2
6988516 Debaes et al. Jan 2006 B2
7011309 Soltys et al. Mar 2006 B2
7020307 Hinton et al. Mar 2006 B2
7028598 Teshima Apr 2006 B2
7029009 Grauzer et al. Apr 2006 B2
7036818 Grauzer et al. May 2006 B2
7046458 Nakayama May 2006 B2
7046764 Kump May 2006 B1
7048629 Sines et al. May 2006 B2
7059602 Grauzer et al. Jun 2006 B2
7066464 Blad et al. Jun 2006 B2
7068822 Scott Jun 2006 B2
7073791 Grauzer et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7089420 Durst et al. Aug 2006 B1
D527900 Dewa Sep 2006 S
7106201 Tuttle Sep 2006 B2
7113094 Garber et al. Sep 2006 B2
7114718 Grauzer et al. Oct 2006 B2
7124947 Storch Oct 2006 B2
7128652 Lavoie et al. Oct 2006 B1
7137627 Grauzer et al. Nov 2006 B2
7139108 Andersen et al. Nov 2006 B2
7140614 Snow Nov 2006 B2
7162035 Durst et al. Jan 2007 B1
7165769 Crenshaw et al. Jan 2007 B2
7165770 Snow Jan 2007 B2
7175522 Hartl Feb 2007 B2
7186181 Rowe Mar 2007 B2
7201656 Darder Apr 2007 B2
7202888 Tecu et al. Apr 2007 B2
7203841 Jackson et al. Apr 2007 B2
7213812 Schubert et al. May 2007 B2
7222852 Soltys et al. May 2007 B2
7222855 Sorge May 2007 B2
7231812 Lagare Jun 2007 B1
7234698 Grauzer et al. Jun 2007 B2
7237969 Bartman Jul 2007 B2
7243148 Keir et al. Jul 2007 B2
7243698 Siegel Jul 2007 B2
7246799 Snow Jul 2007 B2
7255344 Grauzer et al. Aug 2007 B2
7255351 Yoseloff et al. Aug 2007 B2
7255642 Sines et al. Aug 2007 B2
7257630 Cole et al. Aug 2007 B2
7261294 Grauzer et al. Aug 2007 B2
7264241 Schubert et al. Sep 2007 B2
7264243 Yoseloff et al. Sep 2007 B2
7277570 Armstrong Oct 2007 B2
7278923 Grauzer et al. Oct 2007 B2
7294056 Lowell et al. Nov 2007 B2
7297062 Gatto et al. Nov 2007 B2
7300056 Gioia et al. Nov 2007 B2
7303473 Rowe Dec 2007 B2
7309065 Yoseloff et al. Dec 2007 B2
7316609 Dunn et al. Jan 2008 B2
7316615 Soltys et al. Jan 2008 B2
7322576 Grauzer et al. Jan 2008 B2
7331579 Snow Feb 2008 B2
7334794 Snow Feb 2008 B2
7338044 Grauzer et al. Mar 2008 B2
7338362 Gallagher Mar 2008 B1
7341510 Bourbour et al. Mar 2008 B2
D566784 Palmer Apr 2008 S
7357321 Yoshida et al. Apr 2008 B2
7360094 Neff Apr 2008 B2
7367561 Blaha et al. May 2008 B2
7367563 Yoseloff et al. May 2008 B2
7367565 Chiu May 2008 B2
7367884 Breeding et al. May 2008 B2
7374170 Grauzer et al. May 2008 B2
7384044 Grauzer et al. Jun 2008 B2
7387300 Snow Jun 2008 B2
7389990 Mourad Jun 2008 B2
7390256 Soltys et al. Jun 2008 B2
7399226 Mishra Jul 2008 B2
7407438 Schubert et al. Aug 2008 B2
7413191 Grauzer et al. Aug 2008 B2
7434805 Grauzer et al. Oct 2008 B2
7436957 Fischer et al. Oct 2008 B1
7448626 Fleckenstein Nov 2008 B2
7458582 Snow et al. Dec 2008 B2
7461843 Baker et al. Dec 2008 B1
7464932 Darling Dec 2008 B2
7464934 Schwartz Dec 2008 B2
7472906 Shai Jan 2009 B2
7478813 Hofferber et al. Jan 2009 B1
7500672 Ho Mar 2009 B2
7506874 Hall Mar 2009 B2
7510186 Fleckenstein Mar 2009 B2
