1. Field of the Invention
The present invention relates to liquid crystal display domain. More particularly, the present invention relates to a method of reducing parasitic capacitance of liquid crystal display device and the liquid crystal display device.
2. Description of the Prior Art
The liquid crystal display device 100, data lines 111 and the opposite electrode 121 fabricated by the aforementioned method are prone to bring about parasitic capacitance, which causes signal delay of the data lines 111. Supposing that the parasitic capacitance of the data line 111 is oversized, serious signal delay would give rise to color spots on the liquid crystal display device 100.
Accordingly, it is quite essential to provide a method of reducing parasitic capacitance of liquid crystal display device and the liquid crystal display device, to settle the existing issues of conventional techniques.
The objective of the present invention is to provide a method of reducing parasitic capacitance of data lines and an accompanying liquid crystal display device, to settle the technical issue occurred by oversized parasitic capacitance of the data line of the liquid crystal display device that gives rise to color spots on the liquid crystal display device.
To settle the aforementioned issue, the present invention provides a technical solution as follows:
The present invention relates to a method of reducing parasitic capacitance of liquid crystal display device, where the liquid crystal display device comprises a first substrate, a second substrate and a liquid crystal layer disposed in between the first substrate and the second substrate. The first substrate comprises data lines and a first transparent electrode, and the second substrate is provided with a second transparent electrode. The method comprises the following steps: A. by means of photolithography and patterning, the second transparent electrode is separated into a primary second transparent electrode and a secondary second transparent electrode; B. offering the secondary second transparent electrode the same signal to the relevant data line; the secondary second transparent electrode is located at a location on the second substrate that corresponds to the relevant data line, and the primary second transparent electrode is located aside to the location on the second substrate that corresponds to the relevant data line; the step B, more specifically, is to connect the secondary second transparent electrode to the signal input of the relevant data line, or to the relevant data line.
The present invention relates to a method of reducing parasitic capacitance of liquid crystal display device, where the liquid crystal display device comprises a first substrate, a second substrate and a liquid crystal layer disposed in between the first substrate and the second substrate. The first substrate comprises data lines and a first transparent electrode, and the second substrate is provided with a second transparent electrode. The method comprises the following steps: A. by means of photolithography and patterning, the second transparent electrode is separated into a primary second transparent electrode and a secondary second transparent electrode; B. offering the secondary second transparent electrode the same signal to the relevant data line; the secondary second transparent electrode is located at a location on the second substrate that corresponds to the relevant data line, and the primary second transparent electrode is located aside to the location on the second substrate that corresponds to the relevant data line.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the step B specifically is to connect the second transparent electrode to the signal input of the relevant data line.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the step B specifically is to connect the second transparent electrode to the relevant data line.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the connection between the second transparent electrode and the relevant data line is specifically embodied by connecting the second transparent electrode to the relevant data line through a transfer.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the transfer is disposed at inactive area of the liquid crystal display device.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the connection between the second transparent electrode and the relevant data line is specifically embodied by connecting the second transparent electrode to the relevant data line through a conductive post.
In the method of reducing parasitic capacitance of liquid crystal display device of the present invention, the conductive post is disposed at active area of the liquid crystal display device.
The present invention further relates to a liquid crystal display device, comprising: a first substrate, a second substrate and a liquid crystal layer disposed in between the first substrate and the second substrate. The first substrate comprises data lines and a first transparent electrode, and the second substrate is provided with a second transparent electrode. The second transparent electrode comprises a primary second transparent electrode and a secondary second transparent electrode. The secondary second transparent electrode is to receive the signal of the relevant data line and is located at a location on the second substrate that corresponds to the relevant data line while the primary second transparent electrode is located aside to the location on the second substrate that corresponds to the relevant data line.
In the liquid crystal display device of the present invention, the secondary second transparent electrode is connected to the signal input of the relevant data line.
In the liquid crystal display device of the present invention, the secondary second transparent electrode is connected to the relevant data line.
In the liquid crystal display device of the present invention, the secondary second transparent electrode is connected to the relevant data line through a transfer.
In the liquid crystal display device of the present invention, the transfer is disposed at an inactive area of the liquid crystal display device.
In the liquid crystal display device of the present invention, the secondary second transparent electrode is connected to the relevant data line through a conductive post.
In the liquid crystal display device of the present invention, the conductive post is disposed at an active area of the liquid crystal display device.
The advantages of the realization of the present invention comprise: substantially reducing the parasitic capacitance between the data line and the primary second transparent electrode, which subsides the signal delay of the data line, to avoid color spots due to oversized parasitic capacitance in the data line of the liquid crystal display device.
This invention is detailed described with reference to the following preferred embodiments and the accompanying drawings for better comprehension.
The following embodiments are described with reference to the following accompanying drawings which exemplify the realizations of this invention.
