Method of reducing atmospheric ammonia in livestock and poultry containment facilities

Information

  • Patent Grant
  • 9738565
  • Patent Number
    9,738,565
  • Date Filed
    Thursday, September 3, 2015
    9 years ago
  • Date Issued
    Tuesday, August 22, 2017
    7 years ago
Abstract
Methods are provided for the treatment of livestock or poultry confinement facilities equipped with manure collection zones (e.g., a manure pit or litter), in order to reduce and mitigate the effects of gaseous ammonia within the facility. The treatment involves application of an aqueous mixture including a partial calcium salt of a maleic-itaconic copolymer and a partial ammonium salt of a maleic-itaconic copolymer. Preferably, the amount of the partial calcium salt copolymer is greater than the amount of the partial ammonium salt copolymer. The treatment methods provide prompt and lasting reductions in gaseous ammonia within the confinement facility.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention is directed to methods for treating livestock or poultry confinement facilities equipped with manure collection zones, such as pits or litter accumulations, to reduce and mitigate the effects of gaseous ammonia within the facility and thereby lessen the deleterious effects of ammonia on the livestock or poultry within the facility. More particularly, the invention is concerned with such methods wherein an aqueous treatment material comprising a partial calcium salt of a maleic-itaconic copolymer in combination with a partial ammonium salt of a maleic-itaconic copolymer. Such treatments promptly reduce the gaseous nitrogen content within the confinement facilities, and maintain such reductions over a significant period of time.


Description of the Prior Art


Ammonia is a common by-product of animal waste due to the often inefficient conversion of feed nitrogen into animal product. Livestock and poultry are often fed high-protein diets, which contain surplus nitrogen in order to assure that the animals' nutritional requirements are met. Nitrogen that is not metabolized into animal protein is secreted in the urine and feces of livestock and poultry, where further microbial action release ammonia into the air during manure decomposition.


Ammonia is typically considered an indoor air quality concern by poultry and livestock producers, because the gas accumulates inside poorly ventilated and/or managed animal confinement facilities. Elevated levels of nitrogen can have a negative impact on animal health and production, resulting in increased susceptibility of birds to bacterial respiratory infection, and decreased weight gains, feed conversions. Similarly, other livestock suffer under elevated ammonia conditions within a confinement facility.


Producers have adopted a number of strategies to lessen ammonia levels within confinement facilities, especially in cases of poultry coops or houses. Thus, it is known that a variety of amendments including aluminum sulfate (alum), ferrous sulfate, phosphoric acid, and other proprietary products may be sprayed or otherwise applied to the poultry litter. In the case of manure pits beneath livestock barns or houses, producers have principally relied upon ventilation to reduce ammonia levels. However, these methods have not completely solved the ammonia problems inherent in animal confinement facilities.


Specialty Fertilizer Products, LLC, of Leawood, Kans. (SFP), has heretofore commercialized a series of maleic-itaconic copolymers principally for use with solid or liquid ammoniacal or phosphate fertilizers, such as urea or UAN fertilizers, in order to significantly increase the performance of the fertilizers as evidenced by increased yields.


These prior products include Nutrisphere-N® for Liquid Nitrogen Fertilizers, which is a partial calcium salt of a maleic-itaconic copolymer in water with a solids content of at least 30% w/w, and more preferably about 40% w/w. The copolymer is formulated using equimolar amounts of maleic and itaconic moieties. The final product has a pH of 1-2 and is a light brown to yellow viscous liquid.


Another such product is AVAIL® for Liquid Phosphate Fertilizers is a partial ammonium salt of a maleic-itaconic copolymer in water with a solids content of at least 30% w/w, and more preferably about 40% w/w. The copolymer is formulated using equimolar amounts of maleic and itaconic moieties. The final product has a pH of about 2 and is also a light brown to yellow viscous liquid.


SFP has also previously commercialized a manure nutrient manager product under the trademarks More Than Manure® or MTM®, which is primarily designed to reduce phosphorous lock-up and nitrogen loss when applied to manure in an open-air pit or lagoon, or directly onto litter after field application of the litter. MTM® is an aqueous mixture made up of two-thirds by volume Nutrisphere-N® for Liquid Nitrogen Fertilizers and one-third by volume of AVAIL® for Liquid Phosphate Fertilizers, having a solids content of from about 30-60% w/w, a pH of about 3 and a specific gravity of from about 1.1-1.4. Other benefits of the MTM® product include increased crop rotation flexibility, biodegradability, and reduction of manure solids. In such prior uses of MTM®, no odor-reduction studies were conducted, but numerous MTM® users expressed the opinion of a notable reduction of odor from the use of the product.


SUMMARY OF THE INVENTION

It has now been discovered that gaseous nitrogen levels in livestock and poultry confinement facilities can be promptly and significantly reduced for marked time periods by applying an effective amount of a treatment composition to manure within or directly below the facility. Such animal or poultry confinement facilities include upright walls forming an enclosure, a manure collection zone within or below the enclosure, and a roof substantially covering the zone. Examples of such facilities are dairy and hog farrowing, finishing, and calving barns, and poultry coops, barns, and houses. In some instances, the facilities include a manure pit directly below the roof and enclosure, while in others the facilities have a floor covered in litter, which is mixed with animal manures. Usually, the liquid material is applied directly to manure within a pit by simply pouring the product into the manure mass. In the case of litter/manure mixtures, the product is normally sprayed onto the mixture.


The treatment material comprises an aqueous mixture including a partial calcium salt of a maleic-itaconic copolymer and a partial ammonium salt of a maleic-itaconic copolymer. The product typically has a pH of from about 1-5, more preferably from about 2-4. Actual test results confirm very significant reductions in gaseous ammonia within treated livestock or poultry confinement facilities, with a single application lasting for several weeks.