7510190 Snow et al. Mar 2009 B2
7510194 Soltys et al. Mar 2009 B2
7510478 Benbrahim et al. Mar 2009 B2
7513437 Douglas Apr 2009 B2
7515718 Nguyen et al. Apr 2009 B2
7523935 Grauzer et al. Apr 2009 B2
7523936 Grauzer et al. Apr 2009 B2
7523937 Fleckenstein Apr 2009 B2
7525510 Beland et al. Apr 2009 B2
7537216 Soltys et al. May 2009 B2
7540497 Tseng Jun 2009 B2
7540498 Crenshaw et al. Jun 2009 B2
7549643 Quach Jun 2009 B2
7554753 Wakamiya Jun 2009 B2
7556197 Yoshida et al. Jul 2009 B2
7556266 Blaha et al. Jul 2009 B2
7575237 Snow Aug 2009 B2
7578506 Lambert Aug 2009 B2
7584962 Breeding et al. Sep 2009 B2
7584963 Krenn et al. Sep 2009 B2
7584966 Snow Sep 2009 B2
7591728 Gioia et al. Sep 2009 B2
7593544 Downs, III et al. Sep 2009 B2
7594660 Baker et al. Sep 2009 B2
7597623 Grauzer et al. Oct 2009 B2
7644923 Dickinson et al. Jan 2010 B1
7661676 Smith Feb 2010 B2
7666090 Hettinger Feb 2010 B2
7669852 Baker et al. Mar 2010 B2
7669853 Jones Mar 2010 B2
7677565 Grauzer et al. Mar 2010 B2
7677566 Krenn et al. Mar 2010 B2
7686681 Soltys et al. Mar 2010 B2
7699694 Hill Apr 2010 B2
7735657 Johnson Jun 2010 B2
7740244 Ho Jun 2010 B2
7744452 Cimring et al. Jun 2010 B2
7753373 Grauzer et al. Jul 2010 B2
7753374 Ho Jul 2010 B2
7753798 Soltys et al. Jul 2010 B2
7758425 Poh Jul 2010 B2
7762554 Ho Jul 2010 B2
7764836 Downs, III et al. Jul 2010 B2
7766332 Grauzer et al. Aug 2010 B2
7766333 Stardust et al. Aug 2010 B1
7769232 Downs, III Aug 2010 B2
7769853 Nezamzadeh Aug 2010 B2
7773749 Durst et al. Aug 2010 B1
7780529 Rowe et al. Aug 2010 B2
7784790 Grauzer et al. Aug 2010 B2
7804982 Howard et al. Sep 2010 B2
7846020 Walker et al. Dec 2010 B2
7867080 Nicely et al. Jan 2011 B2
7890365 Hettinger Feb 2011 B2
7900923 Toyama et al. Mar 2011 B2
7901285 Tran et al. Mar 2011 B2
7908169 Hettinger Mar 2011 B2
7909689 Lardie Mar 2011 B2
7931533 LeMay et al. Apr 2011 B2
7933448 Downs, III Apr 2011 B2
7946586 Krenn et al. May 2011 B2
7967294 Blaha et al. Jun 2011 B2
7976023 Hessing et al. Jul 2011 B1
7988152 Sines Aug 2011 B2
7988554 LeMay et al. Aug 2011 B2
7995196 Fraser Aug 2011 B1
8002638 Grauzer et al. Aug 2011 B2
8011661 Stasson Sep 2011 B2
8016663 Soltys et al. Sep 2011 B2
8021231 Walker et al. Sep 2011 B2
8025294 Grauzer et al. Sep 2011 B2
8038521 Grauzer et al. Oct 2011 B2
RE42944 Blaha et al. Nov 2011 E
8057302 Wells et al. Nov 2011 B2
8062134 Kelly et al. Nov 2011 B2
8070574 Grauzer Dec 2011 B2
8092307 Kelly Jan 2012 B2
8092309 Bickley Jan 2012 B2
8109514 Toyama Feb 2012 B2
8141875 Grauzer et al. Mar 2012 B2
8150158 Downs, III Apr 2012 B2
8171567 Fraser et al. May 2012 B1
8210536 Blaha et al. Jul 2012 B2
8221244 French Jul 2012 B2
8251293 Nagata et al. Aug 2012 B2
8251802 Snow Aug 2012 B2
8267404 Grauzer et al. Sep 2012 B2
8270603 Durst et al. Sep 2012 B1
8287347 Snow et al. Oct 2012 B2
