Method of reducing air compressor noise

Information

  • Patent Grant
  • 12078160
  • Patent Number
    12,078,160
  • Date Filed
    Monday, November 30, 2020
    3 years ago
  • Date Issued
    Tuesday, September 3, 2024
    18 days ago
Abstract
A compressor assembly having a tank seal which seals a tank gap between a portion of a housing of the compressor assembly and a portion of a compressed gas tank and a method for controlling the sound level of a compressor assembly by configuring a tank seal to seal a gap between the housing of a compressor assembly and a compressed gas tank. The sound level of the compressor assembly can be controlled by sealing a tank gap between at least a portion of a compressor assembly housing and at least a portion of a compressed gas tank.
Description
INCORPORATION BY REFERENCE

This patent application incorporates by reference in its entirety nonprovisional U.S. patent application Ser. No. 13/609,349 titled “Method Of Reducing Air Compressor Noise” filed Sep. 11, 2012, which issued as U.S. Pat. No. 10,871,153 on Dec. 22, 2020. This patent application incorporates by reference in its entirety U.S. provisional patent application No. 61/533,993 titled “Air Ducting Shroud For Cooling An Air Compressor Pump And Motor” filed on Sep. 13, 2011. This patent application incorporates by reference in its entirety U.S. provisional patent application No. 61/534,001 titled “Shroud For Capturing Fan Noise” filed on Sep. 13, 2011. This patent application incorporates by reference in its entirety U.S. provisional patent application No. 61/534,009 titled “Method Of Reducing Air Compressor Noise” filed on Sep. 13, 2011. This patent application incorporates by reference in its entirety U.S. provisional patent application No. 61/534,015 titled “Tank Dampening Device” filed on Sep. 13, 2011. This patent application incorporates by reference in its entirety U.S. provisional patent application No. 61/534,046 titled “Compressor Intake Muffler And Filter” filed on Sep. 13, 2011.


FIELD OF THE INVENTION

The invention relates to a compressor for air, gas or gas mixtures.


BACKGROUND OF THE INVENTION

Compressors are widely used in numerous applications. Existing compressors can generate a high noise output during operation. This noise can be annoying to users and can be distracting to those in the environment of compressor operation. Non-limiting examples of compressors which generate unacceptable levels of noise output include reciprocating, rotary screw and rotary centrifugal types. Compressors which are mobile or portable and not enclosed in a cabinet or compressor room can be unacceptably noisy. However, entirely encasing a compressor, for example in a cabinet or compressor room, is expensive, prevents mobility of the compressor and is often inconvenient or not feasible. Additionally, such encasement can create heat exchange and ventilation problems. There is a strong and urgent need for a quieter compressor technology.


When a power source for a compressor is electric, gas or diesel, unacceptably high levels of unwanted heat and exhaust gases can be produced. Additionally, existing compressors can be inefficient in cooling a compressor pump and motor. Existing compressors can use multiple fans, e.g. a compressor can have one fan associated with a motor and a different fan associated with a pump. The use of multiple fans adds cost manufacturing difficulty, noise and unacceptable complexity to existing compressors. Current compressors can also have improper cooling gas flow paths which can choke cooling gas flows to the compressor and its components. Thus, there is a strong and urgent need for a more efficient cooling design for compressors.


SUMMARY OF THE INVENTION

In an embodiment, the compressor assembly disclosed herein can have a tank seal which seals a tank gap between a portion of a housing of the compressor assembly and a portion of a compressed gas tank; and a sound level of the compressor assembly which is in a range of from 65 dBA to 75 dBA when the compressor assembly is in a compressing state.


The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is in a range of from about 2 dBA to about 10 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is in a range of from about 2 dBA to about 8 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is in a range of from about 2.5 dBA to about 5 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is in a range of from about 5 dBA to about 8 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is about 2.5 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is about 5.0 dBA. The compressor assembly can have a difference in sound level between a location at a pump assembly side of the tank seal and the outside of the tank seal is about 8.0 dBA.


The compressor assembly can have a tank seal having a seal bulb. The compressor assembly can have a tank seal having a housing seal. The compressor assembly can have a tank seal having a seal hook. The compressor assembly can have a tank seal having a seal rib. The compressor assembly can have a tank seal having seal bulb which can be compressed.


In an aspect, the compressor assembly disclose herein can control the sound level of the compressor assembly by a method having the steps of: providing a compressor assembly having a housing; providing a compressed gas tank; configuring the housing and compressed gas tank to have tank gap between the housing and the compressed gas tank; providing a tank seal; and sealing the tank gap with the tank seal.


The method for controlling having the step of operating the compressor assembly in a compressing state at a sound level in a range of between 65 dBA and 75 dBA. The method for controlling the sound level of a compressor assembly having the steps of operating the compressor assembly in a compressing state at a sound level in a range of between 65 dBA and 75 dBA, and compressing 2.4 SCFM to 3.5 SCFM of gas.


The method for controlling the sound level of a compressor assembly according to claim 13, further having the steps of operating the compressor assembly in a compressing state at a sound level in a range of between 65 dBA and 75 dBA, and compressing gas to a pressure of 50 PSIG to 250 PSIG.


The method for controlling the sound level of a compressor assembly can have the step of transferring heat from a pump assembly at a rate of from 60 BTU/min to 200 BTU/min.


In an aspect, the compressor assembly disclosed herein can have a means for controlling the sound level of a compressor assembly, which uses a means to seal a tank gap between at least a portion of a housing and at least a portion of a compressed gas tank and by operating the compressor assembly in a range of from 65 dBA to 75 dBA when the compressor assembly is in a compressing state. The compressor assembly can have a means for controlling the sound level of a compressor assembly, wherein a means to seal a tank gap is used which has a deformable portion.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention in its several aspects and embodiments solves the problems discussed above and significantly advances the technology of compressors. The present invention can become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a perspective view of a compressor assembly;



FIG. 2 is a front view of internal components of the compressor assembly;



FIG. 3 is a front sectional view of the motor and fan assembly;



FIG. 4 is a pump-side view of components of the pump assembly;



FIG. 5 is a fan-side perspective of the compressor assembly;



FIG. 6 is a rear perspective of the compressor assembly;



FIG. 7 is a rear view of internal components of the compressor assembly;



FIG. 8 is a rear sectional view of the compressor assembly;



FIG. 9 is a top view of components of the pump assembly;



FIG. 10 is a top sectional view of the pump assembly;



FIG. 11 is an exploded view of the air ducting shroud;



FIG. 12 is a rear view of a valve plate assembly;



FIG. 13 is a cross-sectional view of the valve plate assembly;



FIG. 14 is a front view of the valve plate assembly;



FIG. 15A is a perspective view of sound control chambers of the compressor assembly;



FIG. 15B is a perspective view of sound control chambers having optional sound absorbers;



FIG. 16A is a perspective view of sound control chambers with an air ducting shroud;



FIG. 16B is a perspective view of sound control chambers having optional sound absorbers;



FIG. 17 is a first table of embodiments of compressor assembly ranges of performance characteristics;



FIG. 18 is a second table of embodiments of compressor assembly ranges of performance characteristics;



FIG. 19 is a first table of example performance characteristics for an example compressor assembly;



FIG. 20 is a second table of example performance characteristics for an example compressor assembly;



FIG. 21 is a table containing a third example of performance characteristics of an example compressor assembly;



FIG. 22 is a perspective view of a pump assembly and compressed gas tank having a tank gap;



FIG. 23 is a fan-side view of a pump assembly and compressed gas tank having a tank gap;



FIG. 24 is a perspective view of a pump assembly and compressed gas tank having a tank seal;



FIG. 25 is a detail of the tank seal of FIG. 24;



FIG. 26 is a fan-side view of a pump assembly and compressed gas tank having a tank seal;



FIG. 27 is a fan-side sectional view of a pump assembly and compressed gas tank having a tank seal;



FIG. 28A is a detail of a tank seal;



FIG. 28B is a cross-sectional view of a tank seal;



FIG. 28C is a side view of a tank seal;



FIG. 29 is a pump-side view of a pump assembly and compressed gas tank having a tank seal;



FIG. 30 is an exploded front perspective view of a pump assembly and compressed gas tank having a tank seal;



FIG. 31 is an exploded rear perspective view of a pump assembly and compressed gas tank having a tank seal;



FIG. 32 is an embodiment of a tank seal;



FIG. 33 is a view having piece of a tank seal which is detached; and



FIG. 34 illustrates an embodiment of a tank seal made of foam.





Herein, like reference numbers in one figure refer to like reference numbers in another figure.


DETAILED DESCRIPTION OF THE INVENTION

The invention relates to a compressor assembly which can compress air, or gas, or gas mixtures, and which has a low noise output, effective cooling means and high heat transfer. The inventive compressor assembly achieves efficient cooling of the compressor assembly 20 (FIG. 1) and/or pump assembly 25 (FIG. 2) and/or the components thereof (FIGS. 3 and 4). In an embodiment, the compressor can compress air. In another embodiment, the compressor can compress one or more gases, inert gases, or mixed gas compositions. The disclosure herein regarding compression of air is also applicable to the use of the disclosed apparatus in its many embodiments and aspects in a broad variety of services and can be used to compress a broad variety of gases and gas mixtures.



FIG. 1 is a perspective view of a compressor assembly 20 shown according to the invention. In an embodiment, the compressor assembly 20 can compress air, or can compress one or more gases, or gas mixtures. In an embodiment, the compressor assembly 20 is also referred to hearing herein as “a gas compressor assembly” or “an air compressor assembly”.


The compressor assembly 20 can optionally be portable. The compressor assembly 20 can optionally have a handle 29, which optionally can be a portion of frame 10. FIG. 1 illustrates feet 291.


