Method of reducing glare associated with multifocal ophthalmic lenses

Information

  • Patent Grant
  • 6158862
  • Patent Number
    6,158,862
  • Date Filed
    Thursday, December 4, 1997
    27 years ago
  • Date Issued
    Tuesday, December 12, 2000
    24 years ago
Abstract
A multifocal ophthalmic lens having a dye or dyes that block the transmission of near UV and/or blue light.
Description

BACKGROUND OF THE INVENTION
This invention relates generally to the field of ophthalmic lenses and, more particularly, to bifocal, varifocal or multifocal intraocular lenses (IOLs).
The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and lens. When age or disease causes the lens to become less transparent, vision deteriorates due to an inadequate image or by the scattered and diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an IOL.
The majority of ophthalmic lenses, including IOLs, currently used are of a monofocal design, (i.e., having one fixed focal length). The focal length of the implanted IOL generally is chosen to optimize distance vision at 3 meters from the patient. Most patients receiving an IOL still require glasses for clear distance and near vision.
Various multifocal ophthalmic lens designs are currently under investigation and these designs generally fall into one of two categories, refractive lenses and diffractive lenses. Refractive lenses are more fully described in U.S. Pat. Nos. 5,147,393, 5,217,489 (Van Noy, et al.), U.S. Pat. No. 5,152,787 (Hamblen), U.S. Pat. No. 4,813,955 (Achatz, et al.), U.S. Pat. Nos. 5,089,024, 5,112,351 (Christie, et al.), U.S. Pat. Nos. 4,769,033, 4,917,68, 5,019,099, 5,074,877, 5,236,452, 5,326,348 (Nordan), 5,192,318, 5,366,500 (Schneider, et al.), U.S. Pat. Nos. 5,139,519, 5,192,317 (Kalb), U.S. Pat. No. 5,158,572 (Neilsen), U.S. Pat. No. 5,507,806 and PCT Publication No. WO 95/31156 (Blake) and U.S. Pat. No. 4.636,211 (Nielsen, et al.), the entire contents of which are incorporated herein by reference. Diffractive lenses use nearly periodic microscopic structures on the lens to diffract light into several directions simultaneously. This is similar to a diffraction grating and the multiple diffraction orders focus the light into various images corresponding to different focal lengths of the lens. Diffractive multifocal contact lenses and IOLs are more fully discussed in U.S. Pat. No. 5,178,636 (Silberman), U.S. Pat. Nos. 4,162,122, 4,210,391, 4,338,005, 4,340,283, 4,995,714, 4,995,715, 4,881,804, 4,881,805, 5,017,000, 5,054,905, 5,056,908, 5,120,120, 5,121,979, 5,121,980, 5,144,483, 5,117,306 (Cohen), U.S. Pat. Nos. 5,076,684, 5,116,111 (Simpson, et al.), U.S. Pat. No. 5,129,718 (Futhey, et al.) and U.S. Pat. Nos. 4,637,697, 4,641,934 and 4,655,565 (Freeman), the entire contents of which are incorporated herein by reference.
While a diffractive IOL may have a number of focal lengths, generally, IOLs with only two focal lengths (far and near) are the most common. As with any simultaneous vision multifocal lens, a defocused image (or images) is superimposed (on the retina) the focused component because of the second lens power, but the defocused image is rarely observed by the user, who concentrates on the image of interest. The defocused image acts as a veiling glare source and thus interferes and degrades the focused image. Under certain circumstances (for example, at night), the pupil diameter of the user can expand to 5 millimeters (mm) or more, and a discrete distant light source (e.g., automobile headlights or street lights) can appear to be surrounded by a "halo" or "rings". A significant component of the halo is caused by the light that is directed to the near image which becomes defocused at the retina. The visibility of the halo is affected by the diameter of the lens region directing light to the near image, the proportion of total energy directed to the near image, and the overall imaging aberrations of the eye.
In U.S. Pat. No. 4,881,805, Cohen suggests that the intensity of light traveling through a diffractive lens can be varied by reducing the echelette depth at the lens periphery, thus reducing glare (column 4, lines 63-68). Cohen further states that the zone boundary radii of the diffractive zones need to obey the formula:
R.sub.m =.sqroot.2mwf
where:
w=the wavelength of light
m=integer representing the m.sup.th zone
f=focal length of the 1.sup.st order diffraction
Column 5, lines 17-31.
