The present invention relates to a method of removing unburned carbon from coal ash, and in particular to a method of more efficiently removing unburned carbon from coal ash which is generated in a coal fired power plant or a fluidized bed combustion furnace.
The coal ash which occurs in coal fired power plants and fluidized bed combustion furnaces, etc. (referred as fly ash hereinafter), has been used as a raw material for cement and artificial lightweight aggregate or as a cement admixture. However, if fly ash is used as a cement admixture, unburned carbon included in the fly ash can absorb AE agent or water-reducing agent etc., causing a problem which adversely affects the kneading work of concrete.
Because of the water repellency of unburned carbon, when concreting, the harmful effects of the unburned carbon floating up to the surface of the concrete, or black parts in the concrete-jointed areas caused by the unburned carbon can occur. Moreover, with a high content of unburned carbon in fly ash, the problem of the quality of the artificial lightweight aggregate being lowered can occur. Therefore, only good quality fly ash containing a small amount of unburned carbon has been used as a cement admixture, while fly ash containing a large amount of unburned carbon has been used as raw material for cement processed in rotary kilns or as industrial waste used in reclamation.
In order to solve the above problems, the specification of Japanese patent No. 3613347, for example, proposes a method comprised of the following steps: slurrying by adding water to fly ash, adding a collector such as kerosene to the obtained fly ash slurry, causing the unburned carbon to stick to the collector by applying surface-upgrading to the fly ash through a high-speed shearing mixer to improve the flotation ability of the unburned carbon, and then separating the unburned carbon through flotation.
The method is relatively easy regarding the separation of the unburned carbon where fly ash a is melted and re-solidified into an approximately spherical shape through high-temperature combustion (for example, 1200 to 1500 degrees) and unburned carbon b is separated as a unit of body (refer to
Furthermore, compared to the fly ash from a pulverized coal combustion furnace, the fly ash from a fluidized bed combustion furnace is recovered as unmelted ash in low temperature combustion (for example, 850 degrees), and ash content a′ and unburned carbon content b′ are combined, similar to a dumpling, as shown in
The present invention is developed to resolve these problems, and its objective is to provide a method for removing unburned carbon from coal ash by efficiently separating an ash content in fly ash through applying the flotation method using surface-upgrading to the fly ash, in the case when removing the unburned carbon included in the fly ash.
To resolve the above problems, the present invention is constituted as follows.
In the invention according to a first embodiment, the method for removing unburned carbon from coal ash comprises the steps of; mechanically separating the unburned carbon from the coal ash using a classifying unit; grinding or crushing the coal ash by means of a grinding unit in which the unburned carbon is partially removed by the classifying unit; slurrying by adding water to the coal ash grinded or crushed by the grinding unit; adding a collector to the slurried coal ash; selectively making the collector attach to the unburned carbon in the coal ash by applying shearing force to the slurry to which the collector is added; adding a frother to the slurry after having made the collector attach to the unburned carbon; and separating the foam and the unburned carbon from the slurry after having added the frother thereto through flotation thereof.
In the invention according to a second embodiment, in the method for removing the unburned carbon in the coal ash according to the first embodiment, in classifying of the unburned carbon in the coal ash, a dry type or a wet type classifying unit is applied thereto, and the mesh size of the classifying unit is set to 20 to 200 μm.
In the invention according to a third embodiment, in the method for removing the unburned carbon in the coal ash according to the first embodiment, in grinding or crushing of the fly ash including the unburned carbon, a dry type hammer mill or a roller mill is applied thereto.
In the present invention, by mechanically separating in advance the unburned carbon in the coal ash using a classifying unit, the unburned carbon in the coal ash is partially removed and the purity of the ash content in the coal ash becomes somewhat higher. Thereafter, the ash content and the unburned carbon content are separated as unit. Then the separation performance of the ash content and the unburned carbon content is further improved, and this is carried out by grinding or crushing the coal ash from which the unburned carbon is partially removed by means of the classifying unit. Accordingly, the flotation method using surface-upgrading can be applied to not only fly ash from a conventional pulverized coal combustion furnace but also to fly ash from a fluidized bed combustion furnace.
Furthermore, by applying shearing force to the coal ash slurry which contains the unburned carbon to which a collector has been added before the flotation step, the dispersal effect of the unburned carbon, the ash content, or the collector in the slurry is not only improved upon, but activation energy (surface energy) is also transitionally generated on the surfaces of the dispersed particles. In this process of the transitional subsidence of the surface energy, the surfaces of hydrophobic unburned carbon particles and that of the collector particles are close to each other, and the surface energy of both will be lowered. Also, the surfaces of the hydrophobic dispersed particles adapt better to water, hence these particles can disperse into water, and all of the surface energy will be lowered.
