Fields of Disclosure
The disclosure relates generally to the field of fluid separation. More specifically, the disclosure relates to the cryogenic separation of contaminants, such as acid gas, from a hydrocarbon.
Description of Related Art
This section is intended to introduce various aspects of the art, which may be associated with the present disclosure. This discussion is intended to provide a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The production of natural gas hydrocarbons, such as methane and ethane, from a reservoir oftentimes carries with it the incidental production of non-hydrocarbon gases. Such gases include contaminants, such as at least one of carbon dioxide (“CO2”), hydrogen sulfide (“H2S”), carbonyl sulfide, carbon disulfide and various mercaptans. When a feed stream being produced from a reservoir includes these contaminants mixed with hydrocarbons, the stream is oftentimes referred to as “sour gas.”
Many natural gas reservoirs have relatively low percentages of hydrocarbons and relatively high percentages of contaminants. Contaminants may act as a diluent and lower the heat content of the hydrocarbons. Some contaminants, like sulfur-bearing compounds, are noxious and may even be lethal. Additionally, in the presence of water some contaminants can become quite corrosive.
It is desirable to remove contaminants from a stream containing hydrocarbons to produce sweet and concentrated hydrocarbons. Specifications for pipeline quality natural gas typically call for a maximum of 2-4% CO2 and ¼ grain H2S per 100 scf (4 ppmv) or 5 mg/Nm3 H2S. Specifications for lower temperature processes such as natural gas liquefaction plants or nitrogen rejection units typically require less than 50 ppm CO2.
The separation of contaminants from hydrocarbons is difficult and consequently significant work has been applied to the development of hydrocarbon/contaminant separation methods. These methods can be placed into three general classes: absorption by solvents (physical, chemical and hybrids), adsorption by solids, and distillation.
Separation by distillation of some mixtures can be relatively simple and, as such, is widely used in the natural gas industry. However, distillation of mixtures of natural gas hydrocarbons, primarily methane, and one of the most common contaminants in natural gas, carbon dioxide, can present significant difficulties. Conventional distillation principles and conventional distillation equipment are predicated on the presence of only vapor and liquid phases throughout the distillation tower. The separation of CO2 from methane by distillation involves temperature and pressure conditions that result in solidification of CO2 if a pipeline or better quality hydrocarbon product is desired. The required temperatures are cold temperatures typically referred to as cryogenic temperatures.
Certain cryogenic distillations can overcome the above mentioned difficulties. These cryogenic distillations provide the appropriate mechanism to handle the formation and subsequent melting of solids during the separation of solid-forming contaminants from hydrocarbons. The formation of solid contaminants in equilibrium with vapor-liquid mixtures of hydrocarbons and contaminants at particular conditions of temperature and pressure takes place in a controlled freeze zone section.
Sometimes solids can adhere to an internal (e.g., controlled freeze zone wall) of the controlled freeze zone section rather than melt. Adherence of the solids can result in undesired accumulation of the solids.
The adherence and subsequent accumulation is disadvantageous. The adherence and subsequent accumulation, if uncontrolled, can interfere with the proper operation of the controlled freeze zone and the effective separation of methane from the contaminants.
A need exists for improved technology, including technology that destabilizes and removes any adhesion of solids to surface(s) in the controlled freeze zone section.
The present disclosure provides a device and method for separating contaminants from hydrocarbons, among other things.
A method of separating in a feed stream in a distillation tower may comprise maintaining a controlled freeze zone section in a distillation tower that operates at a temperature and pressure at which a solid forms; maintaining a melt tray assembly within the controlled freeze zone section that operates at a temperature and pressure at which the solid melts; forming solids in a controlled freeze zone section; raising a liquid level of a liquid in the melt tray assembly when the solids accumulate on a mechanical component in the controlled freeze zone section; raising a liquid temperature of the liquid while raising the liquid level; and lowering the liquid level after at least one of (a) a predetermined time period has passed and (b) an alternative temperature of the mechanical component is within an expected temperature range of a baseline temperature of the mechanical component.
A method of producing a hydrocarbon in a distillation tower may comprise maintaining a controlled freeze zone section in the distillation tower that operates at a temperature and pressure at which a feed stream forms a solid; maintaining a melt tray assembly within the controlled freeze zone section that operates at a temperature and pressure at which the solid melts; forming solids in the controlled freeze zone section; raising a liquid level of a liquid in the melt tray assembly when the solids accumulate on a mechanical component in the controlled freeze zone section; raising a liquid temperature of the liquid while raising the liquid level; lowering the liquid level after at least one of (a) a predetermined time period passed and (b) a detected temperature of the mechanical component is within an expected temperature range of a baseline temperature of the mechanical component; and producing hydrocarbons from the feed stream.
The foregoing has broadly outlined the features of the present disclosure in order that the detailed description that follows may be better understood. Additional features will also be described herein.
These and other features, aspects and advantages of the disclosure will become apparent from the following description, appending claims and the accompanying drawings, which are briefly described below.
It should be noted that the figures are merely examples and no limitations on the scope of the present disclosure are intended thereby. Further, the figures are generally not drawn to scale, but are drafted for purposes of convenience and clarity in illustrating various aspects of the disclosure.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the features illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. It will be apparent to those skilled in the relevant art that some features that are not relevant to the present disclosure may not be shown in the drawings for the sake of clarity.
As referenced in this application, the terms “stream,” “gas stream,” “vapor stream,” and “liquid stream” refer to different stages of a feed stream as the feed stream is processed in a distillation tower that separates methane, the primary hydrocarbon in natural gas, from contaminants. Although the phrases “gas stream,” “vapor stream,” and “liquid stream,” refer to situations where a gas, vapor, and liquid is mainly present in the stream, respectively, there may be other phases also present within the stream. For example, a gas may also be present in a “liquid stream.” In some instances, the terms “gas stream” and “vapor stream” may be used interchangeably.
The disclosure relates to a system and method for separating a feed stream in a distillation tower. The system and method helps prevent the accumulation of solids in the controlled freeze zone section by disengaging solids that accumulated in the controlled freeze zone section from the surface(s) where the solids accumulated. The system and method disengages solids by increasing the liquid level of warm liquid in a melt tray assembly of a middle controlled freeze zone section of the distillation tower. The liquid level can be increased to cover at least a portion of the solids so as to cause disengagement of the solids by melting.