In an embodiment, the compressor assembly 20 can have a value of weight between 15 lbs and 100 lbs. In an embodiment, the compressor assembly 20 can be portable and can have a value of weight between 15 lbs and 50 lbs. In an embodiment, the compressor assembly 20 can have a value of weight between 25 lbs and 40 lbs. In an embodiment, the compressor assembly 20 can have a value of weight of, e.g. 38 lbs, or 29 lbs, or 27 lbs, or 25 lbs, or 20 lbs, or less. In an embodiment, frame 10 can have a value of weight of 10 lbs or less. In an embodiment, frame 10 can weigh 5 lbs, or less, e.g. 4 lbs, or 3 lbs, of 2 lbs, or less.


In an embodiment, the compressor assembly 20 can have a front side 12 (“front”), a rear side 13 (“rear”), a fan side 14 (“fan-side”), a pump side 15 (“pump-side”), a top side 16 (“top”) and a bottom side 17 (“bottom”).


The compressor assembly 20 can have a housing 21 which can have ends and portions which are referenced herein by orientation consistently with the descriptions set forth above. In an embodiment, the housing 21 can have a front housing 160, a rear housing 170, a fan-side housing 180 and a pump-side housing 190. The front housing 160 can have a front housing portion 161, a top front housing portion 162 and a bottom front housing portion 163. The rear housing 170 can have a rear housing portion 171, a top rear housing portion 172 and a bottom rear housing portion 173. The fan-side housing 180 can have a fan cover 181 and a plurality of intake ports 182. The compressor assembly can be cooled by air flow provided by a fan 200 (FIG. 3), e.g. cooling air stream 2000 (FIG. 3).


In an embodiment, the housing 21 can be compact and can be molded. The housing 21 can have a construction at least in part of plastic, or polypropylene, acrylonitrile butadiene styrene (ABS), metal, steel, stamped steel, fiberglass, thermoset plastic, cured resin, carbon fiber, or other material. The frame 10 can be made of metal, steel, aluminum, carbon fiber, plastic or fiberglass.


Power can be supplied to the motor of the compressor assembly through a power cord 5 extending through the fan-side housing 180. In an embodiment, the compressor assembly 20 can comprise one or more of a cord holder member, e.g. first cord wrap 6 and second cord wrap 7 (FIG. 2).


In an embodiment, power switch 11 can be used to change the operating state of the compressor assembly 20 at least from an “on” to an “off” state, and vice versa. In an “on” state, the compressor can be in a compressing state (also herein as a “pumping state”) in which it is compressing air, or a gas, or a plurality of gases, or a gas mixture.


In an embodiment, other operating modes can be engaged by power switch 11 or a compressor control system, e.g. a standby mode, or a power save mode. In an embodiment, the front housing 160 can have a dashboard 300 which provides an operator-accessible location for connections, gauges and valves which can be connected to a manifold 303 (FIG. 7). In an embodiment, the dashboard 300 can provide an operator access in non-limiting example to a first quick connection 305, a second quick connection 310, a regulated pressure gauge 315, a pressure regulator 320 and a tank pressure gauge 325. In an embodiment, a compressed gas outlet line, hose or other device to receive compressed gas can be connected the first quick connection 305 and/or second quick connection 310. In an embodiment, as shown in FIG. 1, the frame can be configured to provide an amount of protection to the dashboard 300 from the impact of objects from at least the pump-side, fan-side and top directions.


In an embodiment, the pressure regulator 320 employs a pressure regulating valve. The pressure regulator 320 can be used to adjust the pressure regulating valve 26 (FIG. 7). The pressure regulating valve 26 can be set to establish a desired output pressure. In an embodiment, excess air pressure can be can vented to atmosphere through the pressure regulating valve 26 and/or pressure relief valve 199 (FIG. 1). In an embodiment, pressure relief valve 199 can be a spring loaded safety valve. In an embodiment, the air compressor assembly 20 can be designed to provide an unregulated compressed air output.


In an embodiment, the pump assembly 25 and the compressed gas tank 150 can be connected to frame 10. The pump assembly 25, housing 21 and compressed gas tank 150 can be connected to the frame 10 by a plurality of screws and/or one or a plurality of welds and/or a plurality of connectors and/or fasteners.


The plurality of intake ports 182 can be formed in the housing 21 adjacent the housing inlet end 23 and a plurality of exhaust ports 31 can be formed in the housing 21. In an embodiment, the plurality of the exhaust ports 31 can be placed in housing 21 in the front housing portion 161. Optionally, the exhaust ports 31 can be located adjacent to the pump end of housing 21 and/or the pump assembly 25 and/or the pump cylinder 60 and/or cylinder head 61 (FIG. 2) of the pump assembly 25. In an embodiment, the exhaust ports 31 can be provided in a portion of the front housing portion 161 and in a portion of the bottom front housing portion 163.


The total cross-sectional open area of the intake ports 182 (the sum of the cross-sectional areas of the individual intake ports 182) can be a value in a range of from 3.0 in{circumflex over ( )}2 to 100 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the intake ports 182 can be a value in a range of from 6.0 in{circumflex over ( )}2 to 38.81 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the intake ports 182 can be a value in a range of from 9.8 in{circumflex over ( )}2 to 25.87 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the intake ports 182 can be 12.936 in{circumflex over ( )}2.


In an embodiment, the cooling gas employed to cool compressor assembly 20 and its components can be air (also known herein as “cooling air”). The cooling air can be taken in from the environment in which the compressor assembly 20 is placed. The cooling air can be ambient from the natural environment, or air which has been conditioned or treated. The definition of “air” herein is intended to be very broad. The term “air” includes breathable air, ambient air, treated air, conditioned air, clean room air, cooled air, heated air, non-flammable oxygen containing gas, filtered air, purified air, contaminated air, air with particulates solids or water, air from bone dry (i.e. 0.00 humidity) air to air which is supersaturated with water, as well as any other type of air present in an environment in which a gas (e.g. air) compressor can be used. It is intended that cooling gases which are not air are encompassed by this disclosure. For non-limiting example, a cooling gas can be nitrogen, can comprise a gas mixture, can comprise nitrogen, can comprise oxygen (in a safe concentration), can comprise carbon dioxide, can comprise one inert gas or a plurality of inert gases, or comprise a mixture of gases.


In an embodiment, cooling air can be exhausted from compressor assembly 20 through a plurality of exhaust ports 31. The total cross-sectional open area of the exhaust ports 31 (the sum of the cross-sectional areas of the individual exhaust ports 31) can be a value in a range of from 3.0 in{circumflex over ( )}2 to 100 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the exhaust ports can be a value in a range of from 3.0 in{circumflex over ( )}2 to 77.62 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the exhaust ports can be a value in a range of from 4.0 in{circumflex over ( )}2 to 38.81 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the exhaust ports can be a value in a range of from 4.91 in{circumflex over ( )}2 to 25.87 in{circumflex over ( )}2. In an embodiment, the total cross-sectional open area of the exhaust ports can be 7.238 in{circumflex over ( )}2.


Numeric values and ranges herein, unless otherwise stated, also are intended to have associated with them a tolerance and to account for variances of design and manufacturing, and/or operational and performance fluctuations. Thus, a number disclosed herein is intended to disclose values “about” that number. For example, a value X is also intended to be understood as “about X”. Likewise, a range of Y-Z is also intended to be understood as within a range of from “about Y-about Z”. Unless otherwise stated, significant digits disclosed for a number are not intended to make the number an exact limiting value. Variance and tolerance, as well as operational or performance fluctuations, are an expected aspect of mechanical design and the numbers disclosed herein are intended to be construed to allow for such factors (in non-limiting e.g., ±10 percent of a given value). This disclosure is to be broadly construed. Likewise, the claims are to be broadly construed in their recitations of numbers and ranges.


The compressed gas tank 150 can operate at a value of pressure in a range of at least from ambient pressure, e.g. 14.7 psig to 3000 psig (“psig” is the unit lbf/in{circumflex over ( )}2 gauge), or greater. In an embodiment, compressed gas tank 150 can operate at 200 psig. In an embodiment, compressed gas tank 150 can operate at 150 psig.


In an embodiment, the compressor has a pressure regulated on/off switch which can stop the pump when a set pressure is obtained. In an embodiment, the pump is activated when the pressure of the compressed gas tank 150 falls to 70 percent of the set operating pressure, e.g. to activate at 140 psig with an operating set pressure of 200 psig (140 psig=0.70*200 psig). In an embodiment, the pump is activated when the pressure of the compressed gas tank 150 falls to 80 percent of the set operating pressure, e.g. to activate at 160 psig with an operating set pressure of 200 psig (160 psig=0.80*200 psig). Activation of the pump can occur at a value of pressure in a wide range of set operating pressure, e.g. 25 percent to 99.5 percent of set operating pressure. Set operating pressure can also be a value in a wide range of pressure, e.g. a value in a range of from 25 psig to 3000 psig. An embodiment of set pressure can be 50 psig, 75 psig, 100 psig, 150 psig, 200 psig, 250 psig, 300 psig, 500 psig, 1000 psig, 2000 psig, 3000 psig, or greater than or less than, or a value in between these example numbers.


The compressor assembly 20 disclosed herein in its various embodiments achieves a reduction in the noise created by the vibration of the air tank while the air compressor is running, in its compressing state (pumping state) e.g. to a value in a range of from 60-75 dBA, or less, as measured by ISO3744-1995. Noise values discussed herein are compliant with ISO3744-1995. ISO3744-1995 is the standard for noise data and results for noise data, or sound data, provided in this application. Herein “noise” and “sound” are used synonymously.


The pump assembly 25 can be mounted to an air tank and can be covered with a housing 21. A plurality of optional decorative shapes 141 can be formed on the front housing portion 161. The plurality of optional decorative shapes 141 can also be sound absorbing and/or vibration dampening shapes. The plurality of optional decorative shapes 141 can optionally be used with, or contain at least in part, a sound absorbing material.



FIG. 2 is a front view of internal components of the compressor assembly.