In the present embodiment, the secondary second transparent electrode 223 is connected to the signal input of the relevant data line 211 to input the signal. The primary second transparent electrode 221 is not disposed at the location 222 on the second substrate 220 that corresponds to the relevant data line 211 where the parasitic capacitance occurred between the data line 211 and the primary second transparent electrode 221 is ignored (the distance between the data line 211 and the primary second transparent electrode 221 is longer). Despite the fact that the secondary second transparent electrode 223 is disposed at the location 222 on the second substrate 220 that corresponds to the relevant data line 211, the secondary second transparent electrode 223 inputs the same signal that is inputted to the relevant data line 211, which causes the parasitic capacitance in between the secondary second transparent electrode 223 and the data line 211 to approach zero. As the total parasitic capacitance in the data line 211 is diminished, the signal delay in the data line 211 is subsided, which avoids color spots due to oversized parasitic capacitance in the data line 211 of the liquid crystal display device 200.
According to
STEP 501: by means of photolithography and patterning, the second transparent electrode is separated into a primary second transparent electrode 221 and a secondary second transparent electrode 223; and
STEP 502: offering the secondary second transparent electrode 223 the same signal to the relevant data line 211.
In the present embodiment, connecting the secondary second transparent electrode 223 to the signal input of the relevant data line 211 is a preferred realization of sending the secondary second transparent electrode 223 the same signal to the relevant data line 211.
In STEP 501, depositing the second transparent electrode on the second substrate 200 in the beginning, followed by photolithography and patterning that the second transparent electrode can be separated into the primary second transparent electrode 221 and the secondary second transparent electrode 223, which realizes the clear separation between the primary second transparent electrode 221 and the secondary second transparent electrode 223, where the secondary second transparent electrode 223 is located at the location 222 on the second substrate 220 that corresponds to the relevant data line 211, and the primary second transparent electrode 221 is located aside to the location 222 on the second substrate 220 that corresponds to the relevant data line 211.
In STEP 502, the secondary second transparent electrode 223 is provided with the same signal source that is inputted to the relevant data line 211, which enables the secondary second transparent electrode 223 and the relevant data line 211 to arrive at the same electric potential that eliminates the parasitic capacitance in between the secondary second transparent electrode 223 and the relevant data line 211.
As the total parasitic capacitance in the data line 211 is diminished, the signal delay in the data line 211 is subsided, which avoids color spots due to oversized parasitic capacitance in the data line 211 of the liquid crystal display device 200.
In the present embodiment, the primary second transparent electrode 221 is separated from the location 222 on the second substrate 220 that corresponds to the data line 211, and the parasitic capacitance between the data line 211 and the primary second transparent electrode 221 is neglected. As the secondary second transparent electrode 223 is located at the location 222 on the second substrate 220 that corresponds to the data line 211, the secondary second transparent electrode 223 is connected to the data line 211 by means of a transfer 310 (the transfer is often used to connect the common line of the first substrate 210 to the data line located on the transparent electrode (for instance: the primary second transparent electrode 221) of the second substrate 220), which makes the secondary second transparent electrode 223 and the data line 211 to be at the same electric potential that substantially diminishes the parasitic capacitance between the secondary second transparent electrode 223 and the data line 211, and the overall parasitic capacitance in the data line 211 is dropped. Since the transfer 310 is disposed at the inactive area of the liquid crystal display device 300, the present embodiment is realized by connecting the data line 211 to the secondary second transparent electrode 223 through the transfer 310 after the fabrication of the first substrate 210, the second substrate 220 and the corresponding liquid crystal layer 230, which makes the secondary second transparent electrode 223 and the data line 211 to be at the same electric potential that eventually diminishes the overall parasitic capacitance of the data line 211.
The difference between the method of reducing the parasitic capacitance of the liquid crystal display device of the present invention and the method of the first preferred embodiment lie in: connecting the secondary second transparent electrode 223 to the signal source of the relevant data line 211 can be specifically realized by connecting the secondary second transparent electrode 223 to the relevant data line 211 through the transfer 310. Since the fabrication techniques of the transfer is matured, the present embodiment is realized in ease.
In the present embodiment, the primary second transparent electrode 221 is separated from the location 222 on the second substrate 220 that corresponds to the data line 211, and the parasitic capacitance between the data line 211 and the primary second transparent electrode 221 is neglected. As the secondary second transparent electrode 223 is located at the location 222 on the second substrate 220 that corresponds to the data line 211, the secondary second transparent electrode 223 is connected to the data line 211 by means of the conductive post 410, which makes the secondary second transparent electrode 223 and the data line 211 to be at the same electric potential that substantially diminishes the parasitic capacitance between the secondary second transparent electrode 223 and the data line 211 to zero, and the overall parasitic capacitance in the data line 211 is dropped.
The difference between the method of reducing the parasitic capacitance of the liquid crystal display device of the present invention and the method of the first preferred embodiment lie in: sending the secondary second transparent electrode 223 the same signal to the relevant data line 211 can be specifically embodied by connecting the secondary second transparent electrode 223 to the relevant data line 211 through the conductive post 410. Since the fabrication of the conductive post 410 has to be synchronized with that of the color filter layer, the conductive post 410 is then free of being affected by the consecutive processes, which means the sound electric conduction of the conductive post 410 is then assured.
In general, although a few embodiments of the present invention have been disclosed, the above preferred embodiments are not used for limiting this invention, and it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201110418175.0 | Dec 2011 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/084142 | 12/16/2011 | WO | 00 | 12/26/2011 |