The system and method may separate a feed stream having methane and contaminants. The system may comprise a distillation tower 104, 204 (
The distillation tower 104, 204 may be separated into three functional sections: a lower section 106, a middle controlled freeze zone section 108 and an upper section 110. The distillation tower 104, 204 may incorporate three functional sections when the upper section 110 is needed and/or desired.
The distillation tower 104, 204 may incorporate only two functional sections when the upper section 110 is not needed and/or desired. When the distillation tower does not include an upper section 110, a portion of vapor leaving the middle controlled freeze zone section 108 may be condensed in a condenser 122 and returned as a liquid stream via a spray assembly 129. Moreover, lines 18 and 20 may be eliminated, elements 124 and 126 may be one and the same, and elements 150 and 128 may be one and the same. The stream in line 14, now taking the vapors leaving the middle controlled freeze section 108, directs these vapors to the condenser 122.
The lower section 106 may also be referred to as a stripper section. The middle controlled freeze zone section 108 may also be referred to as a controlled freeze zone section. The upper section 110 may also be referred to as a rectifier section.
The sections of the distillation tower 104 may be housed within a single vessel (
The sections of the distillation tower 204 may be housed within a plurality of vessels to form a split-tower configuration (
The split-tower configuration may be beneficial in situations where the height of the distillation tower, motion considerations, and/or transportation issues, such as for remote locations, need to be considered. This split-tower configuration allows for the independent operation of one or more sections. For example, when the upper section is housed within a single vessel and the lower and middle controlled freeze zone sections are housed within a single vessel, independent generation of reflux liquids using a substantially contaminant-free, largely hydrocarbon stream from a packed gas pipeline or an adjacent hydrocarbon line, may occur in the upper section. And the reflux may be used to cool the upper section, establish an appropriate temperature profile in the upper section, and/or build up liquid inventory at the bottom of the upper section to serve as an initial source of spray liquids for the middle controlled freeze zone section. Moreover, the middle controlled freeze zone and lower sections may be independently prepared by chilling the feed stream, feeding it to the optimal location be that in the lower section or in the middle controlled freeze zone section, generating liquids for the lower and the middle controlled freeze zone sections, and disposing the vapors off the middle controlled freeze zone section while they are off specification with too high a contaminant content. Also, liquid from the upper section may be intermittently or continuously sprayed, building up liquid level in the bottom of the middle controlled freeze zone section and bringing the contaminant content in the middle controlled freeze zone section down and near steady state level so that the two vessels may be connected to send the vapor stream from the middle controlled freeze zone section to the upper section, continuously spraying liquid from the bottom of the upper section into the middle controlled freeze zone section and stabilizing operations into steady state conditions. The split tower configuration may utilize a sump of the upper section as a liquid receiver for the pump 128, therefore obviating the need for a liquid receiver 126 in
The system may also include a heat exchanger 100 (
The system may include an expander device 102 (
The system may include a feed separator 103 (
The system may include a dehydration unit 261 (
The system may include a filtering unit (not shown). The feed stream 10 may enter the filtering unit before entering the distillation tower 104, 204. The filtering unit may remove undesirable contaminants from the feed stream before the feed stream enters the distillation tower 104, 204. Depending on what contaminants are to be removed, the filtering unit may be before or after the dehydration unit 261 and/or before or after the heat exchanger 100.
The systems may include a line 12 (
If the system includes the feed separator 103 (
The lower section 106 is constructed and arranged to separate the feed stream 10 into an enriched contaminant bottom liquid stream (i.e., liquid stream) and a freezing zone vapor stream (i.e., vapor stream). The lower section 106 separates the feed stream at a temperature and pressure at which no solids form. The liquid stream may comprise a greater quantity of contaminants than of methane. The vapor stream may comprise a greater quantity of methane than of contaminants. In any case, the vapor stream is lighter than the liquid stream. As a result, the vapor stream rises from the lower section 106 and the liquid stream falls to the bottom of the lower section 106.
The lower section 106 may include and/or connect to equipment that separates the feed stream. The equipment may comprise any suitable equipment for separating methane from contaminants, such as one or more packed sections 181, or one or more distillation trays with perforations downcomers and weirs (
The equipment may include components that apply heat to the stream to form the vapor stream and the liquid stream. For example, the equipment may comprise a first reboiler 112 that applies heat to the stream. The first reboiler 112 may be located outside of the distillation tower 104, 204. The equipment may also comprise a second reboiler 172 that applies heat to the stream. The second reboiler 172 may be located outside of the distillation tower 104, 204. Line 117 may lead from the distillation tower to the second reboiler 172. Line 17 may lead from the second reboiler 172 to the distillation tower. Additional reboilers, set up similarly to the second reboiler described above, may also be used.
The first reboiler 112 may apply heat to the liquid stream that exits the lower section 106 through a liquid outlet 160 of the lower section 106. The liquid stream may travel from the liquid outlet 160 through line 28 to reach the first reboiler 112 (
The first reboiler 112 may also apply heat to the stream within the distillation tower 104, 204. Specifically, the heat applied by the first reboiler 112 warms up the lower section 106. This heat travels up the lower section 106 and supplies heat to warm solids entering a melt tray assembly 139 (
The second reboiler 172 applies heat to the stream within the lower section 106. This heat is applied closer to the middle controlled freeze zone section 108 than the heat applied by the first reboiler 112. As a result, the heat applied by the second reboiler 172 reaches the middle controlled freeze zone section 108 faster than the heat applied by the first reboiler 112. The second reboiler 172 also helps with energy integration.
The equipment may include a chimney assembly 135 (
Each chimney assembly 135 includes a chimney tray 131 that collects the liquid stream within the lower section 106. The liquid stream that collects on the chimney tray 131 may be fed to the second reboiler 172. After the liquid stream is heated in the second reboiler 172, the stream may return to the middle controlled freeze zone section 108 to supply heat to the middle controlled freeze zone section 108 and/or the melt tray assembly 139. Unvaporized or partially vaporized stream exiting the second reboiler 172 may be fed back to the distillation tower 104, 204 below the chimney tray 131. Vapor stream exiting the second reboiler 172 may be routed under or above the chimney tray 131 when the vapor stream enters the distillation tower 104, 204.
The chimney tray 131 may include one or more chimneys 137. The chimney 137 serves as a channel that the vapor stream in the lower section 106 traverses. The vapor stream travels through an opening in the chimney tray 131 at the bottom of the chimney 137 to the top of the chimney 137. The opening is closer to the bottom of the lower section 106 than it is to the bottom of the middle controlled freeze zone section 108. The top is closer to the bottom of the middle controlled freeze zone section 108 than it is to the bottom of the lower section 106.