The compressor assembly 20 can include a pump assembly 25. In an embodiment, pump assembly 25 which can compress a gas, air or gas mixture. In an embodiment in which the pump assembly 25 compresses air, it is also referred to herein as air compressor 25, or compressor 25. In an embodiment, the pump assembly 25 can be powered by a motor 33 (e.g. FIG. 3).



FIG. 2 illustrates the compressor assembly 20 with a portion of the housing 21 removed and showing the pump assembly 25. In an embodiment, the fan-side housing 180 can have a fan cover 181 and a plurality of intake ports 182. The cooling gas, for example air, can be fed through an air inlet space 184 which feeds air into the fan 200 (e.g. FIG. 3). In an embodiment, the fan 200 can be housed proximate to an air intake port 186 of an air ducting shroud 485.


Air ducting shroud 485 can have a shroud inlet scoop 484. As illustrated in FIG. 2, air ducting shroud 485 is shown encasing the fan 200 and the motor 33 (FIG. 3). In an embodiment, the shroud inlet scoop 484 can encase the fan 200, or at least a portion of the fan and at least a portion of motor 33. In this embodiment, an air inlet space 184 which feeds air into the fan 200 is shown. The air ducting shroud 485 can encase the fan 200 and the motor 33, or at least a portion of these components.



FIG. 2 is an intake muffler 900 which can receive feed air for compression (also herein as “feed air 990”; e.g. FIG. 8) via the intake muffler feed line 898. The feed air 990 can pass through the intake muffler 900 and be fed to the cylinder head 61 via the muffler outlet line 902. The feed air 990 can be compressed in pump cylinder 60 by piston 63. The piston can be provided with a seal which can function, such as slide, in the cylinder without liquid lubrication. The cylinder head 61 can be shaped to define an inlet chamber 81 (e.g. FIG. 9) and an outlet chamber 82 (e.g. FIG. 8) for a compressed gas, such as air (also known herein as “compressed air 999” or “compressed gas 999”; e.g. FIG. 10). In an embodiment, the pump cylinder 60 can be used as at least a portion of an inlet chamber 81. A gasket can form an air tight seal between the cylinder head 61 and the valve plate assembly 62 to prevent a leakage of a high pressure gas, such as compressed air 999, from the outlet chamber 82. Compressed air 999 can exit the cylinder head 61 via a compressed gas outlet port 782 and can pass through a compressed gas outlet line 145 to enter the compressed gas tank 150.


As shown in FIG. 2, the pump assembly 25 can have a pump cylinder 60, a cylinder head 61, a valve plate assembly 62 mounted between the pump cylinder 60 and the cylinder head 61, and a piston 63 which is reciprocated in the pump cylinder 60 by an eccentric drive 64 (e.g. FIG. 9). The eccentric drive 64 can include a sprocket 49 which can drive a drive belt 65 which can drive a pulley 66. A bearing 67 can be eccentrically secured to the pulley 66 by a screw, or a rod bolt 57, and a connecting rod 69. Preferably, the sprocket 49 and the pulley 66 can be spaced around their perimeters and the drive belt 65 can be a timing belt. The pulley 66 can be mounted about pulley centerline 887 and linked to a sprocket 49 by the drive belt 65 (FIG. 3) which can be configured on an axis which is represent herein as a shaft centerline 886 supported by a bracket and by a bearing 47 (FIG. 3). A bearing can allow the pulley 66 to be rotated about an axis 887 (FIG. 10) when the motor rotates the sprocket 49. As the pulley 66 rotates about the axis 887 (FIG. 10), the bearing 67 (FIG. 2) and an attached end of the connecting rod 69 are moved around a circular path.


The piston 63 can be formed as an integral part of the connecting rod 69. A compression seal can be attached to the piston 63 by a retaining ring and a screw. In an embodiment, the compression seal can be a sliding compression seal.


A cooling gas stream, such as cooling air stream 2000 (FIG. 3), can be drawn through intake ports 182 to feed fan 200. The cooling air stream 2000 can be divided into a number of different cooling air stream flows which can pass through portions of the compressor assembly and exit separately, or collectively as an exhaust air steam through the plurality of exhaust ports 31. Additionally, the cooling gas, e.g. cooling air stream 2000, can be drawn through the plurality of intake ports 182 and directed to cool the internal components of the compressor assembly 20 in a predetermined sequence to optimize the efficiency and operating life of the compressor assembly 20. The cooling air can be heated by heat transfer from compressor assembly 20 and/or the components thereof, e.g. pump assembly 25 (FIG. 3). The heated air can be exhausted through the plurality of exhaust ports 31.


In an embodiment, one fan can be used to cool both the pump and motor. A design using a single fan to provide cooling to both the pump and motor can require less air flow than a design using two or more fans, e.g. using one or more fans to cool the pump, and also using one or more fans to cool the motor. Using a single fan to provide cooling to both the pump and motor can reduce power requirements and also reduces noise production as compared to designs using a plurality of fans to cool the pump and the motor, or which use a plurality of fans to cool the pump assembly 25, or the compressor assembly 20.


In an embodiment, the fan blade 205 (e.g. FIG. 3) establishes a forced flow of cooling air through the internal housing, such as the air ducting shroud 485. The cooling air flow through the air ducting shroud can be a volumetric flow rate having a value of between 25 CFM to 400 CFM. The cooling air flow through the air ducting shroud can be a volumetric flow rate having a value of between 45 CFM to 125 CFM.


In an embodiment, the outlet pressure of cooling air from the fan can be in a range of from 1 psig to 50 psig. In an embodiment, the fan 200 can be a low flow fan with which generates an outlet pressure having a value in a range of from 1 in of water to 10 psi. In an embodiment, the fan 200 can be a low flow fan with which generates an outlet pressure having a value in a range of from 2 in of water to 5 psi.


In an embodiment, the air ducting shroud 485 can flow 100 CFM of cooling air with a pressure drop of from 0.0002 psi to 50 psi along the length of the air ducting shroud. In an embodiment, the air ducting shroud 485 can flow 75 CFM of cooling air with a pressure drop of 0.028 psi along its length as measured from the entrance to fan 200 through the exit from conduit 253 (FIG. 7).


In an embodiment, the air ducting shroud 485 can flow 75 CFM of cooling air with a pressure drop of 0.1 psi along its length as measured from the outlet of fan 200 through the exit from conduit 253. In an embodiment, the air ducting shroud 485 can flow 100 CFM of cooling air with a pressure drop of 1.5 psi along its length as measured from the outlet of fan 200 through the exit from conduit 253. In an embodiment, the air ducting shroud 485 can flow 150 CFM of cooling air with a pressure drop of 5.0 psi along its length as measured from the outlet of fan 200 through the exit from conduit 253.


In an embodiment, the air ducting shroud 485 can flow 75 CFM of cooling air with a pressure drop in a range of from 1.0 psi to 30 psi across as measured from the outlet of fan 200 across the motor 33.


Depending upon the compressed gas (e.g. compressed air 999) output, the design rating of the motor 33 and the operating voltage, in an embodiment the motor 33 can operate at a value of rotation (motor speed) between 5,000 rpm and 20,000 rpm. In an embodiment, the motor 33 can operate at a value in a range of between 7,500 rpm and 12,000 rpm. In an embodiment, the motor 33 can operate at e.g. 11,252 rpm, or 11,000 rpm; or 10,000 rpm; or 9,000 rpm; or 7,500; or 6,000 rpm; or 5,000 rpm. The pulley 66 and the sprocket 49 can be sized to achieve reduced pump speeds (also herein as “reciprocation rates”, or “piston speed”) at which the piston 63 is reciprocated. For example, if the sprocket 49 can have a diameter of 1 in and the pulley 66 can have a diameter of 4 in, then a motor 33 speed of 14,000 rpm can achieve a reciprocation rate, or a piston speed, of 3,500 strokes per minute. In an embodiment, if the sprocket 49 can have a diameter of 1.053 in and the pulley 66 can have a diameter of 5.151 in, then a motor 33 speed of 11,252 rpm can achieve a reciprocation rate, or a piston speed (pump speed), of 2,300 strokes per minute.



FIG. 3 is a front sectional view of the motor and fan assembly.



FIG. 3 illustrates the fan 200 and motor 33 covered by air ducting shroud 485. The fan 200 is shown proximate to a shroud inlet scoop 484.


The motor can have a stator 37 with an upper pole 38 around which upper stator coil 40 is wound and/or configured. The motor can have a stator 37 with a lower pole 39 around which lower stator coil 41 is wound and/or configured. A shaft 43 can be supported adjacent a first shaft end 44 by a bearing 45 and is supported adjacent to a second shaft end 46 by a bearing 47. A plurality of fan blades 205 can be secured to the fan 200 which can be secured to the first shaft end 44. When power is applied to the motor 33, the shaft 43 rotates at a high speed to in turn drive the sprocket 49 (FIG. 2), the drive belt 65 (FIG. 4), the pulley 66 (FIG. 4) and the fan blade 200. In an embodiment, the motor can be a non-synchronous universal motor. In an embodiment, the motor can be a synchronous motor used.


The compressor assembly 20 can be designed to accommodate a variety of types of motor 33. The motors 33 can come from different manufacturers and can have horsepower ratings of a value in a wide range from small to very high. In an embodiment, a motor 33 can be purchased from the existing market of commercial motors. For example, although the housing 21 is compact, in an embodiment it can accommodate a universal motor, or other motor type, rated, for example, at ½ horsepower, at ¾ horsepower or 1 horsepower by scaling and/or designing the air ducting shroud 485 to accommodate motors in a range from small to very large.



FIG. 3 and FIG. 4 illustrate the compression system for the compressor which is also referred to herein as the pump assembly 25. The pump assembly 25 can have a pump 59, a pulley 66, drive belt 65 and driving mechanism driven by motor 33. The connecting rod 69 can connect to a piston 63 (e.g. FIG. 10) which can move inside of the pump cylinder 60.


