This patent disclosure relates generally to a method for remanufacturing an engine block and, more particularly, to a method for remanufacturing an engine block by replacing the cylinder liner.
Many components of an internal combustion engine, such as a multi-cylinder diesel or gasoline engine, are subject to high loads and wear during operation of the engine. One such component, for example, is the engine block, which may experience loads from combustion events occurring within combustion chambers formed by the cylinder head, pistons, and cylinder bores of the engine block. These events may subject the engine block to high loads and stresses, including thermal stresses and mechanical stresses, which may be transmitted to the engine block at, among other locations, the cylinder head, which is mounted to a top deck of the engine block, and the cylinder bores. As a result of these stresses, small cracks may form, or general wear may occur, within the engine block, particularly within or near the cylinder bores at the top deck of the engine block.
Each cylinder bore of an internal combustion engine may include a cylinder liner in which the piston actually reciprocates. Cylinder liners allow an engine block with a particular cylinder bore configuration size to be used with multiple different diameter pistons by simply changing the cylinder liners for a particularly configured engine. In the assembled engines, the liners may be held in place by a flange at the upper end of the liner that is held between the block and cylinder head. The cylinder liners may be removed and replaced if worn through use over time. For example, U.S. Pat. No. 8,468,694 discloses a method for remanufacturing a flanged cylinder liner that involves machining a top portion of the cylinder liner to remove the cylinder liner flange and to create a flange seat. A replacement flanged sleeve collar is brought into engagement with the flange seat and affixed onto the collar.
One method for repairing or remanufacturing engine blocks involves removing worn portions of the engine block adjacent a cylinder bore, and installing inserts in the cavities or grooves formed in the engine block to bring the block back into conformity with original specifications. The insert is generally made of stainless steel and is pressed fit into the groove. When the engine block comes back for a second remanufacturing, the insert must be removed and replaced. One problem with such inserts is that they can make it difficult to provide a good seal between the cylinder liner and the cylinder bore.
In one aspect, the disclosure describes a method of remanufacturing an engine block. An insert is removed from a recess in a top deck of the engine block that surrounds a cylinder bore in the engine block. A used cylinder liner is removed from the cylinder bore. The used cylinder liner having a flange on an upper edge thereof having a first thickness measured between an upper surface of the flange and a lower surface of the flange. The recess in the top deck of the engine block is cleaned. The cleaned recess having a depth measured from the top deck of the engine block to a bottom surface of the recess. A replacement cylinder liner is positioned in the cylinder bore. The replacement cylinder liner has a flange on an upper edge thereof that is received in the cleaned recess. The flange of the replacement cylinder liner has a second thickness measured between an upper surface of the flange and a lower surface of the flange. The second thickness of the flange on the replacement cylinder liner corresponding to the sum of the first thickness and the depth of the cleaned recess.
In another aspect, the disclosure describes an engine block that has been remanufactured to replace a used cylinder liner and an insert. The engine block includes a top deck and a cylinder bore in the engine block that opens through the top deck. A recess in the top deck surrounds the cylinder bore. The recess has a depth sized to accommodate the insert that has been removed. A replacement cylinder liner is positioned in the cylinder bore. The replacement cylinder liner has a flange on an upper edge thereof that is received in the recess. The flange of the replacement cylinder liner has a thickness that corresponds to a sum of the depth of the recess and a thickness of a flange on the used cylinder liner that has been removed from the cylinder bore.
In yet another aspect, the disclosure describes a replacement cylinder liner for a cylinder bore of an engine block that replaces an insert arranged in a recess surrounding the cylinder bore and a used cylinder liner having a flange on an upper edge thereof. The replacement cylinder liner includes a cylindrical wall and an annular flange arranged at an upper edge of the cylindrical wall. The annular flange has a thickness corresponding to the sum of a depth of the recess and a thickness of the flange of the used cylinder liner.
This disclosure generally relates to remanufacturing of engine blocks. With particular reference to
The engine block 10 may be a one-piece casting and may generally include an upper section 12 and a lower section 14 The upper section 12 of the engine block 10 may include a variety of openings, such as cylinder bores, fluid passages, and attachment bores. In the illustrated embodiment, the upper section 12 includes a plurality of cylinder bores 16 formed within the engine block 10 and opening through a top deck 18 of the engine block 10. Although six cylinder bores 16 are shown, it should be appreciated that the engine block 10 may include any number of cylinder bores 16.