8287386 Miller et al. Oct 2012 B2
8319666 Weinmann et al. Nov 2012 B2
8337296 Grauzer et al. Dec 2012 B2
8342525 Scheper Jan 2013 B2
8342526 Sampson et al. Jan 2013 B1
8342529 Snow Jan 2013 B2
8353513 Swanson Jan 2013 B2
8381918 Johnson Feb 2013 B2
8419521 Grauzer et al. Apr 2013 B2
8444147 Grauzer et al. May 2013 B2
8444489 Lian May 2013 B2
8469360 Sines Jun 2013 B2
8475252 Savage Jul 2013 B2
8480088 Toyama et al. Jul 2013 B2
8485527 Sampson et al. Jul 2013 B2
8490973 Yoseloff et al. Jul 2013 B2
8498444 Sharma Jul 2013 B2
8505916 Grauzer et al. Aug 2013 B2
8511684 Grauzer Aug 2013 B2
8556263 Grauzer et al. Oct 2013 B2
8579289 Rynda et al. Nov 2013 B2
8602416 Toyama Dec 2013 B2
8616552 Czyzewski et al. Dec 2013 B2
8628086 Krenn et al. Jan 2014 B2
8662500 Swanson Mar 2014 B2
8695978 Ho Apr 2014 B1
8702100 Snow et al. Apr 2014 B2
8702101 Scheper Apr 2014 B2
8720891 Hessing et al. May 2014 B2
8758111 Lutnick Jun 2014 B2
8777710 Grauzer et al. Jul 2014 B2
8820745 Grauzer et al. Sep 2014 B2
8899587 Grauzer et al. Dec 2014 B2
8919775 Wadds et al. Dec 2014 B2
9101821 Snow Aug 2015 B2
20010036231 Easwar et al. Nov 2001 A1
20010036866 Stockdale et al. Nov 2001 A1
20020017481 Johnson et al. Feb 2002 A1
20020030425 Tiramani et al. Mar 2002 A1
20020045478 Soltys et al. Apr 2002 A1
20020045481 Soltys et al. Apr 2002 A1
20020063389 Breeding et al. May 2002 A1
20020068635 Hill Jun 2002 A1
20020070499 Breeding et al. Jun 2002 A1
20020094869 Harkham Jul 2002 A1
20020107067 McGlone et al. Aug 2002 A1
20020107072 Giobbi Aug 2002 A1
20020113368 Hessing et al. Aug 2002 A1
20020135692 Fujinawa Sep 2002 A1
20020142820 Bartlett Oct 2002 A1
20020155869 Soltys et al. Oct 2002 A1
20020163125 Grauzer et al. Nov 2002 A1
20020187821 Soltys et al. Dec 2002 A1
20020187830 Stockdale et al. Dec 2002 A1
20030003997 Vuong et al. Jan 2003 A1
20030007143 McArthur et al. Jan 2003 A1
20030047870 Blaha et al. Mar 2003 A1
20030048476 Yamakawa Mar 2003 A1
20030052449 Grauzer et al. Mar 2003 A1
20030052450 Grauzer et al. Mar 2003 A1
20030064798 Grauzer et al. Apr 2003 A1
20030067112 Grauzer et al. Apr 2003 A1
20030071413 Blaha et al. Apr 2003 A1
20030073498 Grauzer et al. Apr 2003 A1
20030075865 Grauzer et al. Apr 2003 A1
20030075866 Blaha et al. Apr 2003 A1
20030087694 Storch May 2003 A1
20030090059 Grauzer et al. May 2003 A1
20030094756 Grauzer et al. May 2003 A1
20030151194 Hessing et al. Aug 2003 A1
20030195025 Hill Oct 2003 A1
20040015423 Walker et al. Jan 2004 A1
20040036214 Baker et al. Feb 2004 A1
20040067789 Grauzer et al. Apr 2004 A1
20040100026 Haggard May 2004 A1
20040108654 Grauzer et al. Jun 2004 A1
20040116179 Nicely et al. Jun 2004 A1
20040169332 Grauzer et al. Sep 2004 A1
20040180722 Giobbi Sep 2004 A1
20040224777 Smith et al. Nov 2004 A1
20040245720 Grauzer et al. Dec 2004 A1
20040259618 Soltys et al. Dec 2004 A1