In one embodiment, the pump 59 such as “gas pump” or “air pump” can have a piston 63, a pump cylinder 60, in which a piston 63 reciprocates and a cylinder rod 69 (FIG. 2) which can optionally be oil-less and which can be driven to compress a gas, e.g. air. The pump 59 can be driven by a high speed universal motor, e.g. motor 33 (FIG. 3), or other type of motor.



FIG. 4 is a pump-side view of components of the pump assembly 25. The “pump assembly 25” can have the components which are attached to the motor and/or which serve to compress a gas; which in non-limiting example can comprise the fan, the motor 33, the pump cylinder 60 and piston 63 (and its driving parts), the valve plate assembly 62, the cylinder head 61 and the outlet of the cylinder head 782. Herein, the feed air system 905 system (FIG. 7) is referred to separately from the pump assembly 25.



FIG. 4 illustrates that pulley 66 is driven by the motor 33 using drive belt 65.



FIG. 4 (also see FIG. 10) illustrates an offset 880 which has a value of distance which represents one half (½) of the stroke distance. The offset 880 can have a value between 0.25 in and 6 in, or larger. In an embodiment, the offset 880 can have a value between 0.75 in and 3 in. In an embodiment, the offset 880 can have a value between 1.0 in and 2 in, e.g. 1.25 in. In an embodiment, the offset 880 can have a value of about 0.796 in. In an embodiment, the offset 880 can have a value of about 0.5 in. In an embodiment, the offset 880 can have a value of about 1.5 in.


A stroke having a value in a range of from 0.50 in and 12 in, or larger can be used. A stroke having a value in a range of from 1.5 in and 6 in can be used. A stroke having a value in a range of from 2 in and 4 in can be used. A stroke of 2.5 in can be used. In an embodiment, the stroke can be calculated to equal two (2) times the offset, for example, an offset 880 of 0.796 produces a stroke of 2(0.796)=1.592 in. In another example, an offset 880 of 2.25 produces a stroke of 2(2.25)=4.5 in. In yet another example, an offset 880 of 0.5 produces a stroke of 2(0.5)=1.0 in.


The compressed air passes through valve plate assembly 62 and into the cylinder head 61 having a plurality of cooling fins 89. The compressed gas, is discharged from the cylinder head 61 through the outlet line 145 which feeds compressed gas to the compressed gas tank 150.



FIG. 4 also identifies the pump-side of upper motor path 268 which can provide cooling air to upper stator coil 40 and lower motor path 278 which can provide cooling to lower stator coil 41.



FIG. 5 illustrates tank seal 600 providing a seal between the housing 21 and compressed gas tank 150 viewed from fan-side 14. FIG. 5 is a fan-side perspective of the compressor assembly 20. FIG. 5 illustrates a fan-side housing 180 having a fan cover 181 with intake ports 182. FIG. 5 also shows a fan-side view of the compressed gas tank 150. Tank seal 600 is illustrated sealing the housing 21 to the compressed gas tank 150. Tank seal 600 can be a one piece member or can have a plurality of segments which form tank seal 600.



FIG. 6 is a rear-side perspective of the compressor assembly 20. FIG. 6 illustrates a tank seal 600 sealing the housing 21 to the compressed gas tank 150. FIG. 6 illustrates a bracket 1101.



FIG. 7 is a rear view of internal components of the compressor assembly. In this sectional view, in which the rear housing 170 is not shown, the fan-side housing 180 has a fan cover 181 and intake ports 182. The fan-side housing 180 is configured to feed air to air ducting shroud 485. Air ducting shroud 485 has shroud inlet scoop 484 and conduit 253 which can feed a cooling gas, such as air, to the cylinder head 61 and pump cylinder 60.



FIG. 7 also provides a view of the feed air system 905. The feed air system 905 can feed a feed air 990 through a feed air port 952 for compression in the pump cylinder 60 of pump assembly 25. The feed air port 952 can optionally receive a clean air feed from an inertia filter 949 (FIG. 8). The clean air feed can pass through the feed air port 952 to flow through an air intake hose 953 and an intake muffler feed line 898 to the intake muffler 900. The clean air can flow from the intake muffler 900 through muffler outlet line 902 and cylinder head hose 903 to feed pump cylinder head 61. Noise can be generated by the compressor pump, such as when the piston forces air in and out of the valves of valve plate assembly 62. The intake side of the pump can provide a path for the noise to escape from the compressor which intake muffler 900 can serve to muffle.


The filter distance 1952 between an inlet centerline 1950 of the feed air port 952 and a scoop inlet 1954 of shroud inlet scoop 484 can vary widely and have a value in a range of from 0.5 in to 24 in, or even greater for larger compressor assemblies. The filter distance 1952 between inlet centerline 1950 and inlet cross-section of shroud inlet scoop 484 identified as scoop inlet 1954 can be e.g. 0.5 in, or 1.0 in, or 1.5 in, or 2.0 in, or 2.5 in, or 3.0 in, or 4.0 in, or 5.0 in or 6.0 in, or greater. In an embodiment, the filter distance 1952 between inlet centerline 1950 and inlet cross-section of shroud inlet scoop 484 identified as scoop inlet 1954 can be 1.859 in. In an embodiment, the inertia filter can have multiple inlet ports which can be located at different locations of the air ducting shroud 485. In an embodiment, the inertial filter is separate from the air ducting shroud and its feed is derived from one or more inlet ports.



FIG. 7 illustrates that compressed air can exit the cylinder head 61 via the compressed gas outlet port 782 and pass through the compressed gas outlet line 145 to enter the compressed gas tank 150. FIG. 7 also shows a rear-side view of manifold 303.



FIG. 8 is a rear sectional view of the compressor assembly 20. FIG. 8 illustrates the fan cover 181 having a plurality of intake ports 182. A portion of the fan cover 181 can be extended toward the shroud inlet scoop 484, e.g. the rim 187. In this embodiment, the fan cover 181 has a rim 187 which can eliminate a visible line of sight to the air inlet space 184 from outside of the housing 21. In an embodiment, the rim 187 can cover or overlap an air space 188. FIG. 8 illustrates an inertia filter 949 having an inertia filter chamber 950 and air intake path 922.


In an embodiment, the rim 187 can extend past the air inlet space 184 and overlaps at least a portion of the shroud inlet scoop 484. In an embodiment, the rim 187 does not extend past and does not overlap a portion of the shroud inlet scoop 484 and the air inlet space 184 can have a width between the rim 187 and a portion of the shroud inlet scoop 484 having a value of distance in a range of from 0.1 in to 2 in, e.g. 0.25 in, or 0.5 in. In an embodiment, the air ducting shroud 485 and/or the shroud inlet scoop 484 can be used to block line of sight to the fan 200 and the pump assembly 25 in conjunction with or instead of the rim 187.


The inertia filter 949 can provide advantages over the use of a filter media which can become plugged with dirt and/or particles and which can require replacement to prevent degrading of compressor performance. Additionally, filter media, even when it is new, creates a pressure drop and can reduce compressor performance.


Air must make a substantial change in direction from the flow of cooling air to become compressed gas feed air to enter and pass through the feed air port 952 to enter the air intake path 922 from the inertia filter chamber 950 of the inertia filter 949. Any dust and other particles dispersed in the flow of cooling air have sufficient inertia that they tend to continue moving with the cooling air rather than change direction and enter the air intake path 922.



FIG. 8 also shows a section of a dampening ring 700. The dampening ring 700 can optionally have a cushion member 750, as well as optionally a first hook 710 and a second hook 720.



FIG. 9 is a top view of the components of the pump assembly 25.


Pump assembly 25 can have a motor 33 which can drive the shaft 43 which causes a sprocket 49 to drive a drive belt 65 to rotate a pulley 66. The pulley 66 can be connected to and can drive the connecting rod 69 which has a piston 63 (FIG. 2) at an end. The piston 63 can compress a gas in the pump cylinder 60 pumping the compressed gas through the valve plate assembly 62 into the cylinder head 61 and then out through a compressed gas outlet port 782 through an outlet line 145 and into the compressed gas tank 150.



FIG. 9 also shows a pump 91. Herein, pump 91 collectively refers to a combination of parts including the cylinder head 61, the pump cylinder 60, the piston 63 and the connecting rod having the piston 63, as well as the components of these parts.



FIG. 10 is a top sectional view of the pump assembly 25. FIG. 10 also shows a shaft centerline 886, as well as pulley centerline 887 and a rod bolt centerline 889 of a rod bolt 57. FIG. 10 illustrates an offset 880 which can be a dimension having a value in the range of 0.5 in to 12 in, or greater. In an embodiment, the stroke can be 1.592 in, from an offset 880 of 0.796 in. FIG. 10 also shows air inlet chamber 81. FIG. 10 illustrates a pressure seal connector 1782. FIG. 10 illustrates a male connector 787.



FIG. 11 illustrates an exploded view of the air ducting shroud 485. In an embodiment, the air ducting shroud 485 can have an upper ducting shroud 481 and a lower ducting shroud 482. In the example of FIG. 11, the upper ducting shroud 481 and the lower ducting shroud 482 can be fit together to shroud the fan 200 and the motor 33 and can create air ducts for cooling pump assembly 25 and/or the compressor assembly 20. In an embodiment, the air ducting shroud 485 can also be a motor cover for motor 33. The upper air ducting shroud 481 and the lower air ducting shroud 482 can be connected by a broad variety of means which can include snaps and/or screws.



FIG. 12 is a rear-side view of a valve plate assembly. A valve plate assembly 62 is shown in detail in FIGS. 12, 13 and 14.


The valve plate assembly 62 of the pump assembly 25 can include air intake and air exhaust valves. The valves can be of a reed, flapper, one-way or other type. A restrictor can be attached to the valve plate adjacent the intake valve. Deflection of the exhaust valve can be restricted by the shape of the cylinder head which can minimize valve impact vibrations and corresponding valve stress.