Cohen's theory states that the glare results from the depth of the steps at the diffractive zone boundaries may be more applicable to contact lenses than intraocular lenses. Contact lenses generally move on the eye and the grooves can become filled with debris. In addition, the additive power of the contact lenses generally is less than that of intraocular lenses, which puts the defocused image more in focus, and also the patient's natural residual accommodation may alter the visibility of glare or halos.
U.S. Pat. Nos. 5,470,932 and 5,662,707 (Jinkerson), the entire contents of which is incorporated herein by reference, discloses the use of yellow dyes in ophthalmic lenses to block or lower the intensity of near UV and blue light (between 300 nanometers and 500 nanometers) that passes through the lens. Near UV and blue light is believed to be hazardous to the retina, and including blue-blocking dyes in the IOL is believed to restore the retinal protection lost when the natural lens is removed. Prior to the present invention, there has been no recognition in the art of using near UV and blue light blocking dyes to reduce the glare and halos that can be associated with multifocal IOLs.
Accordingly, a need continues to exist for a multifocal IOL that minimizes glare or halos.
BRIEF SUMMARY OF THE INVENTION
The present invention improves upon the prior art by providing a multifocal ophthalmic lens having a dye or dyes that block the transmission of near UV and/or blue light.
Accordingly, one objective of the present invention is to provide a multifocal ophthalmic lens that reduces glare or halos.
Another objective of the present invention is to provide a multifocal ophthalmic lens containing a near UV and/or blue light blocking dye or dyes.
This and other advantages and objectives of the present invention will become apparent from the detailed description and claims that follow.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of a diffractive ophthalmic lens that may be used with the present invention.
FIG. 2 is a plan view of a refractive ophthalmic lens that may be used with the present invention.





DETAILED DESCRIPTION OF THE INVENTION
The inventors have discovered that including a near UV and/or blue light blocking dye or dyes in multifocal lens 10 or 110 reduces or eliminates the glare and halos associated with multifocal optics. One likely mechanism of action is that the Rayleigh scattering of light sources within the line of sight of the focused and defocused image by the cornea and the lens is disproportionate among the transmission band, with short wavelengths being scattered more than longer wavelengths (Rayleigh's Law holds that the scattering intensity is proportional to .lambda..sup.-4 where .lambda. is the wavelength). Thus, the filtering of the shorter wavelengths reduces this scattering as well as reducing chromatic aberrations. One other mechanism is based on the recognition in the lighting industry that the discomfort associated with a glare source not in the line of sight may be predicted using the following equation:
glare sensation=(B.sub.s.sup.n /B.sub.b.sup.c)*(.omega..sup.b /.rho..sup.d)
where
B.sub.s =luminace of the glare source
B.sub.b =luminance of the background
.omega.=angular subtense of the glare source
.rho.=deviation of glare source from line of sight
Constants n, b, c and d for predicting glare sensation caused by glare sources away from line of sight (e.g. headlights of automobiles in neighboring lanes or street lights) is not solidly established. Durrant (1977) established the values as n=1.6, b=0.8, c=1 and d=1.6. Using these values, a twenty-five percent reduction in the luminance for a lower wavelength of the glare source and background source luminance outside of the line of sight results in nearly a fifty-six percent reduction in glare sensation contributed by the lower wavelength.
All multifocal IOLs based on simultaneous vision optics have veiling, Rayleigh scattering law abiding, glare from out of focus images of light sources within the line of sight as well as glare effects of light sources not in the line of sight, especially during night driving when the pupil is large. The blue blocking and/or near UV blocking multifocal IOL of the present invention thus addresses both types of glare and improves upon the prior art by selectively filtering out the lower wavelengths from approximately 400 nanometers up to approximately 550 nanometers.
Any multifocal lens 10 or 110 can be used in the present invention and lens 10 or 110 may be made from any suitable material such as polymethylmethacrylate, silicone, soft acrylic or HEMA. Preferably, the blue-blocking dye used will be covalently bonded in the material used to make lens 10 or 110 and will be non-leaching. For example, if lens 10 or 110 is a soft acrylic lens, the dyes disclosed in U.S. Pat. Nos. 5,470,932 and 5,662,707 (Jinkerson) may be used.