The fact that the treating materials methods of the invention can reduce ammonia levels withing confinement facilities so rapidly and effectively is quite surprising, because no known prior treatment can achieve such results.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The Partial Salt Maleic-Itaconic Copolymers and the Treating Materials


The preferred maleic-itaconic copolymers useful in the invention are described in U.S. Pat. Nos. 6,515,090 and 8,043,995 fully and completely incorporated by reference herein. In general, the copolymer salts should each desirably contain from about 10-90% by weight maleic moieties (more preferably from about 25-75% by weight), and correspondingly from about 90-10% by weight itaconic moieties (more preferably from about 75-25% by weight). Overall, each of the copolymer salts should include at least about 85% by weight of maleic and itaconic moieties, and more preferably at least about 93% by weight. Accordingly, the copolymer salts may also contain other moieties apart from maleic and itaconic moieties, such as vinyl moieties. However, such other moieties should be present only up to a level of about 15% by weight, more preferably up to about 7% by weight. Preferably, each of the copolymer consists essentially of maleic and itaconic moieties. One particularly preferred class of copolymer salts are the SFP AVAIL® and Nutrisphere-N® products described previously, which are formed using substantially equimolar amounts of maleic and itaconic moieties.


Most preferably, each of said partial salt copolymers has the generalized formula




embedded image



where some of said X cations are H, and others of said X cations are Ca in the case of the partial calcium salt copolymer and ammonium in the case of the partial ammonium salt copolymer, and p ranges from about 10-50.


The partial calcium salt copolymer initially (i.e., before mixing with the partial ammonium salt copolymer) should have a pH of from about 1-4; likewise, the partial ammonium salt copolymer initially should have a pH of from about 1-4. The most preferred initial pH level for both salt copolymers should be about 1-2.


The complete treating materials should preferably contain at least about 30-60% by weight of total copolymer solids derived from both of the partial salt copolymers (more preferably from about 35-50% by weight solids), and from about 40-70% by weight water (most preferably from about 50-65% water). However, the treating materials may also include other ingredients apart from the two partial salt copolymers and water, such as pH adjustment agents, buffering agents, preservatives, and emulsifiers. Any such other ingredients are preferably used at a minor level, e.g., from about 1-10% by weight. The pH of the complete treating materials should be acid, preferably from about 1-5, more preferably from about 2-4.


Preferably, the calcium partial salt copolymer solids should be present in the complete treating materials in an amount greater than the amount of the ammonium partial salt copolymer solids therein. That is, taking the total weight of both copolymer salt solids as 100% by weight, the calcium partial salt copolymer solids should be present at a level of from about 50-80% by weight (more preferably from about 55-75% by weight, and most preferably from about 60-65% by weight), and the ammonium partial salt copolymer solids should be present at a level of from about 20-50% by weight (more preferably from about 25-45% by weight, and most preferably from about 35-40% by weight).


The single most preferred formulation useful in the context of the invention is the previously described MTM® product.


The Preferred Uses of the Treating Materials


Application of the dual partial salt copolymer materials of the invention is quite straightforward. In the case of manure collection pits, the material need only be poured onto the top of the manure and will quite readily spread and diffuse throughout the mass of the manure to promptly reduce the amount of gaseous nitrogen generated and maintained within the confinement facility. In the case of dairy or poultry barns having floor structures with litter and manure atop or mixed with the litter, the treating material is advantageously sprayed onto the top of the litter-manure mixture, with or without mixing. Here again, the action of the treating material is quite prompt and long-lasting.


Generally, the treating mixtures are used at a level of from about 0.005-3 gallons of the material per ton of manure, more preferably from about 0.01-2.5 gallons/ton, still more preferably from about 0.02-1 gallon per ton, and most preferably from about 0.03-0.035 gallon per ton.


Almost immediately upon application of the treating material to the manure, the amount of gaseous ammonia within the confinement facility is perceptibly lowered, and such reduction persists for a considerable time. Generally, the prevailing amount of gaseous ammonia should be reduced by at least about 50% (more preferably at least about 60%) within 24 hours after application. A single treatment also preferably serves to maintain at least about a 30% gaseous ammonia reduction (more preferably at least about 40%) for at least about 14 days (more preferably at least about 21 days).


EXAMPLES

The following examples describe preferred methods in accordance with the invention. It should be understood, however, that these examples are provided by way of illustration only, and nothing therein should be considered a limitation upon the overall scope of the invention.


In these examples, the “treatment” was the preferred MTM® treating agent described above. The ammonia measurements were made using meters having an average data point entry every 10 seconds, and the time in minutes listed in the tables refers to the total time of each reading at multiple points. For example, a reading of “15 mins., 2 points” means that there were two separate measurements at different points, each measurement being over a period of 7.5 minutes. The results of the multiple-point measurements were then averaged to give the reported ammonia levels.


In certain of the examples, the amount of treatment agent is recited as “ounces per acre.” This is based upon the manufacturer's recommendation of usage, according to the following equation:

(amount of manure in gallons)/(number of acres to be fertilized with the treated manure)×(18 oz. of MTM®)/(128 oz./gallons)=gallons of MTM® to add to the manure


Example 1

In this test, a poultry layer house was treated having approximately 300 tons of litter in the house basement. The litter was treated with 25 gallons of the preferred liquid mixture, which was incorporated into the litter using a composting tractor with a sprayer mounted on the front and supporting a rear tank containing the mixture diluted with 75 gallons of water. Gaseous ammonia levels were determined prior to application of the treatment mixture on Days 1 and 3, on the day of treatment (Day 4), and thereafter on Days 5, 10, 11, and 12. Ammonia measurements were made at the exhaust fan and in the basement, with each measurement being taken three times and averaged. The following are the test results.