As a result of the above, unburned carbon particles to which the collector is attached through surface-upgrading have their lipophilicity stably increased and the performance of the flotation in the after flotation step of the flotation tailing, which is then, efficiently separated by the ash content dispersing into water. For coal ash slurry, the unburned carbon can be efficiently removed in general. Also the amount of a collector must be about 0.5 to 2.0 wt % in cases where pre-processing is not carried out in the conventional manner. But in the present invention, by classifying or crushing the coal ash as a raw material beforehand, the amount of collector required is only about 0.05 to 1.0 wt % for coal ash.
Thereby, since the collector can be saved and the residual amount of kerosene, etc., in fly ash as a product is also small, the processing after the flotation step becomes simpler. Furthermore, in the fly ash from fluidized bed combustion, which originally was insufficient for separating the ash content and the unburned content, the flotation method after surface-upgrading can attain a higher-degree of unburned carbon removal.
a) shows a schema in the addition of a collector.
b) shows a schema in surface upgrading.
c) shows a schema in flotation.
The mode of carrying out the present invention will be described by referring to the drawings in the following.
As shown in
The classifying unit 1 is used for removing the unburned carbon from the fly ash a and is constituted to vibrate a screen body 2 having a shape like a closed vessel by means of a vibrator 3. The screen body 2 is provided with a screen 4 for classification therein and a reception plate 5 for receiving fly ash a separated from unburned carbon below. This classifying unit 1 is usually used in a dry manner, but may be used in a wet manner by request. In the wet manner, it needs to be properly filled with water.
A range of 20 to 200 μm is used as a mesh size for the screen 4, but a range of 40 to 100 μm is preferred. In cases where the mesh size of the screen 4 is more than 200 μm, removal of the unburned carbon is difficult if the particle diameter of the unburned carbon is about 5 to 200 μm. On the other hand, in the case where the mesh size of the screen 4 is less than 20 μm, the particle diameter is approximately 5 to 100 μm. Hence the fly ash is likely to be mixed into the unburned carbon side in a large quantity. The average particle diameter of the unburned carbon is approximately 20 to 100 μm in general and is larger than the average particle diameter of fly ash at about 20 μm, hence classifying the unburned carbon having a large average particle diameter in advance is effective.
The grinding unit 10 is for grinding or crushing (crushing unburned carbon and ash content and separating as a unit) fly ash a (for example, fly ash in a pulverized coal combustion furnace or fly ash in a fluidized bed combustion furnace) in which unburned carbon is partially removed by the classifying unit 1. A dry type ball mill, a wet type ball mill, a dry type hammer mill or a roller mill may be preferably used. The dry type ball mill 10a is filled with a number of steel balls 12 in a lateral rotating drum 11 as shown in
A slurry tank 20 is provided for producing slurry d using fly ash a and water c, and it has a stirring blade 21 for stirring the slurry d therein. The slurry tank 20 is provided with a fly ash tank 25 and a water supply unit (not shown) in the pre-stage thereof, and a pump 22 for supplying the slurry d to a high speed shearing mixer 30 in the after-stage thereof.
The high speed shearing mixer 30 is provided for upgrading the surface of the unburned carbon by applying shearing force to the slurry and the collector. The high speed shearing mixer 30, as shown in
In an adjusting reservoir 45, a frother f supplied from a frother tank 55 via a pump 56 is added to the slurry introduced from the high shearing mixer 30. These are mixed at low speed, and the adjusting reservoir 45 is provided with stirring blades 46 therein. In the after-stage of the adjusting reservoir 45, a pump 47 is disposed for supplying the slurry d to a flotation unit 50.
The flotation unit 50 makes the unburned carbon in the fly ash attach to the foam to float on and is for separating the unburned carbon (froth) and the fly ash (tail), and, for example, is a unit that has a stirring blade 51 therein. Also there is a case where an air supply unit (not shown) for supplying air g to generate foam is provided above the flotation unit 50, or a case of self-suction type by stirring. A pump 52 is disposed for supplying tailing h to a solid-liquid separation unit 60 in the after-stage of the flotation unit 50.
The solid-liquid separation unit 60 is provided for solid-liquid separating the tailing h which includes the fly ash fed from the flotation unit 50, and for separating the tailing h into the cake j and the water c. Here, a centrifugal extractor or the like is used as a solid-liquid separator. A dryer 70 is provided for drying the cake j supplied from the solid-liquid separator 60 using hot air m fed from a hot air furnace 65 where the moisture value of the solid-liquid separated cake j is higher than a target value. The dried cake j, that is, the fly ash a (products) is used as an admixture for cement.
A bag filter 67 is provided for recovering pulverized powder from the dryer 70, and the recovered pulverized powder is also used as an admixture for cement etc. A filter press 80 is provided for solid-liquid separating the froth i including the unburned carbon fed from the flotation unit 50. Also, the water c discharged from the filter press 80 is reused for the slurry tank 20 etc. via a pump 81. The hot air furnace 65 is provided for generating hot air m by using the unburned carbon discharged from the filter press 80 as fuel, and the obtained hot air is used in the dryer 70.