Each chimney 137 has attached to it a chimney cap 133. The chimney cap 133 covers a chimney top opening 138 of the chimney 137. The chimney cap 133 prevents the liquid stream from entering the chimney 137. The vapor stream exits the chimney assembly 135 via the chimney top opening 138.
After falling to the bottom of the lower section 106, the liquid stream exits the distillation tower 104, 204 through the liquid outlet 160. The liquid outlet 160 is within the lower section 106 (
After exiting through the liquid outlet 160, the feed stream may travel via line 28 to the first reboiler 112. The feed stream may be heated by the first reboiler 112 and vapor may then re-enter the lower section 106 through line 30. Unvaporized liquid may continue out of the distillation process via line 24.
The system may include an expander device 114 (
The system may include a heat exchanger 116 (
The vapor stream in the lower section 106 rises from the lower section 106 to the middle controlled freeze zone section 108. The middle controlled freeze zone section 108 is maintained in the distillation tower 104, 204 to operate at a temperature and pressure at which a solid forms, 301 (
The middle controlled freeze zone section 108 includes a lower section 40 and an upper section 39 (
The middle controlled freeze zone section 108 may comprise a melt tray assembly 139 that is maintained in the middle controlled freeze zone section 108, 302 (
The melt tray assembly 139 is constructed and arranged to melt solids formed in the middle controlled freeze zone section 108. When the warm vapor stream rises from the lower section 106 to the middle controlled freeze zone section 108, the vapor stream immediately encounters the melt tray assembly 139 and supplies heat to melt the solid. The melt tray assembly 139 may comprise at least one of a melt tray 118, a bubble cap 132, a liquid 130 and heat mechanism(s) 134.
The melt tray 118 may collect a liquid and/or slurry mix. The melt tray 118 divides at least a portion of the middle controlled freeze zone section 108 from the lower section 106. The melt tray 118 is at the bottom 45 of the middle controlled freeze zone section 108.
One or more bubble caps 132 may act as a channel for the vapor stream rising from the lower section 106 to the middle controlled freeze zone section 108. The bubble cap 132 may provide a path for the vapor stream stream up the riser 140 and then down and around the riser 140 to the melt tray 118. The riser 140 is covered by a cap 141. The cap 141 prevents the liquid 130 from travelling into the riser and it also helps prevent solids from travelling into the riser 140. The vapor stream's traversal through the bubble cap 132 allows the vapor stream to transfer heat to the liquid 130 within the melt tray assembly 139.
One or more heat mechanisms 134 may further heat up the liquid 130 to facilitate melting of the solids into a liquid and/or slurry mix. The heat mechanism(s) 134 may be located anywhere within the melt tray assembly 139. For example, as shown in
The liquid 130 in the melt tray assembly is heated by the vapor stream. The liquid 130 may also be heated by the one or more heat mechanisms 134. The liquid 130 helps melt the solids formed in the middle controlled freeze zone section 108 into a liquid and/or slurry mix. Specifically, the heat transferred by the vapor stream heats up the liquid, thereby enabling the heat to melt the solids. The liquid 130 is at a level sufficient to melt the solids.
The middle controlled freeze zone section 108 may also comprise a spray assembly 129. The spray assembly 129 cools the vapor stream that rises from the lower section 40. The spray assembly 129 sprays a liquid spray, which is cooler than the vapor stream, on the vapor stream to cool the vapor stream. The spray assembly 129 is within the upper section 39. The spray assembly 129 is not within the lower section 40. The spray assembly 129 is above the melt tray assembly 139. In other words, the melt tray assembly 139 is below the spray assembly 129.
The spray assembly 129 includes one or more spray nozzles 120 (
Each spray nozzle 120 sprays liquid spray on the vapor stream. The spray assembly 129 may also include a spray pump 128 (
The liquid spray sprayed by the spray assembly 129 contacts the vapor stream at a temperature and pressure at which solids form. Solids, containing mainly contaminants, form when the liquid spray contacts the vapor stream. The solids fall toward the melt tray assembly 139.
The temperature in the middle controlled freeze zone section 108 cools down as the vapor stream travels from the bottom of the middle controlled freeze zone section 108 to the top of the middle controlled freeze zone section 108. The methane in the vapor stream rises from the middle controlled freeze zone section 108 to the upper section 110. Some contaminants may remain in the methane and also rise. The contaminants in the vapor stream tend to condense or solidify with the colder temperatures and fall to the bottom of the middle controlled freeze zone section 108.
The solids form the liquid and/or slurry mix when in the liquid 130. The liquid and/or slurry mix flows from the middle controlled freeze zone section 108 to the lower distillation section 106. The liquid and/or slurry mix flows from the bottom of the middle controlled freeze zone section 108 to the top of the lower section 106 via a line 22 (
The vapor stream that rises in the middle controlled freeze zone section 108 and does not form solids or otherwise fall to the bottom of the middle controlled freeze zone section 108, rises to the upper section 110. The upper section 110 operates at a temperature and pressure and contaminant concentration at which no solid forms. The upper section 110 is constructed and arranged to cool the vapor stream to separate the methane from the contaminants. Reflux in the upper section 110 cools the vapor stream. The reflux is introduced into the upper section 110 via line 18. Line 18 may extend to the upper section 110. Line 18 may extend from an outer surface of the distillation tower 104, 204.
After contacting the reflux in the upper section 110, the feed stream forms a vapor stream and a liquid stream. The vapor stream mainly comprises methane. The liquid stream comprises relatively more contaminants. The vapor stream rises in the upper section 110 and the liquid falls to a bottom of the upper section 110.
To facilitate separation of the methane from the contaminants when the stream contacts the reflux, the upper section 110 may include one or more mass transfer devices 176. Each mass transfer device 176 helps separate the methane from the contaminants. Each mass transfer device 176 may comprise any suitable separation device, such as a tray with perforations, or a section of random or structured packing to facilitate contact of the vapor and liquid phases.
After rising, the vapor stream may exit the distillation tower 104, 204 through line 14. The line 14 may emanate from an upper part of the upper section 110. The line 14 may extend from an outer surface of the upper section 110.
From line 14, the vapor stream may enter a condenser 122. The condenser 122 cools the vapor stream to form a cooled stream. The condenser 122 at least partially condenses the stream.
After exiting the condenser 122, the cooled stream may enter a separator 124. The separator 124 separates the vapor stream into liquid and vapor streams. The separator may be any suitable separator that can separate a stream into liquid and vapor streams, such as a reflux drum.