Day
Location/Temp
Treatment
Ammonia ppm


















1
exhaust 68° F.
None
22.8


1
exhaust 68° F.
None
55.3


3
exhaust 50° F.
None
85.4


3
exhaust 50° F.
None
84.8


1
basement
None
17.7


1
basement
None
55.3


3
basement
None
172.8


3
basement
None
116.7


4
exhaust 27° F.
treated
8.6


4
exhaust 50° F.
treated
32


4
basement
treated
19.1


4
basement
treated
30.5


5
exhaust 55° F.
treated
15.6


5
basement
treated
17.1


10
exhaust 55° F.
treated
6.8


10
exhaust 73° F.
treated
8.4


10
basement
treated
10.9


10
basement
treated
18.6


11
exhaust 61° F.
treated
15.53


11
exhaust 77° F.
treated
10.1


11
basement
treated
10.1


11
basement
treated
11.8


12
exhaust 59° F.
treated
13.8


12
basement
treated
19.9









Example 2

A hog-finishing house having a manure pit with a 250,000 gallon capacity was treated using 18 ounces of the preferred treatment per acre of ground to be fertilized using the treated manure. The treatment was poured onto the top of the manure in the pit, and ammonia readings were taken at the pit exhaust fan prior to and after treatment. The following results were recorded.














Day
Treatment
Ammonia ppm

















1
none
75


1
treated
33


(one hour after




treatment,




2 readings




averaged)




7
treated
10


15
treated
7


18
treated
5









Example 3

A slatted dairy barn with corn cob bedding was treated with the preferred treatment. The manure pit had a 1.2 gallon capacity, and the treatment was applied at 18 ounces per acre (213 acres @ 5600 gallons per acre. Ammonia readings were taken inside the barn at multiple points.


















Ammonia ppm


Day
Details/Location
Treatment
(readings averaged)







 1
within barn, 2 points, 15 mins.
none
33.0


 2
within barn, 2 points, 15 mins.
none
31.4


 2
within barn, 2 points, 15 mins.
treated
26.1


 3
within barn, 4 points, 40 mins.
treated
22.5


 8
within barn, 4 points, 40 mins.
treated
19.2


28
within barn, 8 points, 60 mins.
treated
15.6


41
within barn, 8 points, 60 mins. *
treated
 1.3





* 20 loads of manure were removed prior to the readings






Example 4

A hog-finishing barn with the manure pit at capacity, was treated using the preferred treatment at 18 ounces per acre.


















Ammonia


Day
Details/Location/Temperature
Treatment
ppm


















1
exhaust fan, 4 points, 15 mins., 75° F.
none
18


2
exhaust fan, 4 points, 15 mins., 61° F.
treated
9.25


4
exhaust fan, 4 points, 15 mins., 83° F.
treated
8


8
exhaust fan, 4 points, 15 mins., 72° F.
treated
8.1









Example 5

A hog finishing barn having a manure pit at 75% capacity was treated at a rate of 18 ounces per acre.















Day
Details/Location/Temp
Treatment
Ammonia ppm


















1
exhaust fan, 4 points, 15 mins, 63° F.
none
7.5


2
exhaust fan, 4 points, 15 mins, 61° F.
treated
8.25


4
exhaust fan, 4 points, 15 mins, 80° F.
treated
3.16


8
exhaust fan, 4 points, 15 mins, 67° F.
treated
4.5









Example 6

A hog barn having a manure pit with a 300,000 gallon capacity which was 25% full was treated at a rate of 18 ounces per acre (10 gallons). Before and after treatment, multiple readings were taken inside and outside the barn and averaged, giving the following results.















Day
Details/Location
Treatment
Ammonia ppm


















1
inside barn, 2 points, 10 mins.
none
22.6


2
inside barn, 2 points, 10 mins.
none
44


3
inside barn, 2 points, 10 mins.
treated
32.4


8
inside barn, 2 points, 10 mins.
treated
12.4


15
inside barn, 2 points, 10 mins.
treated
10.0


19
inside barn, 6 points, 40 mins.
treated
15.2


28
inside barn, 4 points, 20 mins.
treated
20.1


2
outside barn, 2 points; 15 mins.
none
87.1


2
outside barn, 2 points; 15 mins.
treated
51.8


3
outside barn, 2 points; 15 mins.
treated
30.7


8
outside barn, 2 points; 15 mins.
treated
12.6


15
outside barn, 2 points; 15 mins.
treated
2.5


19
outside barn, 4 points; 15 mins.
treated
49.8


28
outside barn, 4 points; 15 mins.
treated
9.3


38
outside barn, 4 points; 15 mins.
treated
9.3









Example 7

In this example, a hog finishing barn having separate east and west pits was treated at a level of 18 ounces per acre. The results are as follows:















Day
Details/Location
Treatment
Ammonia ppm


















1
exhaust fan, 3 points, 15 mins., west half
none
36


1
exhaust fan, 3 points, 15 mins., west half
treated
19


7
exhaust fan, 3 points, 15 mins., west half
treated
18


18
exhaust fan, 3 points, 15 mins., west half
treated
24


1
exhaust fan, 3 points, 15 mins., east half
none
36


1
exhaust fan, 3 points, 15 mins., east half
none
43


7
exhaust fan, 3 points, 15 mins., east half
none
48


18
exhaust fan, 3 points, 15 mins., east half
none
51


1
exhaust fan, 3 points, 15 mins., east half
none
17


1
exhaust fan, 3 points, 15 mins., east half
treated
15


7
exhaust fan, 3 points, 15 mins., east half
treated
16


18
exhaust fan, 3 points, 15 mins., east half
treated
16









Example 8

In this example, the manure pit of a hog finishing barn was treated at a rate of 18 ounces per acre, giving the following results.















Day
Details/Location/Temp
Treatment
Ammonia ppm


















1
inside barn, 2 points, 15 mins., 54° F.
none
10.2


8
inside barn, 2 points, 15 mins., 44° F.
treated
4.5


1
exhaust fan, 3 points, 15 mins., 54° F.
none
15.1


8
exhaust fan, 3 points, 15 mins., 44° F.
treated
7.2









Example 9

In this example, another hog finishing barn was treated at a rate of 18 ounces per acre.















Day
Details/Location/Temp
Treatment
Ammonia ppm


















1
inside barn, 2 points, 15 mins., 28° F.
none
6.1


14
inside barn, 2 points, 15 mins., 26° F.
treated
1.9


1
inside barn, 3 points, 15 mins., 28° F.
none
8.2


14
inside barn, 3 points, 15 mins., 26° F.
treated
2.3









Example 10

In this test, a hog finishing barn having a manure pit of 300,000 gallons at 85% capacity was treated with 10 gallons of the treatment, yielding the following results.