A cylinder head 19 (shown, for example, in
As shown in
Each cylinder bore 16 may include a cylinder liner 24 (see
The lower section 14 of the engine block 10 (see
In
Material may be removed from the top deck 18 of the engine block 10 using any known machining process, such as, for example, milling or grinding. The process can be manual and/or automatic. According to one embodiment, for example, a machining tool used to remove material from the engine block 10 may be operated via computer numerical control (CNC). However, any useful tool for removing engine block material according to precise specifications is contemplated.
In a known manner, in certain circumstances, the worn material may be replaced by one or more inserts. Turning now to
It should be appreciated that wear, erosion, defects, and/or cracks may occur around one or more of the cylinder bores 16 after the insert or inserts 30 are installed. Such areas may be repaired using a further remanufacturing process. In such a process, the insert 30 surrounding each cylinder bore 16 to be repaired may be removed, such as by creating one or more threaded bores within the insert 30 to attach a removal tool. Additionally, the cylinder liner 24 associated with the cylinder bore 16 may be removed from the engine block 10. For example, a shaft screw (not shown) may be used to pull down on a cam lever type tool to loosen the cylinder liner 24. If the cylinder liner 24 sticks in the block, the lever tool may be turned in a clockwise direction until the liner is loosened. The liner puller may then be removed and the cylinder liner 24 lifted from the engine block 10. The insert 30 and cylinder liner 24 do not have to be removed in any particular order and may be removed in any sequence that is possible given the configuration of the insert 30, cylinder liner 24 and engine block 10.
After the insert 30 is removed, the recess 32 in which the insert was sitting may be cleaned. For example, the cleaning may include removal of any unwanted material such as remnants of the insert 30 and/or any adhesive or sealant associated with the insert 30. The cleaning may also involve the removal of additional worn, eroded, cracked or otherwise defective material around the cylinder bore 16. The cleaning may be performed manually or automatically using any suitable machining process. For example, a machining tool used to remove material from the engine block 10 may be operated via computer numerical control (CNC) to clean out the recess 32.
In the course of the cleaning of the recess 32, the recess may be deepened. For example, the recess 32 may be cleaned or machined such that the cleaned recess 32 is deepened to a predetermined depth. While only shown in partial view in
After the recess 32 is cleaned, a new or replacement cylinder liner 34 (shown in
To help prevent fluid flow through the space between the replacement cylinder liner 34 and the cylinder bore 16, an annular liner seal 38 may be provided on the outer surface of the cylindrical wall of cylinder liner 34. The liner seal 38 may be configured to extend into engagement with the wall of the cylinder bore 16 as shown in
As will be appreciated the depth of the recess 32 and the thickness of the flange 36 of the replacement cylinder liner 34 may controlled in such a way that the top surface of the flange 36 protrudes the same distance above the top deck 18 of the engine block 10 as did the top surface of the flange 26 of the used cylinder liner 24. According to one embodiment, the replacement cylinder liners 34 may have flanges 36 with a select number of common thicknesses and the depth of the recess 32 may be controlled to a variable predetermined depth selected so as to ensure that the flange 36 of the replacement cylinder liner 34 protrudes from the top deck 18 of the engine block 10 the same distance as the flange 26 of the used replacement flange 24. Alternatively, replacement cylinder liners 34 having varying flange thicknesses may be used so that both the selection of replacement liner flange thickness and the depth of the recess 32 may be varied to control the distance by which the flange 36 protrudes above the top deck 18 of the engine block 10.
To enhance sealing between the replacement cylinder liner 34 and the cylinder bore 16, an alternative embodiment of the replacement liner 34 may include a groove 42 in the flange 36 that may receive an o-ring seal. As shown in
The present disclosure finds potential applicability to any engine block that may be subject to operational loads causing wear, erosion, cracks and/or defects in the areas surrounding the cylinder bores. Although the disclosure describes the remanufacture, or repair, of an engine block that has already been subject to a remanufacturing process in which an insert was installed, the method described herein may also be used during an initial remanufacture instead of installing an insert.
Turning now to
The elimination of the insert 30 from the engine block 10 can have several benefits. For example, installing the liner seal 38 over an existing insert 30 can be a difficult process. Thus, eliminating the insert 30 can make it easier to install the liner seal 38. Additionally, the elimination of the insert 30 eliminates a possible leakage path in the engine block 10. Eliminating the insert and installing the replacement liner 34 in the recess 32 previously occupied by the insert 20 also may allow the replacement cylinder liner 34 to be located more accurately relative to the engine block 10.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.