Once separated, the vapor stream may exit the separator 124 as sales product. The sales product may travel through line 16 for subsequent sale to a pipeline and/or condensation to be liquefied natural gas.
Once separated, the liquid stream may return to the upper section 110 through line 18 as the reflux. The reflux may travel to the upper section 110 via any suitable mechanism, such as a reflux pump 150 (
The liquid stream (i.e., freezing zone liquid stream) that falls to the bottom of the upper section 110 collects at the bottom of the upper section 110. The liquid may collect on tray 183 (
The line 20 and/or outlet 260 connect to a line 41. The line 41 leads to the spray assembly 129 in the middle controlled freeze zone section 108. The line 41 emanates from the holding vessel 126. The line 41 may extend to an outer surface of the middle controlled freeze zone section 108.
The line 20 and/or outlet 260 may directly or indirectly (
The system may also include one or more temperature sensors 36 (
Before the distillation tower 104, 204 forms any solids, each temperature sensor 36 detects a baseline temperature of the mechanical component. The baseline temperature is within an expected temperature range. After the distillation tower 104, 204 forms solids, a temperature sensor 36 may detect an alternative temperature. The temperature sensor 36 may detect the alternative temperature a plurality of times and at different intervals in time. The alternative temperature is compared to the expected temperature range to see whether the distillation tower 104, 204 is operating normally. The expected temperature range is a range of temperatures that indicates that the distillation tower 104, 204 is operating normally. Different areas of the distillation tower 104, 204 may have their own expected temperature range that is specific to the nature and purpose of a particular section of the distillation tower 104, 204.
The distillation tower 104, 204 is operating not normally when one or more of a variety of circumstances has occurred. The variety of circumstances may include if solids accumulated on a mechanical component in the middle controlled freeze zone section 108, if the middle controlled freeze zone section 108 is too warm to form solids, if the middle controlled freeze zone section 108 is too cold to melt the solids in the melt tray assembly 139, etc. For example, if the temperature sensor 36 is coupled to the controlled freeze zone external surface 47 within the upper section 39 of the middle controlled freeze zone section 108 then the temperature sensor 36 is expected to detect a fairly cold temperature; that is, close to the actual temperature of liquid spray within the middle controlled freeze zone section 108. If, in this example, the temperature sensor 36 detects a rise in temperature from that expected of the actual temperature of liquid spray, solids have accumulated on the controlled freeze zone wall 46. In other words, if the detected temperature is outside of the expected temperature range by a positive amount, solids have likely accumulated on the controlled freeze zone wall 46. The solids acts as an insulator so solid adhesion is determined when there is an unexpected rise in temperature read by the temperature sensor 36 that is a positive amount outside of the expected temperature range.
If it's determined that the middle controlled freeze zone section 108 is not operating normally because the expected temperature range indicates solids have accumulated on a mechanical component of the middle controlled freeze zone section 108, a liquid level of the liquid 130 in the melt tray assembly 139 may be raised, 304 (
The liquid 130 may be warmer than the solid and, therefore, may cause at least a portion of the solids in contact with the liquid 130 to detach from whatever surface(s) the solids have accumulated on. The liquid may also cause the solids to melt. Even if the liquid 130 is not in direct contact with all of the accumulated solids, the contact may be sufficient to cause all of the solids to detach by removing enough points or sites of solids adhesion and/or support. If the contact is not sufficient for all of the solids to detach and/or melt, the liquid level can be further modified.
The liquid 130 may be warmer than the normal temperature of the liquid to cause the solids to detach and/or melt more quickly when the liquid level rises. The liquid 130 may be warmer than the normal temperature of the liquid by about 2 to 5 degrees Fahrenheit or 2 to 5 degrees Fahrenheit. To make the liquid 130 warmer than the normal temperature, the temperature of the liquid is raised, 305 (
The liquid level may be raised by at least partially closing a flow controlling element 271. The flow controlling element 271 may be located on line 22. When the flow controlling element 271 is at least partially closed, the flow controlling element 271 is closed more than it normally is. During normal operations, the flow controlling element 271 is at least partially open to enable liquid to travel from the melt tray assembly 139 to the lower section 106 for processing. For example, during normal operations the flow controlling element 271 may be greater than 20% open and less than 40% open. During normal operations the flow controlling element 271 can be any percentage within the aforementioned percentages. During normal operations the liquid level may remain substantially constant or constant. When the flow controlling element 271 is closed more than it normally is, the liquid 130 in the melt tray assembly 139 builds up in the melt tray assembly 139, thereby raising a liquid level from the first liquid level 272 to the second liquid level 273. When the flow controlling element 271 is closed more than it normally is, the flow controlling element may be less than or equal to 20% open. The flow controlling element 271 may be any suitable element. For example, the flow controlling element 271 may be a valve.
After being raised, the liquid level may be lowered after at least one of (i) a predetermined time period has passed and (ii) the alternative temperature of the mechanical component is within the expected temperature range of the baseline temperature of the mechanical component, 306 (
After at least one of the predetermined time period has passed and the alternative temperature is within an expected temperature range of the baseline temperature, the liquid level may be lowered from the second liquid level 273 to the first liquid level 272. In order to lower the liquid level, the flow controlling element 271 may be opened more than it is when the liquid level is raised. Additionally, the flow controlling element 271 may be opened more than during normal operations so that the liquid level can quickly return to what it is during normal operations. Once the liquid level is back to what it is during normal operations, the flow controlling element 271 may be open as much as it is during normal operations. For example, while trying to get back to the liquid level at normal operations, the flow controlling element may be greater than or equal to about 40% or greater than or equal to 40% open.
Before lowering the liquid level, the temperature of one or more temperature sensors 36 can be detected. The detection determines whether accumulated adherent solids remains. If accumulated solids remain, the temperature of the liquid may be further raised to melt the solids. In addition or alternatively, the liquid level may be further raised. Once the detected temperature helps the determination be made that accumulated solids do not remain, the liquid level may be lowered.