Day
Details/Location
Treatment
Ammonia ppm


















1
exhaust fan, 2 points, 10 mins.
none
26.5


1
exhaust fan, 2 points, 10 mins.
treated
20


1
exhaust fan, 2 points, 10 mins.
treated
19


7
exhaust fan, 4 points, 10 mins.
treated
12









Example 11

In this instance, a dairy barn was treated having no pit. Rather, the preferred treatment was applied using a backpack sprayer at a level of 18 ounces per acre, diluted in 15 gallons of water. The ammonia levels were then tested at various locations in the barn, with the following results.















Day
Details/Location
Treatment
Ammonia ppm


















1
gutter
none
17


1
gutter
treated
12


1
gutter
treated
9


1
east end
none
12


1
east end
treated
9


1
east end
treated
6


1
middle
none
9


1
middle, immediately after
treated
7



treatment




1
middle, 2 hours after treatment
treated
6


1
west end
none
9


1
west end
treated
6


1
west end
treated
0









Example 12

In this test, a small scale (25′×25′) chicken coop was treated. The coop had housed chickens through the winter and had about 1.5 feet of manure with no bedding. The treating agent was sprayed onto the manure bed using 36 ounces of the preferred treatment diluted with 2 gallons of water, followed by additional water over the bed to ensure saturation.















Day
Details/Location
Treatment
Ammonia ppm


















1
room average
none
23.7


1
room average
none
40.9


9
room average
treated
3.5


14
room average
treated
10.5


21
room average
treated
10.5









Example 13

In this test, a calving barn was treated using the preferred treatment at a rate of 17 ounces per acre with water, using a backpack sprayer. The results are as follows.















Day
Details/Location/Temp.
Treatment
Ammonia ppm







1
adjacent office 34° F.
none
1.3


1
adjacent office 34° F.
treated
0.8


1
barn, 1° F.
none
3.8


1
barn, 1° F.
treated
0.3









Example 14

In this example, the producer had three hog farrowing barns, two of which were treated at a level of 18 ounces per acre.















Day
Details/Location
Treatment
Ammonia ppm







1
average of 3 barns
none
22.4


1
average of the 2 treated barns
treated
13.9









Example 15

In this test, 2 hog finishing barns, each with a manure pit filled to 25% capacity, were treated at a level of 18 ounces per acre. The manure had a heavy crusting and fly infestation.















Day
Details/Location/Barn 1
Treatment
Ammonia ppm


















1
exhaust fan
none
14.2


1
right side of barn
none
6.7


1
left side of barn (no air movement)
none
88.4


1
exhaust fan, 30 mins. after treatment
treated
10.7


1
right side of barn
treated
5.1


1
left side of barn (no air movement)
treated
67.0






















Day
Details/Location/Barn 2
Treatment
Ammonia ppm


















1
exhaust fan
none
34.2


1
right side of barn
none
13.0


1
left side of barn
none
19.2


1
exhaust fan, 30 mins. after treatment
treated
22.6


1
right side of barn
treated
7.8


1
left side of barn
treated
10.5









Example 16

In this example, a hog confinement building with a manure pit containing 100,000 gallons of manure was treated at a level of 18 ounces per acre.















Day
Details/Location
Treatment
Ammonia ppm







1
exhaust fan
none
7


1
exhaust fan after treatment
treated
6


1
exhaust fan, 3 hours after treatment
treated
0









Example 17

In this example, a hog finishing barn was treated at a level of 18 ounces per acre.















Day
Details/Location
Treatment
Ammonia ppm


















1
average of 2 exhaust fans
none
71.8


2
average of 2 exhaust fans
treated
6.0









Example 18

In this example, a producer treated the manure pits of 2 hog finishing barns at a level of 18 ounces per acre.















Day
Details/Location
Treatment
Ammonia ppm


















1
average of 2 exhaust fans
none
34.6


1
average of 2 exhaust fans, after treatment,
treated
12.2



15 mins. between measurements




1
average of 2 exhaust fans, one hour after
treated
8.7



application








Claims
  • 1. A method of treating a livestock or poultry confinement facility to reduce and mitigate the effects of gaseous ammonia within the facility, said facility having a manure collection zone, upright walls forming an enclosure, and a roof substantially covering said zone, said method comprising the step of applying a treatment material to said manure within said zone in an amount of from about 0.005-3 gallons of said material per ton of manure and effective to lower the concentration of gaseous ammonia within said facility, said material comprising an aqueous mixture including a partial calcium salt of a maleic-itaconic copolymer and a partial ammonium salt of a maleic-itaconic copolymer, said material having a pH of from about 1-5.
  • 2. The method of claim 1, said collection zone comprising a manure pit, and applying step comprising the step of pouring said treatment material into the pit.
  • 3. The method of claim 1, said collection zone comprising a floor structure having litter thereon, with said manure mixed with the litter, said applying step comprising the step of spraying said material onto the manure-litter mixture.
  • 4. The method of claim 1, said level being from about 0.01-2.5 gallons of the material per ton of manure.
  • 5. The method of claim 1, said pH being from about 2-4.
  • 6. The method of claim 1, said material comprising from about 40-80% by weight of partial calcium salt copolymer solids, and from about 20-60% by weight of said partial ammonium salt copolymer solids, with the total amount of the solids taken as 100% by weight.
  • 7. The method of claim 6, said material comprising from about 55-75% by weight of said partial calcium salt copolymer solids and from about 25-45% by weight of said partial ammonium salt copolymer.
  • 8. The method of claim 1, each of said partial salt copolymers having at least about 85% by weight of maleic and itaconic moieties therein.
  • 9. The method of claim 8, each of said partial salt copolymers having at least about 93% by weight of maleic and itaconic moieties therein.
  • 10. The method of claim 9, each of said partial salt copolymers consisting essentially of maleic and itaconic moieties.
  • 11. The method of claim 1, each of said partial salt copolymers comprising from about 10-90% maleic moieties and from 90-10% itaconic moieties.
  • 12. The method of claim 11, each of said partial salt copolymers having substantially equimolar amounts of said maleic and itaconic moieties.
  • 13. The method of claim 1, said material having a solids content of from about 30-60% by weight.
  • 14. The method of claim 1, each of said partial salt copolymers having the generalized formula
  • 15. The method of claim 1, said confinement facility selected from the group consisting of dairy, hog, calving, farrowing, and finishing barns, and poultry coops and barns.
  • 16. The method of claim 1, said treating material serving to reduce the amount of gaseous ammonia within said confinement facility by a level of at least about 50% within 24 hours after said application.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation of application Ser. No. 13/584,608, filed Aug. 13, 2012, which is incorporated herein by reference in its entirety.