Next, the operation procedure of the above facility is described by referring to
As shown in
The fly ash a supplied to the grinding unit 10, for example, the dry ball mill 10a (referring to
The fly ash a reserved in the fly ash tank 25 is supplied to the slurry tank 20 and becomes the fly ash slurry d (referred as slurry d hereinafter) by mixing with the water d. Here, the fly ash concentration in the slurry is adjusted within a range of 10 to 40 wt %. The slurry d in the slurry tank 20 is supplied to the high speed shearing mixer 30 by the pump 22. The kerosene e as a collector coming via the pump 28 from the kerosene tank 27 is supplied to the inlet of the high speed shearing mixer 30. A general collector such as light oil or heavy oil other than kerosene may be used. The additional amount of the collector is adjusted in a range of 0.05 to 1.0 wt % for fly ash.
Next, the shearing force is applied to this slurry and the collector. The shearing force can be applied by using the high speed shearing mixer 30 shown in
As shown above, the objective of applying the shearing force to the fly ash slurry and the collector is to improve the float property of the flotation by upgrading the surface of unburned carbon. This point is described by referring to
In a mere mixture of the collector to slurry which includes fly ash as shown in
If the surface upgrading is given by applying the shearing force to the slurry and the collector shown in
Next, the froth i which includes unburned carbon discharged from the flotation unit 50 is solid-liquid-separated by means of the filter press 80, and the unburned carbon b is recovered as shown in
The tailing h including the fly ash from the flotation unit 50 is solid-liquid-separated by the solid-liquid-separator 60. When the moisture of the cake j is higher than a target value, the unburned carbon b discharged from the filter press 80 is burned in the hot air furnace 65, and the cake j is dried by the hot air m obtained at this time from the dryer 70. The dry fly ash (products) in which the unburned carbon content is not more than 1 wt % can be used as a mixture for cement etc. Also, particles recovered by the bag filter 67 can be used as a mixture for cement, etc.
Here, as a means for applying the shearing force to the slurry and the collector, for example, an eductor etc. as well as the high speed shearing mixer can be utilized. In fact, the surface of unburned carbon may be upgraded to attach the collector such as kerosene to the unburned carbon.
Fly ash (unburned carbon content 5.0 wt %) is classified into 60 μm and under by means of a dry type classifying unit that vibrates, and the fly ash (unburned carbon content 3.5 wt %) including the classified unburned carbon is grinded by a dry type ball-mill (rotary speed: 60 rpm) for 5 minutes.
Next, water 1000 ml and fly ash 200 g (unburned carbon content 3.5 wt %) after being grinded are made into slurry by mixing while stirring it. Kerosene (a collector) is added to this slurry in the range of 0.1 to 2.5 ml, shearing force is applied to the slurry and the kerosene by stirring in the high speed shearing mixer shown in
After the upgrading step, the slurry is supplied to the flotation unit, 0.2 g of MIBC is added as the frother, and the unburned carbon is attached to the generated foam by the flotation operation to float on. The floated froth is taken out as an unnecessary content. These steps are carried out for 5 minutes. From the additional amount of this kerosene and the relation between the unburned carbon content in the fly ash (products: tail) that remains in the flotation reservoir and the recovery amount of the fly ash (products), it is found that the unburned carbon content in the fly ash (products) with the oil addition rate of about 0.5 wt % to the fly ash is not more than 0.5%.
But if there is no pre-processing, that is, in the case where the fly ash including the classified unburned carbon was not grinded by the dry type ball after classifying the fly ash by the dry type classifying unit, the oil addition rate of kerosene requested is approximately 1.1 wt % for the fly ash (refer to
The present invention can be applied to a method of effectively removing unburned carbon from fly ash generated in a coal burning thermal power plant or a fluidized combustion furnace.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/324645 | 12/11/2006 | WO | 00 | 6/10/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/072299 | 6/19/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4424065 | Langhoff et al. | Jan 1984 | A |
4426282 | Aunsholt | Jan 1984 | A |
4474619 | Meyer et al. | Oct 1984 | A |
4526680 | Owen | Jul 1985 | A |
4532032 | Ng et al. | Jul 1985 | A |
4593859 | Nakaoji et al. | Jun 1986 | A |
4676804 | Miller et al. | Jun 1987 | A |
4712742 | Ogawa et al. | Dec 1987 | A |
4737272 | Szatkowski et al. | Apr 1988 | A |
4925559 | Biermann et al. | May 1990 | A |
5022983 | Myers et al. | Jun 1991 | A |
5379902 | Wen et al. | Jan 1995 | A |
6793079 | Khan et al. | Sep 2004 | B2 |
7163105 | Jameson et al. | Jan 2007 | B2 |
7328806 | Khan et al. | Feb 2008 | B2 |
20030106843 | Jameson et al. | Jun 2003 | A1 |
20040099575 | Khan et al. | May 2004 | A1 |
20040256294 | Khan et al. | Dec 2004 | A1 |
20050051465 | Khan et al. | Mar 2005 | A1 |
20050121370 | Jameson et al. | Jun 2005 | A1 |
20070199486 | Saito et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
3613347 | Jan 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20090301938 A1 | Dec 2009 | US |