Steady state CO2 material balance calculations could be performed around the system to detect the adhesion of solids in the middle controlled freeze zone section 108. At steady state, the amount of CO2 flowing into the system with the feed stream should substantially equal the sum of i) the amount of CO2 leaving the distillation tower 104, 204 via line 16 and ii) the CO2 leaving the lower section 110 of the distillation tower 104, 204 via the liquid outlet 24. If the amount of CO2 entering the system measurably exceeds the CO2 leaving the system, then CO2 is accumulating in the system, possibly as solids in the middle controlled freeze zone section 108. The amount of CO2 entering the system may be determined by multiplying the feed stream mass flow rate times the CO2 weight percent at the inlet of the distillation tower 104, 204 to obtain a mass CO2 entering/unit time. The amount of CO2 exiting the distillation tower 104, 204 via line 16 and/or liquid outlet 160 may be determined by multiplying the relevant exiting gas (or liquid) mass flow rates times their respective CO2 weight percent, and summing them to obtain a mass CO2 exiting/unit time. The difference of CO2 entering minus CO2 exiting represents the instantaneous rate of CO2 mass accumulation (or loss) in the system at that point in time. By collecting a series of these differences and multiplying them by appropriate time increments, it is possible to sum those products together to determine if there is a net gain (or loss) of CO2 in the system over that period. These measurements may be be facilitated by the use of Coriolis flow meters, which measure mass flow rates directly and accurately.
Because what would otherwise appear to indicate an accumulation of CO2 in the middle controlled freeze zone section 108 may be due to increasing liquid levels in the middle controlled freeze zone section 108, corrections may be made for changing levels of fluid that contain CO2 (e.g., melt tray assembly liquid level, reboiler liquid level). Appropriate factors may be considered to convert these liquid level changes to mass changes. The mass changes may then be multiplied by their respective CO2 weight percent. If the total apparent CO2 accumulation as calculated by material balance exceeds the CO2 accumulation as measured by changing liquid levels, then solids may be building in the middle controlled freeze zone section 108 of the distillation tower 104, 204.
Persons skilled in the technical field will readily recognize that in practical applications of the disclosed methodology, one or more steps may be performed on a computer, typically a suitably programmed digital computer. Further, some portions of the detailed descriptions which follow are presented in terms of procedures, steps, logic blocks, processing and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, step, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing the terms such as “processing,” “computing,” “calculating,” “detecting,” “determining,” “displaying,” “copying,” “producing,” “storing,” “accumulating,” “adding,” “applying,” “identifting,” “consolidating,” “waiting,” “including,” “executing,” “maintaining,” “updating,” “creating,” “implementing,” “generating,” “transforming,” or the like, may refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
It is important to note that the steps depicted in
Aspects of the present disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable medium. A computer-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, but not limited to, a computer-readable (e.g., machine-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), and a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). The computer-readable medium may be non-transitory. The amounts determined may be displayed in the operator's console.
Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, features, attributes, methodologies, and other aspects of the disclosure can be implemented as software, hardware, firmware or any combination of the three. Of course, wherever a component of the present disclosure is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of skill in the art of computer programming. Additionally, the present disclosure is in no way limited to implementation in any specific operating system or environment.
Disclosed aspects may be used in hydrocarbon management activities. As used herein, “hydrocarbon management” or “managing hydrocarbons” includes hydrocarbon extraction, hydrocarbon production, hydrocarbon exploration, identifying potential hydrocarbon resources, identifying well locations, determining well injection and/or extraction rates, identifying reservoir connectivity, acquiring, disposing of and/or abandoning hydrocarbon resources, reviewing prior hydrocarbon management decisions, and any other hydrocarbon-related acts or activities. The term “hydrocarbon management” is also used for the injection or storage of hydrocarbons or CO2, for example the sequestration of CO2, such as reservoir evaluation, development planning, and reservoir management. The disclosed methodologies and techniques may be used to produce hydrocarbons in a feed stream extracted from, for example, a subsurface region. The feed stream extracted may be processed in the distillation tower 104, 204 and separated into hydrocarbons and contaminants. The separated hydrocarbons exit the middle controlled freeze zone section 108 or the upper section 110 of the distillation tower. Some or all of the hydrocarbons that exit are produced, 307. Hydrocarbon extraction may be conducted to remove the feed stream from for example, the subsurface region, which may be accomplished by drilling an oil well using oil well drilling equipment. The equipment and techniques used to drill a well and/or extract the hydrocarbons are well known by those skilled in the relevant art. Other hydrocarbon extraction activities and, more generally, other hydrocarbon management activities, may be performed according to known principles.
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described are considered to be within the scope of the disclosure.
For the purpose of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary or moveable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or may be removable or releasable in nature.
It should be understood that numerous changes, modifications, and alternatives to the preceding disclosure can be made without departing from the scope of the disclosure. The preceding description, therefore, is not meant to limit the scope of the disclosure. Rather, the scope of the disclosure is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other.
The articles “the”, “a” and “an” are not necessarily limited to mean only one, but rather are inclusive and open ended so as to include, optionally, multiple such elements.
This application claims the priority benefit of both U.S. Provisional patent application No. 61/912,983 filed Dec. 6, 2013 entitled METHOD OF REMOVING SOLIDS BY MODIFYING A LIQUID LEVEL IN A DISTILLATION TOWER, the entirety of which is incorporated by reference herein. This application is related to but does not claim priority to U.S. Provisional patent application Nos.: 61/912,957 filed on Dec. 6, 2013 entitled METHOD AND DEVICE FOR SEPARATING HYDROCARBONS AND CONTAMINANTS WITH A SPRAY ASSEMBLY; 62/044,770 filed on Sep. 2, 2014 entitled METHOD AND DEVICE FOR SEPARATING HYDROCARBONS AND CONTAMINANTS WITH A SPRAY ASSEMBLY; 61/912,959 filed on Dec. 6, 2013 entitled METHOD AND SYSTEM OF MAINTAING A LIQUID LEVEL IN A DISTILLATION TOWER; 61/912,964 filed on Dec. 6, 2013 entitled METHOD AND DEVICE FOR SEPARATING A FEED STREAM USING RADIATION DETECTORS; 61/912,970 filed on Dec. 6, 2013 entitled METHOD AND SYSTEM OF DEHYDRATING A FEED STREAM PROCESSED IN A DISTILLATION TOWER; 61/912,975 filed on Dec. 6, 2013 entitled METHOD AND SYSTEM FOR SEPARATING A FEED STREAM WITH A FEED STREAM DISTRIBUTION MECHANISM; 61/912,978 filed on Dec. 6, 2013 entitled METHOD AND SYSTEM FOR PREVENTING ACCUMULATION OF SOLIDS IN A DISTILLATION TOWER; 61/912,984 filed on Dec. 6, 2013 entitled METHOD AND SYSTEM OF MODIFYING A LIQUID LEVEL DURING START-UP OPERATIONS; 61/912,986 filed on Dec. 6, 2013 entitled METHOD AND DEVICE FOR SEPARATING HYDROCARBONS AND CONTAMINANTS WITH A HEATING MECHANISM TO DESTABILIZE AND/OR PREVENT ADHESION OF SOLIDS; 61/912,987 filed on Dec. 6, 2013 entitled METHOD AND DEVICE FOR SEPARATING HYDROCARBONS AND CONTAMINANTS WITH A SURFACE TREATMENT MECHANISM.
