Claims
- 1. A method of recovering metal from solid metalcontaining waste, such as metal hydroxide slime, comprising leaching the waste with sulphuric acid to form a metal sulphate solution having a pH value of 0-5, contacting the metal sulphate solution in a liquid extraction process with an organic solution containing an organophosphorous acid to transfer iron and zinc from the metal sulphate solution to the organic solution, contacting the organic solution in a first washing operation with an aqueous solution containing 50-200 g/1 free sulphuric acid for selectively transferring zinc from the organic solution to said aqueous sulphuric acid solution, recovering zinc from said aqueous sulphuric acid solution, contacting the organic solution in a second washing operation with an aqueous solution containing 500-1000 g/1 free sulphuric acid for selectively transferring iron from the organic solution to said aqueous sulphuric acid solution, and recovering iron from said aqueous sulphuric acid solution.
- 2. A method as claimed in claim 1, comprising leaching the metal-containing waste at a pH value of 0-5 with an aqueous solution of sulphuric acid in a quantity to produce a metal sulphate solution having a metal content of 30-60 g/1, filtering the small sulphate solution, washing the insoluble residues from the leaching operation with water, and diluting the filtered metal sulphate solution with water from the washing operation to produce a metal sulphate solution having a metal content of approximately 15 g/1.
- 3. A method as claimed in claim 1 for recovering metal from solid metal-containing waste wherein said waste additionally contains copper, nickel and chromium, comprising contacting the metal sulfate solution in a first liquid extraction process with a first organic solution containing a member of the group consisting of (a) a mixture of an alkyl 2-hydroxybenzophenone oxime with alpha-hydroxy oxime and (b) 8-hydroxyquinoline to transfer copper from the metal sulfate solution to said first organic solution, contacting the metal sulfate solution in a second liquid extraction process with a second organic solution containing an organophosphorus acid to transfer iron and zinc from the metal sulfate solution to said second organic solution, contacting the metal sulfate solution in a third liquid extraction process with a third organic solution containing a dialkyl dithiophosphoric acid to transfer nickel from the metal sulfate solution to said third organic solution, neutralizing the metal sulfate solution, thus treated, to precipitate chromium as chromium hydroxide, and separating said chromium hydroxide from the solution.
- 4. A method as claimed in claim 3, comprising contacting said first organic solution with an aqueous solution containing 200-1000 g/1 free sulphuric acid to transfer copper from the organic solution to said aqueous sulphuric acid solution, and recovering copper from said aqueous sulphuric acid solution by means of electrolysis or crystallization.
- 5. A method as claimed in claim 4, in which the aqueous solution contains approximately 300 g/1 free sulphuric acid, and copper is recovered by electrolysis.
- 6. A method as claimed in claim 3, in which said first, second and third liquid extraction processes are each performed at substantially the same temperature.
- 7. The method as in claim 6 wherein each liquid extraction is performed at a temperature of about from 25.degree. to 50.degree.C.
- 8. A method as claimed in claim 3, comprising contacting said third organic solution with an aqueous solution containing 200-1000 g/1 free sulphuric acid to transfer nickel from the organic solution to said aqueous sulphuric acid solution, and recovering nickel from said aqueous sulphuric acid solution by means of electrolysis or crystallization.
Priority Claims (1)
Number |
Date |
Country |
Kind |
7401085 |
Jan 1974 |
SW |
|
Parent Case Info
The present application is a continuation-in-part of our application Ser. No. 537,905, filed Jan. 2, 1975, now abandoned.
US Referenced Citations (7)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
537905 |
Jan 1975 |
|