(1) Field
The disclosed subject matter generally relates to reducing an amount of mercury discharged to an environment incident to the combustion of a fuel source containing mercury or mercury containing compounds, and more particularly to reducing an amount of mercury discharged in a combustion flue gas that is subjected to a flash dryer absorber (FDA) system.
(2) Description of the Related Art
Combustion of fuel sources such as coal produces a waste gas, referred to as “flue gas” that is to be emitted into an environment, such as the atmosphere. The fuel sources typically contain sulfur and sulfur compounds, which are converted in the combustion process to gaseous species, including sulfur oxides, which then exist as such (otherwise known as “acid gases”) in the resulting flue gas. The fuel sources typically also contain elemental mercury or mercury compounds, which are converted in the combustion process to, and exist in the flue gas as, gaseous elemental mercury or gaseous ionic mercury species (generally referred to hereinafter as “mercury containing compounds”).
Accordingly, flue gas contains dust, fly ash, and noxious substances such as acid gases, as well as other impurities, that are considered to be environmental contaminants. Prior to being emitted into the atmosphere via a smoke stack (“stack”), the flue gas undergoes a cleansing or purification process.
In coal combustion, flue gas often undergoes a desulfurization process, which typically occurs in a flue gas desulfurization system. There are several types of desulfurization systems, including wet flue gas desulfurization (WFGD), also known as “wet scrubbers” and dry flue gas desulfurization (DFGD), also known as “dry scrubbers.” There are two separate types of DFGD, the first is a spray dryer absorber (SDA), while the other is a flash dryer absorber (FDA).
Acid gases are removed from flue gas using a FDA system by chemically reacting a moist pulverous material with the acid gases contained within the flue gas. Generally, the acid gases are absorbed by the moist pulverous material, which is then separated from the flue gas by the particle separator. The moist pulverous material typically includes 0.5-5 wt. % water based on the total weight of the moist pulverous material and a basic reagent that will interact with contaminants to remove them from the flue gas. Examples of basic reagents that are useful in the moist pulverous material include, but are not limited to, particulate material collected from the flue gas (such as dust and fly ash), as well as alkaline material, which generally can be selected from lime, limestone, calcium hydroxide and the like and combinations thereof.
Recently, there has been an increased focus on the removal of mercury. Presently, there are various methods for removing mercury from flue gas emissions. Those methods include, but are not limited to the following: addition of oxidizing agents in a boiler upstream of the flue gas emission control system and then removing it with wet scrubbers; addition of reactants to bind mercury and remove it from the flue gas; and utilization of particular coal or fuel that minimizes the amount of mercury released when the coal or fuel is burned.
It has been shown that a number of generally known methods of mercury removal are effective to produce mercury salts, which can be dissolved and removed by the aqueous alkaline slurry used in a wet flue gas desulfurization system (WFGD). Some of these methods include the addition of halogen or halogen compounds, such as bromine, to the coal or to the flue gas upstream of the wet scrubbing operation, to provide oxidation of elemental mercury to ionic mercury and formation of mercury salts, which are then dissolved in the aqueous alkaline slurry incident to the sulfur oxide removal processes. However, the removal of mercury in a DFGD system has proven to be difficult to control and it is not easily predicted when designing a flue gas cleaning system with respect to mercury removal. The desired emission guarantee levels are often as low as 1 μg/Nm3 of mercury, which corresponds to a very efficient mercury removal in the DFGD system.
One aspect of the disclosed subject matter relates to a method of reducing an amount of mercury discharged to an environment in a flue gas generated by combustion of a fuel source. The method includes: contacting the flue gas with a moist pulverous material upstream of a particle separator, wherein the moist pulverous material facilitates the removal of acid gases from the flue gas; mixing powdered activated carbon (PAC) in an amount between about 0.5 lb/MMacf and 10 lbs/MMacf with the flue gas upstream of the particle separator, wherein the PAC interacts with at least a portion of mercury containing compounds in the flue gas; and separating the mercury containing compounds from the flue gas containing the moist pulverous material and PAC, thereby reducing an amount of mercury in the flue gas.
Another aspect of the disclosed subject matter relates to a system for reducing an amount of mercury discharged to an environment in a flue gas generated by combustion of a fuel source. The system includes: a mixer adapted to form a moist pulverous material effective to remove contaminants from the flue gas, wherein the mixer facilitates the introduction of the moist pulverous material to the flue gas; a particle separator downstream of the mixer; and means for introducing powdered activated carbon (PAC) to the flue gas upstream of the particle separator in an amount between about 0.5 lbs/MMacf and 10 lbs/MMacf to remove at least a portion of mercury containing compounds from the flue gas, thereby reducing an amount of mercury discharged to an environment.