The valve plate assembly 62 has a plurality of intake ports 103 (five shown) which can be closed by the intake valves 96 (FIG. 14) which can extend from fingers 105 (FIG. 13). In an embodiment, the intake valves 96 can be of the reed or “flapper” type and are formed, for example, from a thin sheet of resilient stainless steel. Radial fingers 113 (FIG. 12) can radiate from a valve finger hub 114 to connect the plurality of valve members 104 of intake valves 96 and to function as return springs. A rivet 107 secures the hub 106 (e.g. FIG. 13) to the center of the valve plate 95. An intake valve restrictor 108 can be clamped between the rivet 107 and the hub 106. The surface 109 terminates at an edge 110 (FIGS. 13 and 14). When air is drawn into the pump cylinder 60 during an intake stroke of the piston 63, the radial fingers 113 can bend and the plurality of valve members 104 separate from the valve plate assembly 62 to allow air to flow through the intake ports 103.



FIG. 13 is a cross-sectional view of the valve plate assembly and FIG. 14 is a front-side view of the valve plate assembly. The valve plate assembly 62 includes a valve plate 95 which can be generally flat and which can mount a plurality of intake valves 96 (FIG. 14) and a plurality of outlet valves 97 (FIG. 12). In an embodiment, the valve plate assembly 62 (FIGS. 10 and 12) can be clamped to a bracket by screws which can pass through the cylinder head 61 (e.g. FIG. 2), the gasket and a plurality of through holes 99 in the valve plate assembly 62 and engage a bracket. A valve member 112 of the outlet valve 97 can cover an exhaust port 111. A cylinder flange and a gas tight seal can be used in closing the cylinder head assembly. In an embodiment, a flange and seal can be on a cylinder side (herein front-side) of a valve plate assembly 62 and a gasket can be between the valve plate assembly 62 and the cylinder head 61.



FIG. 14 illustrates the front side of the valve plate assembly 62 which can have a plurality of exhaust ports 111 (three shown) which are normally closed by the outlet valves 97. A plurality of a separate circular valve member 112 can be connected through radial fingers 113 (FIG. 12) which can be made of a resilient material to a valve finger hub 114. The valve finger hub 114 can be secured to the rear side of the valve plate assembly 62 by the rivet 107. Optionally, the cylinder head 61 can have a head rib 118 (FIG. 13) which can project over and can be spaced a distance from the valve members 112 to restrict movement of the exhaust valve members 112 and to lessen and control valve impact vibrations and corresponding valve stress.



FIG. 15A is a perspective view of a plurality of sound control chambers of an embodiment of the compressor assembly 20. FIG. 15A illustrates an embodiment having four (4) sound control chambers. The number of sound control chambers can vary widely in a range of from one to a large number, e.g. 25, or greater. In non-limiting example, in an embodiment, a compressor assembly 20 can have a fan sound control chamber 550 (also herein as “fan chamber 550”), a pump sound control chamber 491 (also herein as “pump chamber 491”), an exhaust sound control chamber 555 (also herein as “exhaust chamber 555”), and an upper sound control chamber 480 (also herein as “upper chamber 480”).



FIG. 15B is a perspective view of sound control chambers having optional sound absorbers. The optional sound absorbers can be used to line the inner surface of housing 21, as well as both sides of partitions which are within the housing 21 of the compressor assembly 20.



FIG. 16A is a perspective view of sound control chambers with an air ducting shroud 485. FIG. 16A illustrates the placement of air ducting shroud 485 in coordination with, for example, the fan chamber 550, the pump sound control chamber 491, the exhaust sound control chamber 555, and the upper sound control chamber 480.



FIG. 16B is a perspective view of sound control chambers having optional sound absorbers. The optional sound absorbers can be used to line the inner surface of housing 21, as well as both sides of partitions which are within the housing 21 of compressor assembly 20.



FIG. 17 is a first table of embodiments of compressor assembly range of performance characteristics. The compressor assembly 20 can have values of performance characteristics as recited in FIG. 17 which are within the ranges set forth in FIG. 17.



FIG. 18 is a second table of embodiments of ranges of performance characteristics for the compressor assembly 20. The compressor assembly 20 can have values of performance characteristics as recited in FIG. 18 which are within the ranges set forth in FIG. 18.


The compressor assembly 20 achieves efficient heat transfer. The heat transfer rate can have a value in a range of from 25 BTU/min to 1000 BTU/min. The heat transfer rate can have a value in a range of from 90 BTU/min to 500 BTU/min. In an embodiment, the compressor assembly 20 can exhibit a heat transfer rate of 200 BTU/min. The heat transfer rate can have a value in a range of from 50 BTU/min to 150 BTU/min. In an embodiment, the compressor assembly 20 can exhibit a heat transfer rate of 135 BTU/min. In an embodiment, the compressor assembly 20 exhibited a heat transfer rate of 84.1 BTU/min.


The heat transfer rate of a compressor assembly 20 can have a value in a range of 60 BTU/min to 110 BTU/min. In an embodiment of the compressor assembly 20, the heat transfer rate can have a value in a range of 66.2 BTU/min to 110 BTU/min; or 60 BTU/min to 200 BTU/min.


The compressor assembly 20 can have noise emissions reduced by e.g., slower fan and/or slower motor speeds, use of a check valve muffler, use of tank vibration dampeners, use of tank sound dampeners, use of a tank dampening ring, use of tank vibration absorbers to dampen noise to and/or from the tank walls which can reduce noise. In an embodiment, a two stage intake muffler can be used on the pump. A housing having reduced or minimized openings can reduce noise from the compressor assembly. As disclosed herein, the elimination of line of sight to the fan and other components as attempted to be viewed from outside of the compressor assembly 20 can reduce noise generated by the compressor assembly. Additionally, routing cooling air through ducts, using foam lined paths and/or routing cooling air through tortuous paths can reduce noise generation by the compressor assembly 20.


Additionally, noise can be reduced from the compressor assembly 20 and its sound level lowered by one or more of the following, employing slower motor speeds, using a check valve muffler and/or using a material to provide noise dampening of the housing 21 and its partitions and/or the compressed air tank 150 heads and shell. Other noise dampening features can include one or more of the following and be used with or apart from those listed above, using a two-stage intake muffler in the feed to a feed air port 952, elimination of line of sight to the fan and/or other noise generating parts of the compressor assembly 20, a quiet fan design and/or routing cooling air routed through a tortuous path which can optionally be lined with a sound absorbing material, such as a foam. Optionally, fan 200 can be a fan which is separate from the shaft 43 and can be driven by a power source which is not shaft 43.


In an example, an embodiment of compressor assembly 20 achieved a decibel reduction of 7.5 dBA. In this example, noise output when compared to a pancake compressor assembly was reduced from about 78.5 dBA to about 71 dBA.


Example 1


FIG. 19 is a first table of example performance characteristics for an example embodiment. FIG. 19 contains combinations of performance characteristics exhibited by an embodiment of compressor assembly 20.


Example 2


FIG. 20 is a second table of example performance characteristics for an example embodiment. FIG. 20 contains combinations of further performance characteristics exhibited by an embodiment of compressor assembly 20.


Example 3


FIG. 21 is a table containing a third example of performance characteristics of an example compressor assembly 20. In the Example of FIG. 21, a compressor assembly 20, having an air ducting shroud 485, a dampening ring 700, an intake muffler 900, four sound control chambers, a fan cover, four foam sound absorbers and a tank seal 600 exhibited the performance values set forth in FIG. 21.


The pump assembly 25 (e.g. FIG. 22) can be mounted to the air tank 150 and can have the housing 21. The housing 21 can have one or more openings through which noise generated by the pump assembly 25 can pass. One such opening can be around the base of the housing 21 where the shroud is proximate to the air tank and herein is exemplified by a tank gap 599. In an embodiment, noise emitted by compressor assembly 20 can be reduced by sealing the tank gap 599, e.g. with a tank seal 600 (e.g. FIG. 24)


Parts, for example, the tank seal 600 (e.g. FIG. 24), can be designed to minimize, eliminate and/or seal, the tank gap 599. In embodiments, the tank gap 599 can be sealed or closed by the tank seal 600.


The fewer openings which are present in the housing 21, the less total open area exists in the housing for noise to escape through unabated. In an embodiment, other openings, or gaps which exist in the housing 21 of the compressor assembly 20, or pieces or components thereof, can be eliminated, closed or sealed to reduce the noise emitted from the compressor assembly 20. In an embodiment, openings or gaps associated with one or a plurality of quick connections, such as the first quick connection 305 and the second quick connection 310, or with one or a plurality of a pressure regulator 320 can be eliminated, closed or sealed to reduce the noise emitted from the compressor assembly 20. In an embodiment, gaps around the dashboard 300 or the manifold 303 can be sealed or blocked by foam to reduce the noise emitted by the compressor assembly 20. In an embodiment, the sound level of a compressor assembly 20 can be reduced by reducing the amount of openings present in the housing 21, or pieces thereof.



FIG. 22 is a perspective view of a pump assembly 25 and the compressed gas tank 150 having the tank gap 599. FIG. 22 illustrates the tank gap 599 located between the compressed gas tank 150 and a housing rim 605. In an embodiment, the housing rim 605 can have a front housing rim 610, a fan-side housing rim 620, a rear housing rim 630 and a pump-side housing rim portion 640 (e.g. FIG. 29). The pump-side housing rim portion 640 can have portions of the front housing rim 610 and the rear housing rim 630.



FIG. 23 is a fan-side view of a pump assembly 25 and the compressed gas tank 150 having a tank gap 599. The fan-side portion of the tank gap 599 is located between the compressed gas tank 150 and a housing rim 605.



FIG. 24 is a perspective view of the pump assembly 25 and the compressed gas tank 150 having a tank seal 600 for sealing the tank gap 599. The tank seal 600 can be fit between the housing rim 605 and the compressed gas tank 150 to seal the tank gap 599. The tank seal 600 can seal or close the tank gap 599 to reduce sound emitted through the tank gap 599.