20050012671 Bisig Jan 2005 A1
20050023752 Grauzer et al. Feb 2005 A1
20050026680 Gururajan Feb 2005 A1
20050035548 Yoseloff et al. Feb 2005 A1
20050037843 Wells et al. Feb 2005 A1
20050040594 Krenn et al. Feb 2005 A1
20050051955 Schubert et al. Mar 2005 A1
20050051956 Grauzer et al. Mar 2005 A1
20050062227 Grauzer et al. Mar 2005 A1
20050062228 Grauzer et al. Mar 2005 A1
20050062229 Grauzer et al. Mar 2005 A1
20050082750 Grauzer et al. Apr 2005 A1
20050093231 Grauzer et al. May 2005 A1
20050104289 Grauzer et al. May 2005 A1
20050104290 Grauzer et al. May 2005 A1
20050110210 Soltys et al. May 2005 A1
20050113166 Grauzer et al. May 2005 A1
20050113171 Hodgson May 2005 A1
20050119048 Soltys et al. Jun 2005 A1
20050121852 Soltys et al. Jun 2005 A1
20050137005 Soltys et al. Jun 2005 A1
20050140090 Breeding et al. Jun 2005 A1
20050146093 Grauzer et al. Jul 2005 A1
20050148391 Tain Jul 2005 A1
20050164759 Smith Jul 2005 A1
20050192092 Breckner et al. Sep 2005 A1
20050206077 Grauzer et al. Sep 2005 A1
20050242500 Downs Nov 2005 A1
20050272501 Tran et al. Dec 2005 A1
20050288083 Downs Dec 2005 A1
20050288086 Schubert et al. Dec 2005 A1
20060027970 Kyrychenko Feb 2006 A1
20060033269 Grauzer et al. Feb 2006 A1
20060033270 Grauzer et al. Feb 2006 A1
20060046853 Black Mar 2006 A1
20060063577 Downs et al. Mar 2006 A1
20060066048 Krenn et al. Mar 2006 A1
20060181022 Grauzer et al. Aug 2006 A1
20060183540 Grauzer et al. Aug 2006 A1
20060189381 Daniel et al. Aug 2006 A1
20060199649 Soltys et al. Sep 2006 A1
20060205508 Green Sep 2006 A1
20060220312 Baker et al. Oct 2006 A1
20060220313 Baker et al. Oct 2006 A1
20060252521 Gururajan et al. Nov 2006 A1
20060252554 Gururajan et al. Nov 2006 A1
20060279040 Downs et al. Dec 2006 A1
20060281534 Grauzer et al. Dec 2006 A1
20070001395 Gioia et al. Jan 2007 A1
20070006708 Laakso Jan 2007 A1
20070015583 Tran Jan 2007 A1
20070018389 Downs Jan 2007 A1
20070045959 Soltys Mar 2007 A1
20070049368 Kuhn et al. Mar 2007 A1
20070057469 Grauzer et al. Mar 2007 A1
20070066387 Matsuno et al. Mar 2007 A1
20070069462 Downs et al. Mar 2007 A1
20070072677 Lavoie et al. Mar 2007 A1
20070102879 Stasson May 2007 A1
20070111773 Gururajan et al. May 2007 A1
20070148283 Harvey Jun 2007 A1
20070184905 Gatto et al. Aug 2007 A1
20070197294 Gong Aug 2007 A1
20070197298 Rowe Aug 2007 A1
20070202941 Miltenberger et al. Aug 2007 A1
20070222147 Blaha et al. Sep 2007 A1
20070225055 Weisman Sep 2007 A1
20070233567 Daly Oct 2007 A1
20070238506 Ruckle Oct 2007 A1
20070259709 Kelly et al. Nov 2007 A1
20070267812 Grauzer et al. Nov 2007 A1
20070272600 Johnson Nov 2007 A1
20070278739 Swanson Dec 2007 A1
20070290438 Grauzer et al. Dec 2007 A1
20080006997 Scheper et al. Jan 2008 A1
20080006998 Grauzer et al. Jan 2008 A1
20080022415 Kuo et al. Jan 2008 A1
20080032763 Giobbi Feb 2008 A1