US Referenced Citations (247)
Number Name Date Kind
2618547 Davenport et al. Jan 1950 A
2616849 Giammaria Nov 1952 A
2616853 Giammaria Nov 1952 A
2625471 Mowry et al. Jan 1953 A
2625529 Hedrick et al. Jan 1953 A
2652380 Hedrick et al. Sep 1953 A
2976138 Hester Mar 1961 A
3052648 Bauer Sep 1962 A
3087893 Agius et al. Apr 1963 A
3130033 Stephens Apr 1964 A
3222282 Berkowitz et al. Dec 1965 A
3262919 Bolgiono Jul 1966 A
3308067 Diehl Mar 1967 A
3497334 Gee et al. Feb 1970 A
3634052 Gee et al. Jan 1972 A
3639242 Le Suer Feb 1972 A
3685998 Miller Aug 1972 A
3720765 Miller Mar 1973 A
3796559 Windgassen Mar 1974 A
3873487 Minato et al. Mar 1975 A
3936427 Viout et al. Feb 1976 A
3953191 Barton Apr 1976 A
3996134 Osborn et al. Dec 1976 A
3997319 Ott Dec 1976 A
4007029 Kenton Feb 1977 A
4010006 Price Mar 1977 A
4071400 Jankowiak Jan 1978 A
4076663 Masuda et al. Feb 1978 A
4082533 Wittenbrook et al. Apr 1978 A
4083835 Pohlemann et al. Apr 1978 A
4135887 Rossi Jan 1979 A
4161539 Stallcup Jul 1979 A
4165743 Denning Aug 1979 A
4173669 Ashida et al. Nov 1979 A
4211765 Johnson et al. Jul 1980 A
4251255 Wagner et al. Feb 1981 A
4434231 Jung Feb 1984 A
4439488 Trimnell et al. Mar 1984 A
4451628 Dammann May 1984 A
4471100 Tsubakimoto et al. Sep 1984 A
4538532 Coker Sep 1985 A
4652273 Maldonado et al. Mar 1987 A
4663408 Schulz et al. May 1987 A
4701204 Duvdevani et al. Oct 1987 A
4709091 Fukumoto et al. Nov 1987 A
4725655 Denzinger et al. Feb 1988 A
4808215 Gill et al. Feb 1989 A
4844725 Malouf et al. Jul 1989 A
4872412 Zollinger Oct 1989 A
4897220 Trieselt et al. Jan 1990 A
4923500 Sylling May 1990 A
4929690 Goertz et al. May 1990 A
4933098 Gutierrez et al. Jun 1990 A
4936897 Pipko et al. Jun 1990 A
4952415 Winowiski et al. Aug 1990 A
5013769 Murray et al. May 1991 A
5024676 Moriyama et al. Jun 1991 A
5035821 Chung et al. Jul 1991 A
5047078 Gill Sep 1991 A
5054434 Wax et al. Oct 1991 A
5064563 Yamaguchi et al. Nov 1991 A
5106648 Williams Apr 1992 A
5113619 Leps et al. May 1992 A
5135677 Yamaguchi et al. Aug 1992 A
5188654 Manalastas et al. Feb 1993 A
5194263 Chamberlain et al. Mar 1993 A
5210163 Grey May 1993 A
5223592 Hughes et al. Jun 1993 A
5256181 Manalastas et al. Oct 1993 A
5294651 Stephens Mar 1994 A
5300127 Williams Apr 1994 A
5328624 Chung Jul 1994 A
5336727 Okazawa et al. Aug 1994 A
5391632 Krull et al. Feb 1995 A
5399639 Kimpton et al. Mar 1995 A
5427785 Ronson et al. Jun 1995 A
5435821 Duvdevani et al. Jul 1995 A
5536311 Rodrigues Jul 1996 A
5562916 Van Ooijen Oct 1996 A
5574004 Carr Nov 1996 A
5578486 Zhang Nov 1996 A
5653782 Stern et al. Aug 1997 A
5666905 Mackin et al. Sep 1997 A
5681678 Nealey et al. Oct 1997 A
5688907 Wood et al. Nov 1997 A
5697186 Neyra et al. Dec 1997 A
5732658 Wolters et al. Mar 1998 A
5741521 Knight et al. Apr 1998 A
5760150 Bacchus Jun 1998 A
5788722 Emert et al. Aug 1998 A
5916029 Smith et al. Jun 1999 A
5993666 Yamaguchi et al. Nov 1999 A
5994265 Barclay et al. Nov 1999 A
5997602 Aijala Dec 1999 A
6022555 DeLuca et al. Feb 2000 A
6057398 Blum May 2000 A
6100221 Poelker et al. Aug 2000 A
6100224 Peiffer et al. Aug 2000 A
6139596 Barth et al. Oct 2000 A
6180589 Rodrigues et al. Jan 2001 B1
6187074 von Locquenghien et al. Feb 2001 B1
6199318 Stewart et al. Mar 2001 B1
6207780 Stockhausen et al. Mar 2001 B1
6221956 Chen Apr 2001 B1
6228806 Mehta May 2001 B1
6271191 Kerobo et al. Aug 2001 B1
6287359 Erhardt et al. Sep 2001 B1
6309439 von Locquenghien et al. Oct 2001 B1
6312493 Eltink et al. Nov 2001 B1
6384166 Austin et al. May 2002 B1
6395051 Arnold et al. May 2002 B1
6413292 von Locquengh et al. Jul 2002 B1
6444771 Yamaguchi et al. Sep 2002 B1
6471741 Reinbergen Oct 2002 B1
6488734 Barth et al. Dec 2002 B1
6500223 Sakai et al. Dec 2002 B1
6515090 Sanders et al. Feb 2003 B1
6515091 Sanders et al. Feb 2003 B2
6544313 Peacock et al. Apr 2003 B2
6569976 Baxter et al. May 2003 B2
6586560 Chen et al. Jul 2003 B1
6632262 Gabrielson Oct 2003 B2
6635702 Schmucker-Castner et al. Oct 2003 B1
6653428 Klein et al. Nov 2003 B1
6703469 Sanders et al. Mar 2004 B2
6734148 Bell et al. May 2004 B2
6770616 McGowan et al. Aug 2004 B1
6843846 Chatterji et al. Jan 2005 B2
6844293 Kirby et al. Jan 2005 B1
6855182 Sears Feb 2005 B2
6897184 Kurita et al. May 2005 B2
6897253 Schmucker-Castner et al. May 2005 B2
6930139 Sanders et al. Aug 2005 B2