Number | Name | Date | Kind |
---|---|---|---|
2621216 | White | Dec 1952 | A |
2843219 | Habgood | Jul 1958 | A |
2863527 | Herbert | Dec 1958 | A |
2960837 | Swenson et al. | Nov 1960 | A |
3050950 | Karwat et al. | Aug 1962 | A |
3109726 | Karwat | Nov 1963 | A |
3349571 | Nebgen | Oct 1967 | A |
3393527 | Swensen et al. | Jul 1968 | A |
3400512 | McKay | Sep 1968 | A |
3421984 | Jensen et al. | Jan 1969 | A |
3683634 | Streich | Aug 1972 | A |
3705625 | Whitten et al. | Dec 1972 | A |
3767766 | Tjoa et al. | Oct 1973 | A |
3824080 | Smith et al. | Jul 1974 | A |
3842615 | Reigel et al. | Oct 1974 | A |
3848427 | Loofbourow | Nov 1974 | A |
3895101 | Tsuruta | Jul 1975 | A |
3929635 | Buriks et al. | Dec 1975 | A |
3933001 | Muska | Jan 1976 | A |
4129626 | Mellbom | Dec 1978 | A |
4246015 | Styring | Jan 1981 | A |
4270937 | Adler | Jun 1981 | A |
4280559 | Best | Jul 1981 | A |
4281518 | Muller et al. | Aug 1981 | A |
4318723 | Holmes et al. | Mar 1982 | A |
4319964 | Katz et al. | Mar 1982 | A |
4336233 | Appl et al. | Jun 1982 | A |
4344485 | Butler | Aug 1982 | A |
4370156 | Goddin et al. | Jan 1983 | A |
4382912 | Madgavkar et al. | May 1983 | A |
4383841 | Ryan et al. | May 1983 | A |
4405585 | Sartori et al. | Sep 1983 | A |
4417449 | Hegarty et al. | Nov 1983 | A |
4417909 | Weltmer | Nov 1983 | A |
4421535 | Mehra | Dec 1983 | A |
4441900 | Swallow | Apr 1984 | A |
4459142 | Goddin | Jul 1984 | A |
4462814 | Holmes et al. | Jul 1984 | A |
4466946 | Goddin et al. | Aug 1984 | A |
4511382 | Valencia et al. | Apr 1985 | A |
4512782 | Bauer et al. | Apr 1985 | A |
4533372 | Valencia | Aug 1985 | A |
4551158 | Wagner et al. | Nov 1985 | A |
4563202 | Yao et al. | Jan 1986 | A |
4592766 | Kumman et al. | Jun 1986 | A |
4602477 | Lucadamo | Jul 1986 | A |
4609388 | Adler et al. | Sep 1986 | A |
4636334 | Skinner et al. | Jan 1987 | A |
4695672 | Bunting | Sep 1987 | A |
4697642 | Vogel | Oct 1987 | A |
4710213 | Sapper et al. | Dec 1987 | A |
4717408 | Hopewell | Jan 1988 | A |
4720294 | Lucadamo et al. | Jan 1988 | A |
4747858 | Gottier | May 1988 | A |
4761167 | Nicholas et al. | Aug 1988 | A |
4762543 | Pantermuehl et al. | Aug 1988 | A |
4769054 | Steigman | Sep 1988 | A |
4822393 | Markbreiter et al. | Apr 1989 | A |
4831206 | Zarchy | May 1989 | A |
4923493 | Valencia et al. | May 1990 | A |
4927498 | Rushmere | May 1990 | A |
4935043 | Blanc et al. | Jun 1990 | A |
4954220 | Rushmere | Sep 1990 | A |
4972676 | Sakai | Nov 1990 | A |
4976849 | Soldati | Dec 1990 | A |
5011521 | Gottier | Apr 1991 | A |
5062270 | Haut et al. | Nov 1991 | A |
5120338 | Potts et al. | Jun 1992 | A |
5137550 | Hegarty et al. | Aug 1992 | A |
5152927 | Rivers | Oct 1992 | A |
5233837 | Callahan | Aug 1993 | A |
5240472 | Sircar | Aug 1993 | A |
5247087 | Rivers | Sep 1993 | A |
5265428 | Valencia et al. | Nov 1993 | A |
5335504 | Durr et al. | Aug 1994 | A |
5345771 | Dinsmore | Sep 1994 | A |
5567396 | Perry et al. | Oct 1996 | A |
5620144 | Strock et al. | Apr 1997 | A |
5643460 | Marble et al. | Jul 1997 | A |
5700311 | Spencer | Dec 1997 | A |
5720929 | Minkkinen et al. | Feb 1998 | A |
5819555 | Engdahl | Oct 1998 | A |
5820837 | Marjanovich et al. | Oct 1998 | A |
5899274 | Frauenfeld et al. | May 1999 | A |
5956971 | Cole et al. | Sep 1999 | A |
5964985 | Wootten | Oct 1999 | A |
5983663 | Sterner | Nov 1999 | A |
6053007 | Victory et al. | Apr 2000 | A |
6053484 | Fan et al. | Apr 2000 | A |
6082133 | Barclay et al. | Jul 2000 | A |
6082373 | Sakurai et al. | Jul 2000 | A |
6162262 | Minkkinen et al. | Dec 2000 | A |
6223557 | Cole | May 2001 | B1 |
6240744 | Agrawal et al. | Jun 2001 | B1 |
6267358 | Gohara et al. | Jul 2001 | B1 |
6270557 | Millet et al. | Aug 2001 | B1 |
6274112 | Moffett et al. | Aug 2001 | B1 |
6336334 | Minkkinen et al. | Jan 2002 | B1 |
6374634 | Gallarda et al. | Apr 2002 | B2 |
6401486 | Lee et al. | Jun 2002 | B1 |
6416729 | DeBerry et al. | Jul 2002 | B1 |
6442969 | Rojey et al. | Sep 2002 | B1 |
6500982 | Hale et al. | Dec 2002 | B1 |
6505683 | Minkkinen et al. | Jan 2003 | B2 |
6516631 | Trebble | Feb 2003 | B1 |
6517801 | Watson et al. | Feb 2003 | B2 |
6539747 | Minta et al. | Apr 2003 | B2 |
6565629 | Hayashida et al. | May 2003 | B1 |
6605138 | Frondorf | Aug 2003 | B2 |
6631626 | Hahn | Oct 2003 | B1 |
6632266 | Thomas et al. | Oct 2003 | B2 |
6662872 | Gutek et al. | Dec 2003 | B2 |
6708759 | Leaute et al. | Mar 2004 | B2 |
6711914 | Lecomte | Mar 2004 | B2 |