20080039192 Laut Feb 2008 A1
20080039208 Abrink et al. Feb 2008 A1
20080096656 LeMay et al. Apr 2008 A1
20080111300 Czyzewski et al. May 2008 A1
20080113700 Czyzewski et al. May 2008 A1
20080113783 Czyzewski et al. May 2008 A1
20080136108 Polay Jun 2008 A1
20080143048 Shigeta Jun 2008 A1
20080176627 Lardie Jul 2008 A1
20080217218 Johnson Sep 2008 A1
20080234046 Kinsley Sep 2008 A1
20080234047 Nguyen Sep 2008 A1
20080248875 Beatty Oct 2008 A1
20080284096 Toyama et al. Nov 2008 A1
20080303210 Grauzer et al. Dec 2008 A1
20080315517 Toyama Dec 2008 A1
20090026700 Shigeta Jan 2009 A2
20090048026 French Feb 2009 A1
20090054161 Schubert et al. Feb 2009 A1
20090072477 Tseng Mar 2009 A1
20090091078 Grauzer et al. Apr 2009 A1
20090100409 Toneguzzo Apr 2009 A1
20090104963 Burman et al. Apr 2009 A1
20090121429 Walsh May 2009 A1
20090140492 Yoseloff et al. Jun 2009 A1
20090166970 Rosh Jul 2009 A1
20090176547 Katz Jul 2009 A1
20090179378 Amaitis et al. Jul 2009 A1
20090186676 Amaitis et al. Jul 2009 A1
20090189346 Krenn et al. Jul 2009 A1
20090191933 French Jul 2009 A1
20090194988 Wright et al. Aug 2009 A1
20090197662 Wright et al. Aug 2009 A1
20090224476 Grauzer et al. Sep 2009 A1
20090227318 Wright et al. Sep 2009 A1
20090227360 Gioia et al. Sep 2009 A1
20090250873 Jones Oct 2009 A1
20090253478 Walker et al. Oct 2009 A1
20090253503 Krise et al. Oct 2009 A1
20090267296 Ho Oct 2009 A1
20090267297 Blaha et al. Oct 2009 A1
20090283969 Tseng Nov 2009 A1
20090298577 Gagner et al. Dec 2009 A1
20090302535 Ho Dec 2009 A1
20090302537 Ho Dec 2009 A1
20090312093 Walker et al. Dec 2009 A1
20090314188 Toyama et al. Dec 2009 A1
20100013152 Grauzer et al. Jan 2010 A1
20100038849 Scheper et al. Feb 2010 A1
20100048304 Boesen Feb 2010 A1
20100069155 Schwartz et al. Mar 2010 A1
20100178987 Pacey Jul 2010 A1
20100197410 Leen et al. Aug 2010 A1
20100234110 Clarkson Sep 2010 A1
20100240440 Szrek et al. Sep 2010 A1
20100244376 Johnson Sep 2010 A1
20100244382 Snow Sep 2010 A1
20100252992 Sines Oct 2010 A1
20100255899 Paulsen Oct 2010 A1
20100276880 Grauzer et al. Nov 2010 A1
20100311493 Miller et al. Dec 2010 A1
20100311494 Miller et al. Dec 2010 A1
20100314830 Grauzer et al. Dec 2010 A1
20100320685 Grauzer et al. Dec 2010 A1
20110006480 Grauzer et al. Jan 2011 A1
20110012303 Kourgiantakis et al. Jan 2011 A1
20110024981 Tseng Feb 2011 A1
20110052049 Rajaraman et al. Mar 2011 A1
20110062662 Ohta et al. Mar 2011 A1
20110078096 Bounds Mar 2011 A1
20110105208 Bickley May 2011 A1
20110109042 Rynda et al. May 2011 A1
20110130185 Walker Jun 2011 A1
20110130190 Hamman et al. Jun 2011 A1
20110159952 Kerr Jun 2011 A1
20110159953 Kerr Jun 2011 A1
20110165936 Kerr Jul 2011 A1
20110172008 Alderucci Jul 2011 A1
20110183748 Wilson et al. Jul 2011 A1
20110230268 Williams Sep 2011 A1
20110269529 Baerlocher Nov 2011 A1