The tank gap 599 can have a distance between the housing rim 605 and the compressed gas tank 150 which can have a value in e.g. a range of from 0.01 in to 6 in, or e.g. a range of from 0.05 in to 5 in. In an embodiment, the distance between the housing rim 605 and the compressed gas tank 150 can have a value in a range of from 1.0 in to 2.0 in. In an embodiment, the distance between the housing rim 605 and the compressed gas tank 150 can have a value in a range of from 0.15 in to 1.0 in. In an embodiment, the distance between the housing rim 605 and the compressed gas tank 150 can have a value in a range of from 0.05 in to 0.75 in. In an embodiment, the housing rim 605 can have a value of 0.250 in.


There can also be a distance between the closest portion of the pump assembly 25 components and the compressed gas tank 150 which can have a value in a range of from 0.1 in to 8 in. In an embodiment, a sound absorbing cushion can be placed between the pump assembly 25 and the compressed gas tank 150.


The use of a tank seal 600 can achieve a noise reduction having a value in a range of from 0.5 dBA to 15 dBA, or a greater. In further embodiments, the use of a tank seal 600 can achieve a noise reduction having a value in a range of from 0.5 dBA to 10 dBA; or from 0.5 dBA to 7 dBA; or from 1.4 dBA to 15 dBA; or from 5 dBA to 10 dBA; or from 0.5 dBA to 8 dBA; or from 0.5 dBA to 5 dBA; or from 5 dBA to 8 dBA.


In an embodiment, a decibel reduction of 2.5 dBA can be achieved by using a tank seal 600 to reduce the noise output of a compressor assembly 20. In this example embodiment, the noise output of a compressor assembly 20 can be reduced from 70.5 dBA to 68 dBA using a tank seal 600.


The tank gap 599 can be sealed by a tape, or a duct tape, or a foam tape, or a rubber tape, or a Gorilla Tape® (The Gorilla Glue Company, 4550 Red Bank Expressway Cincinnati, OH 45227). Alternatively, the tank gap 599 can be sealed by an expandable spray foam, a caulk or a silicone. The tank gap 599 can also be sealed by a cushion material including, but not limited to, a cloth, felt, or other type of strip or appropriately shaped material which can conform in shape, of deform, to seal tank gap 599. The rubber or rubber-like material could be over-molded onto the housing rim 605. In an embodiment, the rubber or rubber-like material could be manufactured as a separate piece for assembly as a seal. For example, the tank gap 599 can be sealed by over-molding on the shroud with low durometer material, or other material. Alternatively, the tank gap 599 can be sealed by a foam strip. For example, the tank gap 599 can be sealed by a mat, a tank blanket, a foam or other tank covering onto which the housing rim 605 can be set and which can seal the tank gap 599. In an embodiment, an ethylene propylene diene monomer (EPDM) sponge rubber can be used to seal or fill gaps or openings and/or to reduce or muffle noise.


In an embodiment, tank gap 599 can be closed and/or sealed by a rubber or foam strip which can be attached to the shroud, or the tank, or held by frictional attachment, so that the rubber or foam strip can fill the gap when the parts are assembled, thus providing a seal to prevent an amount of noise from escaping from compressor assembly 20 through tank gap 599 and/or emanating from compressor assembly 20.



FIG. 25 is a detail of the tank seal 600 of FIG. 24 sealing the tank gap 599 by being fit between the housing rim 605 and compressed gas tank 150.



FIG. 26 is a fan-side view of the pump assembly 25 and compressed gas tank 150 having the tank seal 600.



FIG. 27 is a fan-side sectional view of a pump assembly 25 and compressed gas tank 150 having a tank seal 600. The tank seal is shown in a sectional view of a front seal portion 608 and a rear seal portion 612 (FIG. 31).



FIG. 28A is an exemplary detail of the tank seal. The tank seal 600 has a housing seal 623 optionally connected to a seal bulb 627. In an embodiment, housing seal 623 can be U-shaped, V-shaped or other shape to mate with housing rim 605. In an embodiment, the housing seal 623 can have seal hook 621. In an embodiment, the seal hook 621 can engage with a portion of housing rim 605. In an embodiment, the housing seal 623 can optionally have a seal rib 629. In an embodiment, the seal rib 629 can be metal, plastic, rubber, fiberglass, carbon fiber, or a rigid or a semi-rigid material.


In an embodiment, the tank seal 600 can be compressed under a force having a value in a range of from 0.25 lbf/in{circumflex over ( )}2 to 50 lbf/in{circumflex over ( )}2, or greater.


In an embodiment, the seal bulb 627 can have a seal bulb outer diameter 631 (also herein as “seal bulb OD 631”; see also FIG. 28B) from 0.15 in to 3.0 in, or greater. In an embodiment, the seal bulb OD 631 can be 0.25 in. In an embodiment, the seal bulb OD 631 can be 0.375 in. In an embodiment, the seal bulb OD 631 can be 0.5 in. In an embodiment, the seal bulb OD 631 can be 0.75 in.


The seal bulb 627 can have an outer diameter, when not compressed of, e.g. 0.375 in. When compressed, the seal bulb 627 can change shape, or deform, under force to a shape which can conform to at least a portion of the compressed gas tank 150 and which can seal the tank gap 599.


The housing seal base portion 626 (FIG. 28A) of the housing seal 623 and the seal bulb 627 in a compressed state can seal or close the tank gap 599.


In an embodiment, the tank seal 600 can have a pump assembly side 636 and an outside 638. A difference in sound level across the tank seal 600 as measured from a location on or proximate to the pump assembly side 636 to a location on or proximate to the outside 638 can be a value in a range of from 0.25 dBA to 15 dBA. A difference in sound level across the tank seal 600 as measured from a location on or proximate to the pump assembly side 636 to a location on or proximate to the outside 638 can be a value in a range of from 0.3 dBA to 10 dBA. A difference in sound level across the tank seal 600 as measured from a location on or proximate to the pump assembly side 636 to a location on or proximate to the outside 638 can be a value in a range of from 2.0 dBA to 10 dBA. The difference in sound level across the tank seal 600 as measured at the aforementioned locations can have a value in a range of from 2.5 dBA to 8 dBA, in a range of from 5 dBA to 8 dBA.



FIG. 28B is a cross-sectional view of a tank seal identifying a housing fitting height 633. The housing fitting height can be the height of the U-shaped portion of the seal 600. In an embodiment, the housing fitting height 633 can have a value in a range of 0.15 in to 6.0 in, or greater. In an embodiment, the housing fitting height 633 can be 0.25 in. The housing fitting height 633 can be 0.375 in. In an embodiment, the housing fitting height 633 can be 0.5 in. In an embodiment, the housing fitting height 633 can be 1 in, or greater. The seal height 635 of seal 600 can range, e.g. from 0.3 in to 6 inches, or greater.


In an embodiment, in which seal 600 is over-molded onto the housing rim 605 the height of such over-molded seal can be less than 0.3 in, an can have a range of e.g. from 0.1 in to 3.0 in, or greater.



FIG. 28C is a side view of a tank seal 600.



FIG. 29 is a pump-side view of a pump assembly 25 and compressed gas tank 150 having tank seal 600 which can seal the tank gap 599 between the housing rim 605 and compressed gas tank 150.



FIG. 30 is an exploded front perspective view of the pump assembly 25 and compressed gas tank 150 having the tank seal 600. In FIG. 30, the housing rim 605 can have the front housing rim 610, the fan-side housing rim 620, the rear housing rim 630 and the pump-side housing rim 640 (FIG. 31). FIG. 30 also shows tank seal 600 apart from the compressed gas tank 150. In FIG. 30, the housing rim 605, tank seal 600 and tank seal line 607 are illustrated separately in an alignment to illustrate how an assembly can bring these pieces together. Assembly of these pieces can be accomplished by a variety of methods. In an embodiment, the tank seal 600 can be assembled between the housing rim 605 and the compressed gas tank 150 as illustrated in e.g. FIGS. 30 and 31 which can be assembled as in e.g. FIG. 24.



FIG. 31 is an exploded rear perspective view of the pump assembly 25 and compressed gas tank 150 having the tank seal 600.



FIG. 32 is an embodiment of the tank seal 600. In this example, the tank seal 600 has a first seal portion 602 and second seal portion 604.



FIG. 33 is a view having piece of a tank seal 600 which, for illustrative purposes, has a seal 606 portion which is shown not in contact with compressed air tank 150. FIG. 33 thus illustrates an uncompressed state of the portion not in contact with the compressed gas tank 150.



FIG. 34 illustrates an embodiment of a tank seal made of foam and forming a foam barrier 650 which can provide a barrier between a noise source and an operator to achieve a reduction in noise. FIG. 34 illustrates a portion of a foam barrier 650, which can have a first foam barrier 652 and a second foam barrier 654.


Foam can be used to muffle the noise from the plurality of exhaust ports 31. In an embodiment, the foam can have a porosity to allow exiting exhaust air flow through the plurality of exhaust ports 31 for sufficient cooling. In an embodiment, foam can be used to muffle the noise from the intake ports 182 for the cooling air.


In an embodiment, a sound absorbing foam can be, e.g. a polyurethane foam and can have a value of density in a range from 0.8 lb/ft{circumflex over ( )}3 to 5.0 lb/ft{circumflex over ( )}3. The foam can be used as a tank seal 600 forming a noise barrier or sound absorber. In an embodiment, the foam can have a value of density in a range from 1.6 lb/ft{circumflex over ( )}3 to 2.0 lb/ft{circumflex over ( )}3, or e.g. have a value of density of 1.8 lb/ft{circumflex over ( )}3, and can be used as the tank seal 600 to form a noise barrier or sound absorber. In an embodiment, the foam can be flame retardant. In an embodiment, the foam can be used in the pump chamber 491 which can contain at least the pump and motor components to reduce noise emissions from at least the pump assembly 25. In an embodiment, a foam material can cover at least a portion of the tank surface which is present in the pump chamber 491.