6936598 Khoo et al. Aug 2005 B2
7004991 Narayanan et al. Feb 2006 B2
7019046 Narayanan et al. Mar 2006 B2
7071259 Botros Jul 2006 B2
7071275 Rath et al. Jul 2006 B2
7201959 Judek et al. Apr 2007 B2
7217752 Schmucker-Castner et al. May 2007 B2
7317062 Pritschins et al. Jan 2008 B2
7470304 Keenan et al. Dec 2008 B2
7537705 Mizuno et al. May 2009 B2
7572328 Lettkeman et al. Aug 2009 B2
7615521 Eveland et al. Nov 2009 B2
7655597 Sanders Feb 2010 B1
7666241 Sanders et al. Feb 2010 B2
7686863 Sanders Mar 2010 B1
7695541 Frizzell et al. Apr 2010 B1
7923479 Champ et al. Apr 2011 B2
7942941 Cravey et al. May 2011 B2
8025709 Sanders et al. Sep 2011 B2
8043995 Sanders et al. Oct 2011 B2
8097076 Göbelt et al. Jan 2012 B2
8110017 Wells Feb 2012 B2
8143333 Peppmoller et al. Mar 2012 B2
8163859 Jeon et al. Apr 2012 B2
8182593 Rapp May 2012 B2
8192520 Sanders Jun 2012 B2
8420758 Durant et al. Apr 2013 B2
8430943 Sanders Apr 2013 B2
8436072 Herth et al. May 2013 B2
8491693 Burnham Jul 2013 B2
8562710 Palmer et al. Oct 2013 B2
8592343 Xavier et al. Nov 2013 B2
8846817 Yontz et al. Sep 2014 B2
9139481 Sanders Sep 2015 B2
9145340 Sanders Sep 2015 B2
20010002390 Rodrigues May 2001 A1
20010029762 Steele et al. Oct 2001 A1
20020010296 Baxter et al. Jan 2002 A1
20020049139 Smale Apr 2002 A1
20020132886 Meffert et al. Sep 2002 A1
20030203825 Aubay Oct 2003 A1
20030225233 Dilocker et al. Dec 2003 A1
20040202634 L'Alloret Oct 2004 A1
20040211234 Volgas et al. Oct 2004 A1
20040226329 Sanders et al. Nov 2004 A1
20040226330 Sanders et al. Nov 2004 A1
20040226331 Sanders et al. Nov 2004 A1
20040230020 Sanders et al. Nov 2004 A1
20040265266 Champ et al. Dec 2004 A1
20040266621 West Dec 2004 A1
20050050931 Sanders et al. Mar 2005 A1
20050090402 Dieing et al. Apr 2005 A1
20050158268 Schmucker-Castner et al. Jul 2005 A1
20060030486 Meyer et al. Feb 2006 A1
20060069004 Song et al. Mar 2006 A1
20060078526 Boyd et al. Apr 2006 A1
20060191851 Mizuno et al. Aug 2006 A1
20060234901 Scheuing et al. Oct 2006 A1
20070027281 Michl et al. Feb 2007 A1
20070161524 Counradi et al. Jul 2007 A1
20070212320 Demitz et al. Sep 2007 A1
20070213243 Yao et al. Sep 2007 A1
20070218168 Hale, III Sep 2007 A1
20080044548 Hale, III Feb 2008 A1
20080173053 Sanders et al. Jul 2008 A1
20080189085 Cook et al. Aug 2008 A1
20090071213 Keenan et al. Mar 2009 A1
20090149364 Beck Jun 2009 A1
20090151755 Beck Jun 2009 A1
20090163365 Bentlage et al. Jun 2009 A1
20090227451 Rose et al. Sep 2009 A1
20090258786 Pursell et al. Oct 2009 A1
20090270257 Pursell et al. Oct 2009 A1
20090308122 Shah Dec 2009 A1
20100012040 Pow et al. Jan 2010 A1
20100024500 Tyler Feb 2010 A1
20100099566 Bobnock Apr 2010 A1
20100120617 Dyllick-Brenzinger et al. May 2010 A1
20100122379 Dieckmann et al. May 2010 A1
20100167975 Vandermeulen et al. Jul 2010 A1
20100175443 Sanders et al. Jul 2010 A1
20100203228 Funaki et al. Aug 2010 A1
20100210802 Creamer et al. Aug 2010 A1
20100234233 Sannino et al. Sep 2010 A1
20100234506 Elizalde et al. Sep 2010 A1
20100298526 Tsumori et al. Nov 2010 A1
20110042318 Painter et al. Feb 2011 A1
20110048087 Sanders et al. Mar 2011 A1
20110095227 Herth et al. Apr 2011 A1
20110146136 Waterson et al. Jun 2011 A1
20110303157 Laubenstein Dec 2011 A1
20120004383 Laubender et al. Jan 2012 A1
20120055414 Correa Mar 2012 A1
20120065071 Li et al. Mar 2012 A1
20120118575 Griffin May 2012 A1
20120129749 Detering et al. May 2012 A1
20120129750 Detering et al. May 2012 A1
20120220454 Chen et al. Aug 2012 A1
20120277099 Olson et al. Nov 2012 A1
20120277133 DiBiase et al. Nov 2012 A1
20130090240 Yamaguchi et al. Apr 2013 A1
20130171737 Way et al. Jul 2013 A1
20130212739 Giritch et al. Aug 2013 A1
20140106023 Sanders Apr 2014 A1
20140106024 Sanders Apr 2014 A1
20140315716 Matheny et al. Oct 2014 A1
20140342905 Bullis et al. Nov 2014 A1
20150033811 Sanders Feb 2015 A1
20160174547 Sanders et al. Jun 2016 A1
20160174549 Sanders et al. Jun 2016 A1
20160175469 Sanders et al. Jun 2016 A1
20160177004 Sanders et al. Jun 2016 A1
20160185678 Sanders et al. Jun 2016 A1
20160272553 Sanders et al. Sep 2016 A1
Foreign Referenced Citations (54)
Number Date Country
1044025 Jul 1990 CN
1149239 May 1997 CN
1962565 May 2007 CN
101423431 May 2009 CN
101519324 Sep 2009 CN
101575243 Nov 2009 CN
101580409 Nov 2009 CN
101792348 Aug 2010 CN