Another aspect of the disclosed subject matter relates to a method of removing mercury from a flue gas generated by combustion of a fuel source. The method includes: forming a moist pulverous material comprising at least one alkaline material selected from lime, limestone, calcium hydroxide and combinations thereof; introducing the moist pulverous material to the flue gas upstream of a particle separator; introducing powdered activated carbon (PAC) to the flue gas to facilitate the removal of at least a portion of mercury containing compounds, wherein the PAC is mixed with the flue gas upstream of the particle separator in an amount between 0.5 lbs/MMacf and 10 lbs/MMacf; and separating at least a portion of the mercury containing compounds from the flue gas in the particle separator, thereby removing mercury from the flue gas.
Yet another aspect of the disclosed subject matter relates to a method of reducing an amount of mercury discharged to an environment in a flue gas generated by combustion of a fuel source. The method includes: contacting the flue gas with a moist pulverous material, wherein the moist pulverous material facilitates the removal of acid gases from the flue gas; mixing powdered activated carbon (PAC) in an amount between about 0.5 lb/MMacf and 10 lbs/MMacf with the flue gas, wherein the PAC interacts with at least a portion of mercury containing compounds in the flue gas; and separating the mercury containing compounds from the flue gas containing the moist pulverous material and PAC, thereby reducing an amount of mercury in the flue gas.
Another aspect of the disclosed subject matter relates to a system for reducing an amount of mercury discharged to an environment in a flue gas generated by combustion of a fuel source. The system includes: a contact module for contacting flue gas with a moist pulverous material, wherein said moist pulverous material facilitates the removal of acid gases from said flue gas; a PAC module for mixing powdered activated carbon (PAC) in an amount between about 0.5 lb/MMacf and 10 lbs/MMacf with said flue gas, wherein said PAC interacts with at least a portion of mercury containing compounds in said flue gas; and a separation module for separating said mercury containing compounds from said flue gas containing said moist pulverous material and PAC, thereby reducing an amount of mercury in said flue gas.
For the purpose of illustrating the subject matter disclosed herein, the drawing shows a form of the embodiments that is presently preferred. However, it should be understood that the disclosed subject matter is not limited to the precise arrangements and instrumentalities shown in the drawing, wherein:
Referring now to the drawings in which like reference numerals indicate like parts, and in particular to
In system 10, a flue gas 12 travels from a combustion source, such as a coal-fired boiler 20, through a duct 22 to various equipment designed to remove contaminants from the flue gas. In duct 22, flue gas 12 is typically at a temperature between about 120° C. and about 200° C.
In addition to particulate material such as dust and fly ash, as well as gaseous contaminants such as sulfur oxide, upon leaving boiler 20 flue gas 12 may contain mercury containing compounds and have a mercury concentration of about 5 μg/Nm3 to about 200 μg/Nm3.
After traveling from boiler 20, flue gas 12 enters a particle separator 24, which separates and removes particulate material, including particulate material having contaminants, such as acid gas, absorbed thereon, from the flue gas. The term “particulate material” as used herein, includes, but is not limited to, dust, fly ash, as well as material having contaminants absorbed thereon. Particle separator 24 also facilitates the re-circulation of at least a portion of the particulate material into system 10.
In
The cleaned flue gas, i.e., flue gas 12′, eventually exits particle separator 24 and is sent through a duct 26 to stack 28, where it is released to the atmosphere. Upon exiting particle separator 24, flue gas 12′ typically is at a temperature between about 60° C. and about 90° C. and contains less than 0.03 g/Nm3 of particles and has an acceptable concentration of sulfur oxides.
After passing through particle separator 24 and prior to its emission into the atmosphere, flue gas 12′ may be subjected to other treatment processes or equipment to remove contaminants therefrom.
Duct 22 includes a vertical portion 30, through which flue gas 12 flows to reach particle separator 24. A mixer 32 is in fluid communication with vertical portion 30, which serves as an area or module where flue gas 12 can come into contact and react with contaminant-removing reagents that are prepared in the mixer. Mixer 32 can be any apparatus that facilitates the mixture of reagents to form a moist pulverous material and the introduction of the same into flue gas 12. One example of mixer 32 is the Alstom FDA system, manufactured by Alstom Power, Knoxville, Tenn.
Mixer 32 typically has a chamber to which various reagents and water are added. Mixer 32 may have a mechanical mixing mechanism (not shown) having agitators for combining the reagents and water.
Mixer 32 introduces the moist pulverous material into flue gas 12 in vertical portion 30. The moist pulverous material can be introduced to flue gas 12 by any means known in the art, including an injection mechanism, a chute, a valve, and the like. In addition to facilitating the removal of contaminants from flue gas 12, the moist pulverous material lowers the temperature of the flue gas to a temperature conducive to facilitate such a removal.
The moist pulverous material can be introduced to flue gas 12 in a continuous manner or can be introduced in an amount sufficient to absorb and remove contaminants therefrom. The particular amount of moist pulverous material added to flue gas 12 is determined by variables in each system, and such determination can be readily made by a system operator.