The scope of this disclosure is to be broadly construed. It is intended that this disclosure disclose equivalents, means, systems and methods to achieve the devices, designs, operations, control systems, controls, activities, mechanical actions, fluid dynamics and results disclosed herein. For each mechanical element or mechanism disclosed, it is intended that this disclosure also encompasses within the scope of its disclosure and teaches equivalents, means, systems and methods for practicing the many aspects, mechanisms and devices disclosed herein. Additionally, this disclosure regards a compressor and its many aspects, features and elements. Such an apparatus can be dynamic in its use and operation. This disclosure is intended to encompass the equivalents, means, systems and methods of the use of the compressor assembly and its many aspects consistent with the description and spirit of the apparatus, means, methods, functions and operations disclosed herein. The claims of this application are likewise to be broadly construed.


The description of the inventions herein in their many embodiments is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention and the disclosure herein. Such variations are not to be regarded as a departure from the spirit and scope of the invention.


It will be appreciated that various modifications and changes can be made to the above described embodiments of a compressor assembly as disclosed herein without departing from the spirit and the scope of the following claims.

Claims
  • 1. A compressor assembly, comprising: a motor having a motor speed in a range of 7,500 rpm to 12,000 rpm which drives a driving mechanism;a pump having a pump speed of 1500 rpm to 3000 rpm driven by said driving mechanism;a fan secured to a shaft of said motor and configured to produce a cooling air to cool at least a portion of said motor and at least a portion of said pump;a feed air port configured between the fan and an intake muffler and through which an air feed flows to feed the intake muffler;a cylinder head of said pump fed the air from the intake muffler;a housing connected to a frame and covering at least in part each of the motor and the pump;a compressed gas tank configured to receive a compressed air output from the pump; anda tank seal configured to at least in part seal a tank gap between said housing and said compressed gas tank.
  • 2. The compressor assembly of claim 1, wherein the driving mechanism is a drive belt.
  • 3. The compressor assembly of claim 1, wherein said motor has a motor efficiency in a range of 45% to 65%, a current of in a range of 11.8 amps to 12.05 amps, a torque in a range of 6.01 lb-in to 6.16 lb-in and a voltage of about 120 V.
  • 4. The compressor assembly of claim 1, wherein said pump has a swept volume in a range of 2.3 in{circumflex over ( )}3 to 8 in{circumflex over ( )}3.
  • 5. The compressor assembly of claim 1, wherein the air feed to the intake muffler flows through an air intake hose.
  • 6. The compressor assembly of claim 1, wherein the air feed to the cylinder head flows through a cylinder head hose.
  • 7. The compressor assembly of claim 1, wherein said housing has a fan cover.
  • 8. The compressor assembly of claim 1, wherein said housing has a sound absorbing material configured between the fan and a fan cover.
  • 9. The compressor assembly of claim 1, further comprising a sound absorber adjacent to at least a portion of said housing.
  • 10. The compressor assembly of claim 1, further comprising a sound control chamber.
  • 11. The compressor assembly of claim 1, wherein said compressed air output from the pump flows through a check valve muffler.
  • 12. The compressor assembly of claim 1, wherein said pump is mounted upon an elastomer material.
  • 13. The compressor assembly of claim 1, wherein said pump is mounted upon a flexible saddle.
  • 14. The compressor assembly of claim 1, wherein the housing is connected to said frame by a bracket from which the housing is suspended over at least the pump and at least the motor.
  • 15. The compressor assembly of claim 1, further comprising an offset in a range of 0.25 in to 6 in.
  • 16. The compressor assembly of claim 1, wherein the compressed gas tank has a vibration dampener.
  • 17. The compressor assembly of claim 1, wherein the compressed gas tank has a tank dampening ring.
  • 18. The compressor assembly of claim 1, wherein the cylinder head has a compressed gas outlet port in contact with a pressure seal.
  • 19. The compressor assembly of claim 1, wherein the cylinder head has a compressed gas outlet port and a male connector through which the compressed air output can flow to feed an outlet line, and wherein a pressure seal is configured between a portion of the male connector and a portion of the outlet line.
  • 20. The compressor assembly of claim 1, further comprising a flexible outlet tube through which the compressed air output flows.
  • 21. The compressor assembly of claim 1, wherein said motor has a motor efficiency in a range of 45% to 65%.
  • 22. The compressor assembly of claim 1, wherein said motor has an input power in a range of 1000 Watts to 1800 Watts.
  • 23. The compressor assembly of claim 1, wherein the tank seal has a shape configured to mate with a housing rim of the housing, and wherein at least a portion of the tank seal is mated to said housing rim.
  • 24. The compressor assembly of claim 1, wherein the frame has a plurality of feet.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims benefit of the filing date of nonprovisional U.S. patent application Ser. No. 13/609,349 titled “Method Of Reducing Air Compressor Noise” filed Sep. 11, 2012, which issued as U.S. Pat. No. 10,871,153 on Dec. 22, 2020, and which claims benefit of U.S. provisional patent application No. 61/533,993 titled “Air Ducting Shroud For Cooling An Air Compressor Pump And Motor” filed on Sep. 13, 2011. This patent application claims benefit of the filing date of U.S. provisional patent application No. 61/534,001 titled “Shroud For Capturing Fan Noise” filed on Sep. 13, 2011. This patent application claims benefit of the filing date of U.S. provisional patent application No. 61/534,009 titled “Method Of Reducing Air Compressor Noise” filed on Sep. 13, 2011. This patent application claims benefit of the filing date of U.S. provisional patent application No. 61/534,015 titled “Tank Dampening Device” filed on Sep. 13, 2011. This patent application claims benefit of the filing date of U.S. provisional patent application No. 61/534,046 titled “Compressor Intake Muffler And Filter” filed on Sep. 13, 2011.