101830571 Sep 2010 CN
101885798 Nov 2010 CN
101885888 Nov 2010 CN
102154013 Aug 2011 CN
2558551 Jul 1977 DE
2822488 Nov 1979 DE
4122490 Jan 1993 DE
4132620 Apr 1993 DE
0290807 Nov 1988 EP
0314070 May 1989 EP
0337694 Oct 1989 EP
0683985 Nov 1995 EP
0877076 Nov 1998 EP
0892111 Jan 1999 EP
0976699 Feb 2000 EP
1024692 Aug 2000 EP
1230195 Aug 2002 EP
2135854 Dec 2009 EP
1324087 Jul 1973 GB
54050027 Apr 1979 JP
54077294 Jun 1979 JP
S58131903 Aug 1983 JP
60101194 May 1985 JP
62096046 May 1986 JP
61282301 Dec 1986 JP
63083169 Apr 1988 JP
63148937 Jun 1988 JP
03112426 May 1991 JP
H07215746 Aug 1995 JP
08092591 Apr 1996 JP
11092788 Apr 1999 JP
2008023433 Feb 2008 JP
2051884 Jan 1996 RU
2378869 Jan 2010 RU
9715367 May 1997 WO
9918785 Apr 1999 WO
9948833 Sep 1999 WO
2006131213 Dec 2006 WO
2007003388 Jan 2007 WO
2009060012 May 2009 WO
2009061930 May 2009 WO
2015031521 Mar 2015 WO
2015035031 Mar 2015 WO
2015116716 Aug 2015 WO
2015179552 Nov 2015 WO
2015179687 Nov 2015 WO
Non-Patent Literature Citations (53)
Entry
Groenstein C.M. et al. “Measures to reduce ammonia emissions from livestock manures; now, soon and later” Wageningen UK Livestock Research; Report 488; Jun. 2011.
Prochnow, L.I. et al. “Controlling Ammonia Losses During Manure Composting with the Addition of Phosphogypsum and Simple Superphosphate.” Sci.Agri., Piracicaba, 52(2)346-349, mai/ago 1995.
International Search Report and Written Opinion dated Dec. 12, 2013 for PCT/US 2013/054373.
Gay, Susan et al. “Ammonia Emissions and Animal Agriculture.” Virginia Cooperative Extension, Publication No. 442-110; 2009; pp. 1-5.
AGROTAIN International LLC White Paper: Maleic-Itaconic Copolymer; available online at talk.newagtalk.com/forums/get-attachment.asp?attachmentid=42697; downloaded Feb. 1, 2017.
AVAIL MSDS dated Jan. 16, 2012.
Aziz, et al. Efficiency of Slow Release Urea Fertilizer on Herb Yield and Essential Oil Production of Lemon Balm (Melissa officinalis L) Plant. American-Eurasian J. Agric. & Environ. Sci., [Online] 5(2) :141-147, 2009.
Sulphur Enhanced Fertilizer (SEF). A new generation of fertilizers. The Proceedings of the International Plant Nutrition Colloquium XVI, Department of Plant Sciences, UC Davis, [Online] 2009.
Chen, et al. Effect of a Polymer on Mitigating Ammonia Emission from Liquid Dairy Manure. Efekat polimera na smanjenje emisije /Polj. tehn. (Jan. 2013), 1-13.
Chiba, Lee I. Animal Nutrition Handbook, Section 12: Poultry Nutrition and Feeding. pp. 316-331, 2009—available online at http://www.ag.auburn.edu/%7Echilbale/an12poultryfeeding.pdf.
Chien et al. Review of Maleic-Itaconic Acid Copolymer Purported as Urease Inhibitor and Phosphorus Enhancer in Soils.. Agronomy Journal 106(2) : 423-430, 2014.
CN Search Report in Application No. 201080047969.4 received with First Office Action dated Jul. 31, 2013.
Davidson et al. Persistence of Rhizobium japonicum on the Soybean Seed Coat Under Controlled Temperature and Humidity. Applied and Environmental Microbiology, 35 : 94-96, 1978.
EP Search Report 1 dated Jun. 16, 2016 in related Application No. 13847267.5.
EP Search Report 2 dated Jun. 10, 2016 in related Application No. 16161777.4.
EP Search Report 3 dated Jun. 13, 2016 in related Application No. 16161780.8.
EP Search Report 4 dated Jul. 26, 2016 in related Application No. 16161783.2.
EP Search Report 5 dated Jun. 13, 2016 in related Application No. 16161786.5.
EP Search Report 6 dated Jun. 20, 2016 in related Application No. 16161785.7.
Grains/Fertilizers, article found online at martinsachs.angelfire.com/feeding.html, dated Apr. 11, 2010.
Herrington et al. Rheological modification of bitumen with maleic anhydride and dicarboxylic acids. Fuel, 78 : 101-110, 1999.
International Preliminary Report on Patentability 1 in corresponding application PCT/US 2014/052987, dated Mar. 10, 2016.
International Preliminary Report on Patentability 2 in related application PCT/US 2014/054069, dated Dec. 11, 2014.
International Search Report and Written Opinion 1 in related application PCT/US 2010/050244, dated Jun. 27, 2011.
International Search Report and Written Opinion 2 in related application PCT/US 2013/064378, dated Jan. 23, 2014 (Note: for cited reference RU2375063, see U.S. Pat. No. 6,936,598.
International Search Report and Written Opinion 4 in corresponding application PCT/US 2014/052987, dated Jan. 16, 2015.