20110272881 Sines Nov 2011 A1
20110285081 Stasson Nov 2011 A1
20110287829 Clarkson et al. Nov 2011 A1
20120015724 Ocko et al. Jan 2012 A1
20120015725 Ocko et al. Jan 2012 A1
20120015743 Lam et al. Jan 2012 A1
20120015747 Ocko et al. Jan 2012 A1
20120021835 Keller et al. Jan 2012 A1
20120034977 Kammler Feb 2012 A1
20120062745 Han et al. Mar 2012 A1
20120074646 Grauzer et al. Mar 2012 A1
20120091656 Blaha et al. Apr 2012 A1
20120095982 Lennington et al. Apr 2012 A1
20120161393 Krenn et al. Jun 2012 A1
20120175841 Grauzer et al. Jul 2012 A1
20120181747 Grauzer et al. Jul 2012 A1
20120187625 Downs, III et al. Jul 2012 A1
20120242782 Huang Sep 2012 A1
20120286471 Grauzer et al. Nov 2012 A1
20120306152 Krishnamurty et al. Dec 2012 A1
20130020761 Sines et al. Jan 2013 A1
20130085638 Weinmann et al. Apr 2013 A1
20130099448 Scheper et al. Apr 2013 A1
20130109455 Grauzer et al. May 2013 A1
20130132306 Kami et al. May 2013 A1
20130228972 Grauzer et al. Sep 2013 A1
20130300059 Sampson et al. Nov 2013 A1
20130337922 Kuhn et al. Dec 2013 A1
20140027979 Stasson et al. Jan 2014 A1
20140094239 Grauzer et al. Apr 2014 A1
20140103606 Grauzer et al. Apr 2014 A1
20140138907 Rynda et al. May 2014 A1
20140145399 Krenn et al. May 2014 A1
20140171170 Krishnamurty et al. Jun 2014 A1
20140175724 Huhtala et al. Jun 2014 A1
20140183818 Czyzewski et al. Jul 2014 A1
20150069699 Blazevic Mar 2015 A1
20150196834 Scheper Jul 2015 A1
Foreign Referenced Citations (58)
Number Date Country
697805 Mar 1980 AU
5025479 Mar 1980 AU
757636 Feb 2003 AU
2266555 Apr 1998 CA
2284017 Sep 1998 CA
2612138 Dec 2006 CA
2848303 Dec 2006 CN
2855481 Jan 2007 CN
200954370 Oct 2007 CN
101127131 Feb 2008 CN
201085907 Jul 2008 CN
201139926 Oct 2008 CN
202983149 Jun 2013 CN
24952 Feb 2013 CZ
672616 Mar 1939 DE
2757341 Jun 1978 DE
3807127 Sep 1989 DE
777514 Feb 2000 EP
1194888 Apr 2002 EP
1502631 Feb 2005 EP
1713026 Oct 2006 EP
1575261 Aug 2012 EP
2375918 Jul 1978 FR
337147 Oct 1930 GB
414014 Jul 1934 GB
10063933 Mar 1998 JP
11045321 Feb 1999 JP
2000251031 Sep 2000 JP
2001327647 Nov 2001 JP
2002165916 Jun 2002 JP
2003250950 Sep 2003 JP
2005198668 Jul 2005 JP
2008246061 Oct 2008 JP
8700764 Feb 1987 WO
9221413 Dec 1992 WO
9528210 Oct 1995 WO
9607153 Mar 1996 WO
9710577 Mar 1997 WO
9814249 Apr 1998 WO
9840136 Sep 1998 WO
9943404 Sep 1999 WO
9952610 Oct 1999 WO
9952611 Oct 1999 WO
0051076 Aug 2000 WO
0156670 Aug 2001 WO
0205914 Jan 2002 WO
2004067889 Aug 2004 WO
2004112923 Dec 2004 WO
2006031472 Mar 2006 WO
2006039308 Apr 2006 WO
2008005286 Jan 2008 WO
2008006023 Jan 2008 WO
2008091809 Jul 2008 WO
2009137541 Nov 2009 WO
2010001032 Jan 2010 WO
2010055328 May 2010 WO
2010117446 Oct 2010 WO
2013019677 Feb 2013 WO
Non-Patent Literature Citations (81)
Entry
Scarne's Encyclopedia of Games by John Scarne, 1973, “Super Contract Bridge”, p. 153.