In some embodiments, as shown in
In another embodiment, the moist pulverous material additionally contains an alkaline material 38. Alkaline material 38 can be added to the particulate material separated from flue gas 12 by particle separator 24 in mixer 32 and combined with water. Alkaline material 38 can be any alkaline material, such as lime, limestone, calcium hydroxide and the like, and combinations thereof. Alkaline material 38 can be stored in a separate tank 40 and introduced to mixer 32 on a continuous or as-needed basis. The moist pulverous material having alkaline material 38 mixed therein typically contains 0.5-5 wt. % water based on the total weight of the moist pulverous material. In one example, the moist pulverous material contains about 1-2 wt. % water based on the total weight of the moist pulverous material.
In some systems, alkaline material 38 can be introduced to system 10 independently of the moist pulverous material. For example, alkaline material 38 can be directly introduced to boiler 20. In such an embodiment, alkaline material 38 is present in flue gas 12 when the moist pulverous material is introduced to the flue gas. In such a system, alkaline material 38 is not introduced into mixer 32.
The moist pulverous material is typically introduced to flue gas 12 via mixer 32 and subsequently facilitates the removal of contaminants from the flue gas. Contaminants that are removed from flue gas 12 include, but are not limited to, sulfur oxides. As shown in
Referring now to
Upon introduction of the moist pulverous material and PAC into vertical portion 30, the mercury present in flue gas 12 will interact, and react, with PAC and be separated from the flue gas upon collection of the PAC in particle separator 24. Typically, flue gas 12′ has a mercury concentration of about 1 μg/Nm3 or less.
Alternatively, PAC can be introduced into the flue gas at a point upstream of mixer 32, which is illustrated as point 44 in
Still referring to
Referring now to
After the addition of the moist pulverous material, at 104, flue gas 12 travels to particulate separator 24, which removes particulates and other contaminants, from the flue gas thus forming a clean flue gas, flue gas 12′. Subsequently, at 106, flue gas 12′ is exhausted to the atmosphere via stack 28.
To effect the removal of mercury from flue gas 12, in some embodiments, PAC is added to the flue gas. Referring now to
Now referring to
Although the subject matter has been described and illustrated with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made therein and thereto, without parting from the spirit and scope of the disclosed method and system. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3961020 | Seki | Jun 1976 | A |
4502872 | Ivester et al. | Mar 1985 | A |
4645653 | Kimura | Feb 1987 | A |
4889698 | Moller et al. | Dec 1989 | A |
5100643 | Brna et al. | Mar 1992 | A |
5112588 | Staudinger et al. | May 1992 | A |
5435980 | Felsvang et al. | Jul 1995 | A |
5505766 | Chang | Apr 1996 | A |
5527496 | Rogers et al. | Jun 1996 | A |
5556447 | Srinivasachar et al. | Sep 1996 | A |
5569436 | Lerner | Oct 1996 | A |
5672323 | Bhat et al. | Sep 1997 | A |
5854173 | Chang et al. | Dec 1998 | A |
6027551 | Hwang et al. | Feb 2000 | A |
6033639 | Odenmo | Mar 2000 | A |
6322613 | Wojtowicz et al. | Nov 2001 | B1 |
6451094 | Chang et al. | Sep 2002 | B1 |
6521021 | Pennline et al. | Feb 2003 | B1 |
6558454 | Chang et al. | May 2003 | B1 |
6719828 | Lovell et al. | Apr 2004 | B1 |
6818043 | Chang et al. | Nov 2004 | B1 |
6848374 | Srinivasachar et al. | Feb 2005 | B2 |
6878358 | Vosteen et al. | Apr 2005 | B2 |
6953494 | Nelson, Jr. | Oct 2005 | B2 |
7033548 | Pahlman et al. | Apr 2006 | B2 |
7153481 | Bengtsson et al. | Dec 2006 | B2 |
7361209 | Durham et al. | Apr 2008 | B1 |
20020150516 | Pahlman et al. | Oct 2002 | A1 |
20030103882 | Biermann et al. | Jun 2003 | A1 |
20030206843 | Nelson, Jr. | Nov 2003 | A1 |
20040003716 | Nelson, Jr. | Jan 2004 | A1 |
20040086439 | Vosteen et al. | May 2004 | A1 |
20070051239 | Holmes et al. | Mar 2007 | A1 |
20070180990 | Downs et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
102004044291 | Mar 2006 | DE |
0 253 563 | Jan 1988 | EP |
1 275 430 | Jan 2003 | EP |
1 645 323 | Apr 2006 | EP |
1815903 | Aug 2007 | EP |
9308902 | May 1993 | WO |
WO 03093518 | Oct 1993 | WO |
9616722 | Jun 1996 | WO |
9722400 | Jun 1997 | WO |
9737747 | Oct 1997 | WO |
9843729 | Oct 1998 | WO |
9959704 | Nov 1999 | WO |
WO 9320926 | Nov 2003 | WO |
2004108254 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100258006 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11962500 | Dec 2007 | US |
Child | 12821630 | US |