International Search Report and Written Opinion 5 in related application PCT/US 2014/054069, dated Dec. 11, 2014.
International Search Report and Written Opinion 6 in related application PCT/US 2014/049451, dated Dec. 18, 2014.
International Search Report and Written Opinion 7 in related application PCT/US 2014/039424, dated Oct. 16, 2014.
International Search Report and Written Opinion 8 in related application PCT/US 2015/013345, dated Apr. 13, 2015.
International Search Report and Written Opinion 9 in related application PCT/US 2015/032037, dated Aug. 28, 2015.
International Search Report and Written Opinion 10 in related application PCT/US 2015/031823, dated Aug. 28, 2015.
Jung et al. Polymer-entrapped rhizobium as an inoculants for legumes. Plant and Soil, 65 : 219-231, 1982.
Kahraman et al. Bioengineering Polyfunctional Copolymers. VII. Synthesis and characterization of copolymers of p-vinylphenyl boronic acid with maleic and citraconic anhydrides and their self-assembled macrobranched supramolecular architectures. Polymer 45 :5813-5828, 2004.
Kejun et al., Copolymerization of cis-Butenedioic Acid with Sodium Methallylsulfonate in Aqueous Solution. J. App. Poly. Sci., vol. 40 : 1529-1539; 1990.
Li et al. Dispersion and Rheological Properties of Concentrated Kaolin Suspensions with Polycarboxylate Copolymers Bering Comb-like Side Chains. Journal of the European Ceramic Society, 34(1) :137-146, Jan. 2014.
Machida et al. Water Soluble Polymers. lx. N-(2-chloroethyl)-sulfonamides of Styrene-maleic Acid and Styrene-itaconic Acid Copolymers. Sen'i Gakkaishi 22(6) :269-73,1996.
Mohan, Prasanthrajan et al. Addressing the Challenges of Ammonia Loss from Poultry Droppings through Indigenous Carbon Wastes. International Journal of Environmental Science and Development, 3 (4), Aug. 2012—available online at http://www.ijesd.org/papers/255-D590.pdf.
Naga et al. Polymeric Additives for Pour Point Depression of Residual Fuel Oils. J. Chem. Tech. Biotechnol. 35A : 241-247, 1985.
Patterson, Paul H. Hen House Ammonia: Environmental Consequences and Dietary Strategies. Multi-State Poultry Meeting, May 14-16, 2002—available online at http://www.ijesd.org/papers/255-D590.pdf.
Powers, Wendy. Practices to Reduce Ammonia. 2004—available online at http://www.thepoultrysite.com/articles/219/practices-to-reduce-ammonia.
Puoci et al. Polymer in Agriculture: a Review. American Journal of Agricultural and Biological Sciences, 3 :299-314, 2008.
Sanderson, et al. Effect of Gypsum and Elemental Sulphur on Calcium and Sulphur Content of Rutabagas in Podzolic Soils. Can J Plan Sci [Online], pp. 785-788, 2002.
Shakkthivel et al. Newly Developed Itaconic Acid Copolymers for Gypsum and Calcium Carbonate Scale Control. Journal of Applied Polymer Science, 103(5) :3206-3213, 2007.
Singh, A. et al. Efficacy of Urease Inhibitor to Reduce Ammonia Emission from Poultry Houses. J. Appl. Poult. Res., 18 :34-42, 2009—availble online at http://japr.fass.org/content/18/1/34.full.
Sodium Lignosulphonate. Available online at www.xyd-chem.com on Apr. 20, 2010.
US Provisional Patent Application entitled Polyan Ionic Polymers, U.S. Appl. No. 62/001,110, filed May 21, 2014.
Weir, B.S. The current taxonomy of rhizobia. NZ Rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia; Partial update: May 2, 2013.
Yang, Charles Q. et al. In-situ Polymerization of Maleic Acid and Itaconic Acid and Crosslinking of Cotton Fabric. Textile Research Journal, 69(10) :782-789, 1999.
Yang, Charles Q. et al. In-situ Polymerization of Maleic Acid and Itaconic Acid on Cotton: Maldi/Tof Mass Spectroscopy and Light-Scattering Study. Textile Research Journal, 70(4) :359-62, 2000.
Yanhe et al. Synthesis and Performance of Itaconic Acid-Maleic Acid Copolymer. .Indus. Wat. Treat. 2006 10, pagination unknown. DOI: cnki:ISSN:1005-829X.0.2006-10-017.
Yasmin, et al. Effect of Elemental Sulfur, Gypsum, and Elemental Sulfur Coated Fertilizers on the Availability of Sulfur to Rice. J Plant Nutr [Online], 20(1): 79-91, 2007.
Zhang et al. Synthesis and Inhibition Efficiency of a Novel Quadripolymer Inhibitor. Chin. J. Ch. E. 15(4) :600; 2007.
Related Publications (1)
Number Date Country
20150376075 A1 Dec 2015 US
Continuations (1)
Number Date Country
Parent 13584608 Aug 2012 US
Child 14844245 US