Service Manual/User Manual for Single Deck Shufflers: BG1, BG2 and BG3 by Shuffle Master, 1997.
Specification of Australian Patent Application No. 31577/95, filed Jan. 17, 1995, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus.
Specification of Australian Patent Application No. Not Listed, filed Aug. 15, 1994, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus.
http://www.google.com/search?tbm=pts&q=Card+handling+devicve+with+input+and+outpu.. Jun. 8, 2012.
http://www.google.com/search?tbm=pts&q=shuffling+zone+on+Oopposite+side+of+input+. . . Jul. 18, 2012.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2008/007069, dated Sep. 8, 2008, 10 pages.
PCT International Search Report and Writtn Opinion for PCT/US07/15035, dated Sep. 29, 2008, 3 pages.
PCT International Search Report and Written Opinion for PCT/US07/15036, dated Sep. 23, 2008, 3 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US07/22858, dated Apr. 18, 2008, 7 pages.
Press Release for Alliance Gaming Corp., Jul. 26, 2004—Alliance Gaming Announces Control with Galaxy Macau for New MindPlay Baccarat Table Technology, http://biz.yahoo.com/prnews.
tbm=pts&hl=en Google Search for card handling device with storage area, card removing system pivoting arm and processor . . . ; http://www.google.com/?tbrn=pts&hl=en; Jul. 28, 2012.
Tracking the Tables, by Jack Bularsky, Casino Journal, May 2004, vol. 17, No. 5, pp. 44-47.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US11/59797, dated Mar. 27, 2012, 14 pages.
DVD Labeled “Luciano Decl. Ex. K”. This is the video taped live Declaration of Mr. Luciano (see list of patents on the 1449 or of record in the file history) taken during preparation of litigation (Oct. 23, 2003). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form.
DVD labeled Morrill Decl. Ex. A:. This is the video taped live Declaration of Mr. Robert Morrill, a lead trial counsel for the defense, taken during preparation for litigation. He is describing the operation of the Roblejo Prototype device. See Roblejo patent in 1449 or of record (Jan. 15, 2004). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form.
DVD Labeled “Solberg Decl. Ex. C”. Exhibit C to Declaration of Hal Solberg, a witness in litigation, signed Dec. 1, 2003. DVD sent to Examiner by US Postal Service with this PTO/SB/08 form.
DVD labeled “Exhibit 1”. This is a video taken by Shuffle Master personnel of the live operation of a CARD One2Six™ Shuffler (Oct. 7, 2003). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form.
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 1 of 23 (Master Index and Binder 1, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. Cv-N-02-0244-ERC-(RAM)), May 6, 2003, Part 2 of 23 (Master Index and Binder 1, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 3 of 23 (Binder 2, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 4 of 23 (Binder 2, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 5 of 23 (Binder 3, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 6 of 23 (Binder 3, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 7 of 23 (Binder 4, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 8 of 23 (Binder 4, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 9 of 23 (Binder 5 having no contents; Binder 6, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 10 of 23 (Binder 6, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 11 of 23 (Binder 7, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 12 of 23 (Binder 7, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 13 of 23 (Binder 8, 1 of 5).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 14 of 23 (Binder 8, 2 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 15 of 23 (Binder 8, 3 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 16 of 23 (Binder 8, 4 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 17 of 23 (Binder 8, 5 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 18 of 23 (color copies from Binder 1).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 19 of 23 (color copies from Binder 3).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 20 of 23 (color copies from Binder 4).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 21 of 23 (color copies from Binder 6).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 22 of 23 (color copies from Binder 8, part 1 of 2).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 23 of 23 (color copies from Binder 8, part 2 of 2).
“ACE, Single Deck Shuffler,” Shuffle Master, Inc., (2005), 2 pages.
“Automatic casino card shuffle,” Alibaba.com, (last visited Jul. 22, 2014), 2 pages.
“Error Back propagation,” http://willamette.edu˜gorr/classes/cs449/backprop.html (4 pages), Nov. 13, 2008.
“i-Deal,” Bally Technologies, Inc., (2014), 2 pages.
“shufflers—SHFL entertainment,” Gaming Concepts Group, (2012), 6 pages.