6735979 | Lecomte et al. | May 2004 | B2 |
6755251 | Thomas et al. | Jun 2004 | B2 |
6755965 | Pironti et al. | Jun 2004 | B2 |
6818194 | DeBerry et al. | Nov 2004 | B2 |
6883327 | Iijima et al. | Apr 2005 | B2 |
6946017 | Leppin et al. | Sep 2005 | B2 |
6958111 | Rust et al. | Oct 2005 | B2 |
6962061 | Wilding et al. | Nov 2005 | B2 |
7001490 | Wostbrock et al. | Feb 2006 | B2 |
7004985 | Wallace et al. | Feb 2006 | B2 |
7066986 | Haben et al. | Jun 2006 | B2 |
7073348 | Clodic et al. | Jul 2006 | B2 |
7121115 | Lemaire et al. | Oct 2006 | B2 |
7128150 | Thomas et al. | Oct 2006 | B2 |
7128276 | Nilsen et al. | Oct 2006 | B2 |
7152431 | Amin et al. | Dec 2006 | B2 |
7211128 | Thomas et al. | May 2007 | B2 |
7211701 | Muller et al. | May 2007 | B2 |
7219512 | Wilding et al. | May 2007 | B1 |
7285225 | Copeland et al. | Oct 2007 | B2 |
7325415 | Amin et al. | Feb 2008 | B2 |
7424808 | Mak | Sep 2008 | B2 |
7437889 | Roberts et al. | Oct 2008 | B2 |
7442231 | Landrum | Oct 2008 | B2 |
7442233 | Mitariten | Oct 2008 | B2 |
7493779 | Amin | Feb 2009 | B2 |
7536873 | Nohlen | May 2009 | B2 |
7550064 | Bassler et al. | Jun 2009 | B2 |
7575624 | Cartwright et al. | Aug 2009 | B2 |
7597746 | Mak et al. | Oct 2009 | B2 |
7635408 | Mak et al. | Dec 2009 | B2 |
7637984 | Adamopoulos | Dec 2009 | B2 |
7637987 | Mak | Dec 2009 | B2 |
7641717 | Gal | Jan 2010 | B2 |
7662215 | Sparling et al. | Feb 2010 | B2 |
7691239 | Kister et al. | Apr 2010 | B2 |
7722289 | Leone et al. | May 2010 | B2 |
7729976 | Hill et al. | Jun 2010 | B2 |
7770872 | Delatour | Aug 2010 | B2 |
7795483 | Kulprathipanja et al. | Sep 2010 | B2 |
7806965 | Stinson | Oct 2010 | B2 |
7814975 | Hagen et al. | Oct 2010 | B2 |
7879135 | Ravikumar et al. | Feb 2011 | B2 |
7901583 | McColl et al. | Mar 2011 | B2 |
7955496 | Iqbal et al. | Jun 2011 | B2 |
8002498 | Leone et al. | Aug 2011 | B2 |
8020408 | Howard et al. | Sep 2011 | B2 |
8133764 | Dirks et al. | Mar 2012 | B2 |
8136799 | Griepsma | Mar 2012 | B2 |
8303685 | Schubert et al. | Nov 2012 | B2 |
8308849 | Gal | Nov 2012 | B2 |
8312738 | Singh et al. | Nov 2012 | B2 |
8372169 | Tsangaris et al. | Feb 2013 | B2 |
8381544 | Coyle | Feb 2013 | B2 |
8388832 | Moffett et al. | Mar 2013 | B2 |
8428835 | Habert et al. | Apr 2013 | B2 |
8475572 | Prast et al. | Jul 2013 | B2 |
8500105 | Nieuwoudt | Aug 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
20020174687 | Cai | Nov 2002 | A1 |
20020189443 | McGuire | Dec 2002 | A1 |
20030181772 | Meyer et al. | Sep 2003 | A1 |
20060207946 | McColl et al. | Sep 2006 | A1 |
20060239879 | Lallemand et al. | Oct 2006 | A1 |
20070056317 | Amin et al. | Mar 2007 | A1 |
20070144943 | Lemaire et al. | Jun 2007 | A1 |
20070277674 | Hirano et al. | Dec 2007 | A1 |
20080034789 | Fieler et al. | Feb 2008 | A1 |
20080091316 | Szczublewski | Apr 2008 | A1 |
20080092589 | Tranier et al. | Apr 2008 | A1 |
20080307827 | Hino et al. | Dec 2008 | A1 |
20090023605 | Lebl et al. | Jan 2009 | A1 |
20090220406 | Rahman | Sep 2009 | A1 |
20100011809 | Mak | Jan 2010 | A1 |
20100018248 | Fieler | Jan 2010 | A1 |
20100024472 | Amin et al. | Feb 2010 | A1 |
20100064725 | Chieng et al. | Mar 2010 | A1 |
20100107687 | Andrian et al. | May 2010 | A1 |
20100132405 | Nilsen | Jun 2010 | A1 |
20100147022 | Hart et al. | Jun 2010 | A1 |
20100187181 | Sortwell | Jul 2010 | A1 |
20100310439 | Brok et al. | Dec 2010 | A1 |
20110132034 | Beaumont et al. | Jun 2011 | A1 |
20110154856 | Andrian et al. | Jun 2011 | A1 |
20110168019 | Northrop et al. | Jul 2011 | A1 |
20110192190 | Andrian et al. | Aug 2011 | A1 |
20110265512 | Bearden et al. | Nov 2011 | A1 |
20120006055 | Van Santen et al. | Jan 2012 | A1 |
20120031143 | Van Santem et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120079852 | Northrop et al. | Apr 2012 | A1 |
20120125043 | Cullinane et al. | May 2012 | A1 |
20120204599 | Northrop et al. | Aug 2012 | A1 |
20120279728 | Northrop et al. | Nov 2012 | A1 |
20130032029 | Mak | Feb 2013 | A1 |
20130074541 | Kaminsky et al. | Mar 2013 | A1 |
20130098105 | Northrop | Apr 2013 | A1 |
20140137599 | Oelfke et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
3149847 | Jul 1983 | DE |
133208 | Feb 1985 | EP |
508244 | Oct 1992 | EP |
1338557 | Mar 2005 | EP |
1010403 | Nov 1965 | GB |
WO 0232536 | Apr 2002 | WO |
WO 0239038 | May 2002 | WO |
WO 2004047956 | Jun 2004 | WO |
WO 2008034789 | Mar 2008 | WO |
WO 2008095258 | Aug 2008 | WO |
WO 2008152030 | Dec 2008 | WO |