US Referenced Citations (209)
Number Name Date Kind
1381056 Blakely Jun 1921 A
1469201 Whitted et al. Sep 1923 A
1694218 Hazard Dec 1928 A
1924654 Petersen Aug 1933 A
2059894 Newman Nov 1936 A
2106488 McCune Jan 1938 A
2107644 Ohmart Feb 1938 A
2136098 Browne Nov 1938 A
2312596 Smith Mar 1943 A
2343952 Branstrom Mar 1944 A
2375442 Sandberg May 1945 A
2450468 Cornelius Oct 1948 A
2668004 Browne Feb 1954 A
2673028 Cornelius et al. Mar 1954 A
D181459 Bullock Nov 1957 S
2928491 Crouch Mar 1960 A
3370608 Eisenbrand et al. Feb 1968 A
3525606 Bodine Aug 1970 A
3537544 King Nov 1970 A
3591315 Whelan Jul 1971 A
3645651 Bills Feb 1972 A
3687019 Wolf Aug 1972 A
3710094 Monte et al. Jan 1973 A
3736074 Kilbane et al. May 1973 A
3771911 Turci Nov 1973 A
3930558 Schnell et al. Jan 1976 A
3955900 Vinci May 1976 A
3978919 Fachbach et al. Sep 1976 A
3980912 Panza Sep 1976 A
4190402 Meece et al. Feb 1980 A
4264282 Crago Apr 1981 A
4283167 Bassan et al. Aug 1981 A
4289630 Schmidt, Jr. et al. Sep 1981 A
4302224 McCombs et al. Nov 1981 A
D263216 Maher Mar 1982 S
4342573 McCombs et al. Aug 1982 A
4401418 Fritchman Aug 1983 A
4460319 Ashikian Jul 1984 A
4492533 Tsuge Jan 1985 A
4516657 Allard May 1985 A
4553903 Ashikian Nov 1985 A
4566800 Bodine Jan 1986 A
4722673 Grime et al. Feb 1988 A
4907546 Ishii et al. Mar 1990 A
4928480 Oliver et al. May 1990 A
4950133 Sargent Aug 1990 A
4988268 Kurihara Jan 1991 A
5020973 Lammers Jun 1991 A
5082019 Tetrault Jan 1992 A
5133475 Sharp Jul 1992 A
5137434 Wheeler et al. Aug 1992 A
5143772 Iwasa Sep 1992 A
5145335 Abelen et al. Sep 1992 A
D335407 Ngian et al. May 1993 S
5213484 Hashimoto et al. May 1993 A
5252035 Lee Oct 1993 A
5311090 Ferlatte May 1994 A
5311625 Barker et al. May 1994 A
5336046 Hashimoto et al. Aug 1994 A
5407330 Rimington et al. Apr 1995 A
5417258 Privas May 1995 A
5509790 Schuderi et al. Apr 1996 A
5526228 Dickson et al. Jun 1996 A
5620370 Umai et al. Apr 1997 A
5647314 Matsumura et al. Jul 1997 A
5678543 Bower Oct 1997 A
5725361 Dantlgraber Mar 1998 A
6023938 Taras et al. Feb 2000 A
6091160 Kouchi et al. Jul 2000 A
6099268 Pressel Aug 2000 A
6100599 Kouchi et al. Aug 2000 A
6145974 Shinada et al. Nov 2000 A
D437581 Aruga et al. Feb 2001 S
D437825 Imai Feb 2001 S
6206654 Cassidy Mar 2001 B1
D444796 Morgan Jul 2001 S
D444797 Davis et al. Jul 2001 S
6257842 Kawasaki et al. Jul 2001 B1
6331740 Morohoshi et al. Dec 2001 B1
D454357 Diels Mar 2002 S
6357338 Montgomery Mar 2002 B2
6362533 Morohoshi et al. Mar 2002 B1
6364632 Cromm et al. Apr 2002 B1
6378468 Kouchi et al. Apr 2002 B1
6378469 Hiranuma et al. Apr 2002 B1
6386833 Montgomery May 2002 B1
D461196 Buck Aug 2002 S
6428283 Bonior Aug 2002 B1
6428288 King Aug 2002 B1
6431839 Gruber et al. Aug 2002 B2
6435076 Montgomery Aug 2002 B2
6447257 Orschell Sep 2002 B2
6447264 Lucas et al. Sep 2002 B1
6454527 Nishiyama et al. Sep 2002 B2
6474954 Bell et al. Nov 2002 B1
6554583 Pressel Apr 2003 B1
6571561 Aquino et al. Jun 2003 B1
6616415 Renken et al. Sep 2003 B1
6682317 Chen Jan 2004 B2
6720098 Raiser Apr 2004 B2
6751941 Edelman et al. Jun 2004 B2
6784560 Sugimoto et al. Aug 2004 B2
6790012 Sharp et al. Sep 2004 B2
6814659 Cigelske, Jr. Nov 2004 B2
D499431 Chen Dec 2004 S
6952056 Brandenburg et al. Oct 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
6991436 Beckman et al. Jan 2006 B2
6998725 Brandenburg et al. Feb 2006 B2
D517009 Xiao Mar 2006 S
D521929 Xiao May 2006 S
D531193 Caito Oct 2006 S
7147444 Cheon Dec 2006 B2
D536348 Bass Feb 2007 S
D536708 Bass Feb 2007 S
7189068 Thomas, Jr. et al. Mar 2007 B2
D551141 Canitano Sep 2007 S
7283359 Bartell et al. Oct 2007 B2
7306438 Kang et al. Dec 2007 B2
7316291 Thomsen et al. Jan 2008 B2
D566042 Yamasaki et al. Apr 2008 S
D568797 Elwell May 2008 S
D572658 Yamamoto et al. Jul 2008 S
7392770 Xiao Jul 2008 B2
7398747 Onodera et al. Jul 2008 B2
7398855 Seel Jul 2008 B2
7400501 Bartell et al. Jul 2008 B2
D576723 Achen Sep 2008 S
7430992 Murakami et al. Oct 2008 B2
7452256 Kasai et al. Nov 2008 B2
7491264 Tao et al. Feb 2009 B2
D588987 Kato Mar 2009 S
D589985 Steinfels Apr 2009 S
D593032 Wang et al. May 2009 S
7541701 Lin et al. Jun 2009 B2
7563077 Santa Ana Jul 2009 B2
D600205 Imai Sep 2009 S
7597340 Hirose et al. Oct 2009 B2
7614473 Ono et al. Nov 2009 B2
7643284 Nakamura Jan 2010 B2
7678165 Tingle et al. Mar 2010 B2
7707711 Bartell et al. May 2010 B2
7743739 Kochi et al. Jun 2010 B2
7762790 Steinfels et al. Jul 2010 B2
7779792 Kubo et al. Aug 2010 B2
7779793 Ito et al. Aug 2010 B2
7811653 Miyakawa et al. Oct 2010 B2
7854517 Tsubura Dec 2010 B2
8215448 Harting et al. Jul 2012 B2
8230968 Jung et al. Jul 2012 B2
8246320 Park et al. Aug 2012 B2
8316987 Ishida et al. Nov 2012 B2
8327975 Ortman et al. Dec 2012 B2
8584795 Buckner Nov 2013 B1
8770341 Wood et al. Jul 2014 B2
8899378 Wood et al. Dec 2014 B2
8967324 White et al. Mar 2015 B2
8992186 Silveira et al. Mar 2015 B2
9309876 Wood et al. Apr 2016 B2
9476416 Chen Oct 2016 B2
10871153 White Dec 2020 B2
10982664 Wood et al. Apr 2021 B2
20020009372 Gruber et al. Jan 2002 A1
20020134617 Nessen et al. Sep 2002 A1
20020185333 Svendsen Dec 2002 A1
20040103683 Yoon Jun 2004 A1
20040191073 Iimura Sep 2004 A1
20040202562 Grassbaugh et al. Oct 2004 A1
20050092544 Lee May 2005 A1
20050220640 Finkenbinder et al. Oct 2005 A1
20050247750 Burkholder et al. Nov 2005 A1
20060104830 Fields May 2006 A1
20060104833 Hueppchen May 2006 A1
20060104834 Stilwell May 2006 A1
20060104837 Lee et al. May 2006 A1
20060137522 Nishimura et al. Jun 2006 A1
20060245952 Chen Nov 2006 A1
20070236882 Chen Oct 2007 A1
20070284954 Lin et al. Dec 2007 A1
20080008603 Schoegler Jan 2008 A1
20080045368 Nishihara Feb 2008 A1
20080053746 Albert et al. Mar 2008 A1
20080069703 Beckman Mar 2008 A1
20080152518 Stilwell Jun 2008 A1
20080181794 Steinfels et al. Jul 2008 A1
20080187447 Steinfels et al. Aug 2008 A1
20080273994 Sadkowski et al. Nov 2008 A1
20090016902 Lee et al. Jan 2009 A1
20090050219 Firoenza et al. Feb 2009 A1
20090114476 Lewis et al. May 2009 A1
20090121492 Ito et al. May 2009 A1
20090194177 Yokota et al. Aug 2009 A1
20100112929 Iantorno May 2010 A1
20100192878 Mustafa Aug 2010 A1
20100225012 Fitton et al. Sep 2010 A1
20100226750 Gammack Sep 2010 A1
20100226771 Crawford et al. Sep 2010 A1
20100226787 Gammack et al. Sep 2010 A1
20100239438 Kinjo et al. Sep 2010 A1
20100290929 Ohi et al. Nov 2010 A1
20100317281 Sperandio et al. Dec 2010 A1
20110094052 Witter Apr 2011 A1
20110095540 Jackson et al. Apr 2011 A1
20110158828 Nutz Jun 2011 A1
20110182754 Gathers et al. Jul 2011 A1
20130062141 Wood et al. Mar 2013 A1
20140294636 Ito et al. Oct 2014 A1
20150316050 Sharp et al. Nov 2015 A1
20150345490 Bremeier et al. Dec 2015 A1
Foreign Referenced Citations (29)
Number Date Country
101144668 Mar 2008 CN
201526435 Jul 2010 CN
101940589 Jan 2011 CN
102162440 Aug 2011 CN
2751298 May 1979 DE
4416555 Nov 1995 DE
10117791 Oct 2002 DE
1862671 Dec 2007 EP
2320085 May 2011 EP
2706234 Mar 2014 EP
919265 Mar 1947 FR
2153920 Aug 1985 GB
54041562 Apr 1979 JP
1080793 Mar 1989 JP
4232390 Aug 1992 JP
5133330 May 1993 JP
7109977 Apr 1995 JP
9250456 Sep 1997 JP
9250457 Sep 1997 JP
10148135 Jun 1998 JP
10339268 Dec 1998 JP
2003065241 Mar 2003 JP
2006292243 Oct 2006 JP
2006062223 Jun 2006 WO
2006090345 Aug 2006 WO
2008021251 Feb 2008 WO
2009152594 Dec 2009 WO
2010092790 Aug 2010 WO
2011094975 Aug 2011 WO
Non-Patent Literature Citations (24)
Entry
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 184 258.7-1004, EPO (Jun. 19, 2020).
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 183 996.3-1004, EPO (Feb. 3, 2020).
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 184 217.3-1004, EPO (Feb. 27, 2019).
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 184 204.1-1004, EPO (Feb. 26, 2019).
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 184 258.7-1004, EPO (Jan. 24, 2019).
Communication Pursuant To Article 94(3) EPC, EP Application No. 12 183 996.3-1004, EPO (Jan. 24, 2019).
Extended European Search Report, EP Application No. 12 183 992.2-1616 / 2570667, EPO (Feb. 22, 2017).
Extended European Search Report, EP Application No. 12 184 204.1-1616 / 2570668, EPO (Feb. 7, 2017).
Extended European Search Report, EP Application No. 12 183 978.1-1616 / 2570664, EPO (Feb. 7, 2017).
Extended European Search Report, EP Application No. 12 183 996.3-1616 / 2570666, EPO (Feb. 7, 2017).
Extended European Search Report, EP Application No. 12 184 217.3-1608 / 2570665, EPO (Nov. 2, 2016).
Kiran Daware, Universal Motor—Construction, Working And Characteristics, AC Machines, Electricaleasy (Feb. 21, 2014, 9:44 PM), https://www.electricaleasy.com/2014/02/universal-motor-construction-working.html.
Communication Pursuant To Article 94(3) EPC, Application No. 12 184 220.7-1004, EPO (Jun. 19, 2020).
Communication Pursuant To Article 94(3) EPC, Application No. 12 184 220.7-1004, EPO (Jan. 24, 2019).
Extended European Search Report, EP Application No. 12 184 258.7, EPO (Feb. 16, 2017).
Extended European Search Report, Application No. 12 184 220.7-1616 / 2570669, EPO (Feb. 14, 2017).
Extended European Search Report, EP Application No. 15 201 260.5, EPO (May 6, 2016).
Extended European Search Report, EP Application No. 13 184 002.7-1608, EPO (Nov. 29, 2013).
Extended European Search Report, EP Application No. 13 183 932.6-1608, EPO (Nov. 29, 2013).
Thomas Pumps & Compressors, WOB-L Piston, Technical Document, pp. 1-2 (2002).
LaBelle et al., Design And Development Of An Old Concept Using New Materials To Produce An Air Compressor, Thomas Industries Power Air Division, pp. 68-72 (1978), International Computer Engineering Conference, Paper 248, http://docs.lib.purdue.edu/iced/248.
Communication Pursuant To Article 94(3) EPC, Application No. 13 183 932.6-1004, EPO (Feb. 20, 2020).
Communication Pursuant To Article 94(3) EPC, Application No. 13 184 002.7-1004, EPO (Feb. 13, 2020).
Communication Pursuant To Article 94(3) EPC, Application No. 15 201 260.5-1204, EPO (Jul. 11, 2018).
Related Publications (1)
Number Date Country
20210079905 A1 Mar 2021 US
Provisional Applications (5)
Number Date Country
61534009 Sep 2011 US
61533993 Sep 2011 US
61534001 Sep 2011 US
61534015 Sep 2011 US
61534046 Sep 2011 US
Continuations (1)
Number Date Country
Parent 13609349 Sep 2012 US
Child 17107045 US