The present invention relates to methods for recovery of natural gas liquids (NGLs) from methane rich gases using liquid natural gas (LNG). More particularly, the present invention provides methods to efficiently and economically achieve higher recoveries of natural gas liquids at NGL recovery plants.
Natural gas from producing wells contain natural gas liquids (NGLs) that are commonly recovered. While some of the needed processing can be accomplished at or near the wellhead (field processing), the complete processing of natural gas takes place at gas processing plants, usually located in a natural gas producing region. In addition to processing done at the wellhead and at centralized processing plants, some final processing is also sometimes accomplished at ‘straddle plants’, These plants are located on major pipeline systems. Although the natural gas that arrives at these straddle plants is already of pipeline quality, there still exists quantities of NGLs, which are recovered at these straddle plants.
The straddle plants essentially recover all the propane and a large fraction of the ethane available from the gas before distribution to consumers. To remove NGLs, there are three common processes; Refrigeration, Lean Oil Absorption and Cryogenic.
The cryogenic processes are generally more economical to operate and more environmentally friendly, current technology generally favors the use of cryogenic processes over refrigeration and oil absorption processes. The first generation cryogenic plants were able to extract up to 70% of the ethane from the gas, modifications and improvements to these cryogenic processes overtime have allowed for much higher ethane recoveries >90%. This increase in recovery comes with consumption of relatively large quantities of energy due to their compression requirements. Prior art has taught that use of lean reflux streams reduce energy consumption and achieves high ethane recoveries, Moreover, methane gas has been proven to be a superior stripping gas to control carbon dioxide concentrations in NGL product. Many patents exist disclosing improved designs for generation of lean reflux to recover ethane and heavier components in NGL plants. they typically involve significant capital expenditures and increased operational costs. A need exists for an efficient ethane and NGL recovery process that is capable of achieving very high ethane recoveries at a lower energy consumption and a lower capital cost when compared to prior art.
The present invention provides a method for recovery of natural gas liquids from natural gas streams in a NGL recovery plant. The method involves the use of LNG as a reflux stream, a feed mixer and a stripping gas in the operation of a LNG recovery plant. The use of LNG as stored cold energy to control a NGL distillation column temperature profile and operation, increases the efficiency and recovery of NGLs in natural gas streams. Moreover, LNG, primarily methane, is an ideal stripping gas to control carbon dioxide concentration in the NGL product stream.
As will hereinafter be further described, the interacting step can be either direct or indirect. Direct interaction is achieved by injecting LNG as a liquid reflux to the distillation column to control overhead temperature, by direct mix with expanded gas stream to control distillation column pressure and as a stripping gas for carbon dioxide control in NGL product stream. Indirect interaction is achieved by, first cooling the distillation column overhead stream in a heat exchanger and then used as a reflux in the distillation column. The condensate generated from overhead stream is used as a second reflux stream for a dual reflux operation, increasing NGLs recovery.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
The method will now be described with reference to
Referring to
Referring to
In the preferred method, LNG provides stored cold energy that improves the operation and efficiency of NGL distillation columns. The above described method uses this stored cold energy to condense natural gas liquids from natural gas streams by direct mixing. This direct mixing provides better heat transfer and reduces the energy requirements to condense NGLs. It also reduces the energy required for recompression of gas for distribution.
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
The following claims are to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, and what can be obviously substituted. Those skilled in the art will appreciate that various adaptations and modifications of the described embodiments can be configured without departing, from the scope of the claims. The illustrated embodiments have been set forth only as examples and should not be taken as limiting the invention. It is to be understood that, within the scope of the following claims, the invention may be practiced other than as specifically illustrated and described.
Number | Date | Country | Kind |
---|---|---|---|
2728716 | Jan 2011 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2012/050030 | 1/18/2012 | WO | 00 | 9/5/2013 |