WO 2009023605 | Feb 2009 | WO |
WO 2009029353 | Mar 2009 | WO |
WO 2009087206 | Jul 2009 | WO |
WO 2010023238 | Mar 2010 | WO |
WO 2010052299 | May 2010 | WO |
WO 2010136442 | Dec 2010 | WO |
WO 2011026170 | Mar 2011 | WO |
WO 2013095828 | Jun 2013 | WO |
WO 2013142100 | Sep 2013 | WO |
Entry |
---|
Haut et al., “Development and Application of the Controlled Freeze Zone Process”, (1988) SPE 17757, SPE Gas Tech. Symposium—Dallas, TX pp. 435-443. |
U.S. Appl. No. 14/516,686, filed Oct. 17, 2014, Valencia, J. A. |
U.S. Appl. No. 14/516,689, filed Oct. 17, 2014, Cullinane, J. T. et al. |
U.S. Appl. No. 14/516,705, filed Oct. 17, 2014, Valencia, J. A. et al. |
U.S. Appl. No. 14/516,709, filed Oct. 17, 2014, Valencia, J. A. |
U.S. Appl. No. 14/516,713, filed Oct. 17, 2014, Valencia, J. A. et al. |
U.S. Appl. No. 14/516,717, filed Oct. 17, 2014, Valencia, J. A. et al. |
U.S. Appl. No. 14/516,718, filed Oct. 17, 2014, Valencia, J. A. |
U.S. Appl. No. 14/516,726, filed Oct. 17, 2014, Valencia, J. A. et al. |
U.S. Appl. No. 14/516,731, filed Oct. 17, 2014, Valencia, J. A. et al. |
Aaron, D. et al. (2005) “Separation of CO2 from Flue Gas: A Review,” Separation Science and Technology, 40, pp. 321-348. |
Amin, R. (2003) “Advanced Mini Natural Gas Liquefier,” LNG Journal, Mar.-Apr. 2003, pp. 20-23. |
Black, S. (2006) “Chilled Ammonia Process for CO2 Capture,” Alstom Position Paper, Nov. 2006, 6 pgs. |
Ciulla, Vincent (2007) “How the Engine Works,” About.com, Mar. 21, 2007, [retrieved from the internet on Aug. 17, 2012]. <URL: http://autorepair.about.com/cs/generalinfo/a/aa060500a.html>. |
“Cryogenics” Science Clarified, May 2, 2006 [retrieved from the internet on Aug. 17, 2012]. <URL: http://www.scienceclarified.com/Co-Di/Cryogenics.html>. |
Denton, R. D. et al. (1985) “Integrated Low Temperature Processing of Sour Natural Gas,” Gas Processors Assoc., 64th Ann. Conv., pp. 92-96. |
Guccione, E. (1963) “New Approach to Recovery of Helium from Natural Gas,” Chem. Engr., Sep. 30, 1963, pp. 76-78. |
Hassan, S. M. N. (2005) “Techno-Economic Study of CO2 Capture Process for Cement Plants,” University of Waterloo—Thesis. |
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” SPE 17757, SPE Gas Tech. Symp.—Dallas, TX, pp. 435-443. |
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” OSEA 88197, 7th Offshore So. East Asia Conf., Singapore, Feb. 1988, pp. 840-848. |
Haut, R. C. et al. (1989) “Development and Application of the Controlled Freeze Zone Process,” SPE Production Engineering, Aug. 1989, pp. 265-271. |
Im, U. K. et al. (1971) “Heterogeneous Phase Behavior of Carbon Dioxide in n-Hexane and n-Heptane at Low Temperatures,” Jrnl. of Chem. Engineering Data, v.16.4, pp. 412-415. |
Mitariten, M. et al. (2007) “The Sorbead™ Quick-Cycle Process for Simultaneous Removal of Water, Heavy Hydrocarbons and Mercaptans from Natural Gas,” Laurance Reid Gas Conditioning Conf., Feb. 25-27, 2007. |
Northrop, P. Scott et al. (2004) “Cryogenic Sour Gas Process Attractive for Acid Gas Injection Applications,” 83rd Ann. Gas Processors Assoc. Convention, New Orleans, LA., pp. 1-8 (XP007912217). |
Pagcatipunan, C. et al. (2005) “Maximize the Performance of Spray Nozzle Systems,” CEP Magazine, Dec. 2005, pp. 38-44. |
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B, v.101, pp. 614-622. |
Rubin, E. S. et al. (2002) “A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control,” U.S. Dept. of Energy, Oct. 2002, DOE/DE-FC26-00NT40935, 26 pages. |
Spero, C. (2007) “Callide Oxyfuel Project,” CS Energy, cLET Seminar, Jul. 12, 2007, 9 pages. |
Thomas, E. R. et al. (1987) “Conceptual Studies Using the Controlled Freeze Zone (CFZ) Process,” AlChE Summer Nat'l Mtg., Aug. 16-19, 1987. |
Thomas, E. R. et al. (1988) “Conceptual Studies for CO2/Natural Gas Separation Using the Control Freeze Zone (CFZ) Process,” Gas Separation and Purification, v. 2, pp. 84-89. |
Valencia, J. A. et al. (2008) “Controlled Freeze Zone™ Technology for Enabling Processing of High CO2 and H2S Gas Reserves,” SPE-IPTC 12708, Kuala Lumpur, IN, v.4.1, Jan. 2008, pp. 2358-2363. |
Victory, D. J. et al. (1987) “The CFZ Process: Direct Methane-Carbon Dioxide Fractionation,” 66th Ann. GPA Convention, Mar. 16-18, Denver, CO. |
Wilson, R.W. et al. (1968) “Helium: Its Extraction and Purification,” Journ. Petrol. Tech.,v. 20, pp. 341-344. |
Number | Date | Country | |
---|---|---|---|
20150159945 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61912983 | Dec 2013 | US |