This description is given for purposes of illustration and explanation. It will be apparent to those skilled in the relevant art that modifications may be made to the invention as herein described without departing from its scope or spirit. For example, the exact wavelengths that must be filtered out as well as the extent of the attenuation will vary by the lens material used. Therefore dyes that block out wavelengths below 410 nanometers, below 420 nanometers, below 430 nanometers, below 440 nanometers, below 450 nanometers, below 460 nanometers, below 470 nanometers, below 480 nanometers, below 490 nanometers, below 500 nanometers, below 510 nanometers, below 520 nanometers, below 530 nanometers, below 540 nanometers and below 550 nanometers may all be suitable for use with the present invention.
Claims
  • 1. A method of reducing the glare associated with a simultaneous vision multifocal ophthalmic lens implanted within an eye, comprising:
  • incorporating a non-leaching dye into a material used to make the multifocal ophthalmic lens, the dye suitable for selectively filtering out wavelengths of light between approximately 550 nanometers and approximately 400 nanometers from sources within a line of sight of the eye.
US Referenced Citations (67)
Number Name Date Kind
609982 Winchester Aug 1898
1012700 Payne Dec 1911
1157552 Kispert Oct 1915
2020111 Eisele Nov 1935
2806473 Lingley Sep 1957
3076455 McConnaughey et al. Feb 1963
3583399 Ritsky Jun 1971
3811441 Sarnoff May 1974
3895633 Bartner et al. Jul 1975
4112945 Helixon et al. Sep 1978
4122836 Burnett Oct 1978
4162122 Cohen Jul 1979
4210391 Cohen Jul 1980
4338005 Cohen Jul 1982
4340283 Cohen Jul 1982
4540405 Miller et al. Sep 1985
4592746 Ewalt et al. Jun 1986
4610672 Burkholder et al. Sep 1986
4636211 Nielsen et al. Jan 1987
4637697 Freeman Jan 1987
4641934 Freeman Feb 1987
4655565 Freeman Apr 1987
4769033 Nordan Sep 1988
4813955 Achatz et al. Mar 1989
4881805 Cohen Nov 1989
4917681 Nordan Apr 1990
4994045 Ranford Feb 1991
4995714 Cohen Feb 1991
4995715 Cohen Feb 1991
5008102 York Apr 1991
5017000 Cohen May 1991
5019099 Nordan May 1991
5054905 Cohen Oct 1991
5056908 Cohen Oct 1991
5074877 Nordan Dec 1991
5076684 Simpson et al. Dec 1991
5089024 Christie et al. Feb 1992
5112351 Christie et al. May 1992
5116111 Simpson et al. May 1992
5117306 Cohen May 1992
5120120 Cohen Jun 1992
5121979 Cohen Jun 1992
5121980 Cohen Jun 1992
5129718 Futhey et al. Jul 1992
5139519 Kalb Aug 1992
5144483 Cohen Sep 1992
5147393 Van Noy et al. Sep 1992
5152787 Hamblen Oct 1992
5158572 Nielsen Oct 1992
5178636 Silberman Jan 1993
5187207 Gallas Feb 1993
5192317 Kalb Mar 1993
5192318 Schneider et al. Mar 1993
5217489 Van Noy et al. Jun 1993
5236452 Nordan Aug 1993
5326348 Nordan Jul 1994
5366500 Schneider et al. Nov 1994
5381193 Wedding Jan 1995
5419775 Haffner et al. May 1995
5470932 Jinkerson Nov 1995
5507806 Blake Apr 1996
5617154 Hoffman Apr 1997
5662707 Jinkerson Sep 1997
5757459 Bhalakia et al. May 1998
5846457 Hoffman Dec 1998
5851328 Kohan Dec 1998
5968094 Werblin et al. Oct 1999
Foreign Referenced Citations (3)
Number Date Country
0359 829 B1 Nov 1993 EPX
0 756 183 A2 Jan 1997 EPX
WO 9531156 Nov 1995 WOX
Non-Patent Literature Citations (6)
Entry
Zigman, "Tinting of Intraocular Lens Implants," Arch Opthalmol, vol. 100, 998 (1982).
Hovis, et al., "Physical Characteristics and Perceptual Effects of Blue-Blocking Lenses," Optometry & Vision Science, vol. 66(10), 682-689 (1989).
Guthrie, "Polymeric Colorants" Rev. Prog. Color Relat. Topics, vol. 20, 40-52 (1990).
Derwent Abstract--XP-02094520 (JP 05 045610A),May, 1991.
Derwent Abstract--XP-002094521 (JP 02 254402A), Mar., 1989.
Patent Abstracts of Japan--JP -6 324293 A, Nov., 1994.