“TAG Archives: Shuffle Machine,” Gee Wiz Online, (Mar. 25, 2013), 4 pages.
1/3″ B/W CCD Camera Module EB100 by EverFocus Electronics Corp., Jul. 31, 2001, 3 pgs.
Canadian Office Action for CA 2,580,309 dated Mar. 20, 2012 (6 pages).
Christos Stergiou and Dimitrios Siganos, “Neural Networks,” http://www.doc.ic.ac.uk/˜nd/surprise—96/journal/vol4/cs11/report.html (13 pages), Dec. 15, 2011.
European Patent Application Search Report—European Patent Application No. 06772987.1, Dec. 21, 2009.
Genevieve Orr, CS-449: Neural Networks Willamette University, http://www.willamette.edu/˜gorr/classes/cs449/intro.html (4 pages), Fall 1999.
Litwiller, Dave, CCD vs. CMOS: Facts and Fiction reprinted from Jan. 2001 Issue of Photonics Spectra, Laurin Publishing Co. Inc. (4 pages).
Malaysian Patent Application Substantive Examination Adverse Report—Malaysian Patent Application Serial No. PI 20062710, Sep. 6, 2006.
PCT International Preliminary Examination Report for corresponding International Application No. PCT/US02/31105 filed Sep. 27, 2002.
PCT International Preliminary Report on Patentability of the International Searching Authority for PCT/US05/31400, dated Oct. 16, 2007, 7 pages.
PCT International Search Report and Written Opinion—International Patent Application No. PCT/US2006/22911, Dec. 28, 2006.
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/023168, dated Sep. 12, 2008, 8 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/GB2011/051978, dated Jan. 17, 2012, 11 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/IB2013/001756, dated Jan. 10, 2014, 7 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US13/59665, dated Apr. 25, 2014, 21 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/001032, dated Jun. 16, 2010, 11 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2013/062391, Dec. 17, 2013, 13 pages.
PCT International Search Report and Written Opinion, PCT/US12/48706, Oct. 16, 2012, 12 pages.
PCT International Search Report for International Application No. PCT/US2003/015393, mailed Oct. 6, 2003.
PCT International Search Report for PCT/US2005/034737 dated Apr. 7, 2006.
PCT International Search Report for PCT/US2007/022894, dated Jun. 11, 2008, 2 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 8 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/022158, Jun. 17, 2015, 13 pages.
Philippines Patent Application Formality Examination Report—Philippines Patent Application No. 1-2006-000302, Jun. 13, 2006.
Shuffle Master Gaming, Service Manual, ACETM Single Deck Card Shuffler, (1998), 63 pages.
Shuffle Master Gaming, Service Manual, Let It Ride Bonus® With Universal Keypad, 112 pages, © 2000 Shuffle Master, Inc.
Shuffle Master's Reply Memorandum in Support of Shuffle Master's Motion for Preliminary Injunction for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. Cv-S-04-1373-JCM-LRL, Nov. 29, 2004.
Singapore Patent Application Examination Report—Singapore Patent Application No. SE 2008 01914 A, Aug. 6, 2006.
Statement of Relevance of Cited References, Submitted as Part of a Third-Party Submission Under 37 CFR 1.290 on Dec. 7, 2012 (12 pages).
United States Court of Appeals for the Federal Circuit Decision Decided Dec. 27, 2005 for Preliminary Injuction for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373- JCM-LRL.
VendingData Corporation's Answer and Counterclaim Jury Trial Demanded for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Oct. 25, 2004.
VendingData Corporation's Opposition to Shuffle Master Inc.'s Motion for Preliminary Injection for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Nov. 12, 2004.
VendingData Corporation's Responses to Shuffle Master, Inc.'s First set of interrogatories for Shuffler Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Mar. 14, 2005.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/040196, Jan. 15, 2016, 20 pages.
Australian Provisional Patent Application for Australian Patent Application No. PM7441, filed Aug. 15, 1994, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus, 13 pages.
Related Publications (1)
Number Date Country
20140203505 A1 Jul 2014 US
Divisions (1)
Number Date Country
Parent 11481407 Jul 2006 US
Child 13714211 US
Continuations (1)
Number Date Country
Parent 13714211 Dec 2012 US
Child 14219843 US