This invention relates to a method of repairing or replacing the upper girders, including the top end frames and intermediate roof beams, and the hot roof, if required, of an electrostatic precipitator without requiring the complete disassembly of the electrostatic precipitator including the collecting electrodes and discharge electrodes, significantly reducing the cost of repair.
As will be understood by those skilled in this art, a conventional electrostatic precipitator includes casing walls, or side frames, typically enclosing a plurality of rectangular chambers and fields, and the chambers are separated by longitudinal partition frames, sometimes referred to collectively here as the casing walls. Each chamber and field includes a plurality of parallel spaced vertically extending plate-like collecting electrodes, which may, for example, be up to 50 feet in length and 15 feet in width, and a plurality of discharge electrodes supported on an electrically isolated high voltage frame assembly to keep the discharge electrodes in proper alignment with the collecting electrodes. A high voltage direct current is applied to the discharge electrodes. When particulate laden process gas is passed at low velocity through this field, the particulates in the gas stream become negatively charged in the electron field. The particles are then attracted to the positive charge on the collecting electrode surfaces. When the migration toward the surfaces of the collecting electrodes is complete, the inherent resistivity of the particles will prevent complete loss of the charge to the collecting electrode surfaces and the particles will then agglomerate on the surfaces of the collecting electrodes. The particulates are then collected in a grid of hoppers located below the collecting electrodes.
As will be understood, as an electrostatic precipitator casing ages, it typically deteriorates from the corrosive atmosphere in which it operates. Some electrostatic precipitator units that have been in operation for 30 to 40 years may exhibit significant deterioration in their structural integrity, particularly the upper girders and hot roof. Depending upon the original design configuration, application and the quality of the original installation, certain areas of the electrostatic precipitator may need to be repaired or more generally replaced. The costs associated with rebuilding an electrostatic precipitator are significant. Where repair or replacement is required, there are also significant costs associated with shutting down the electrostatic precipitator, which generally requires shutting down the process or equipment generating the waste gas stream.
Electrostatic precipitators with insulator compartments instead of the now more customary Penthouse design are more susceptible to corrosion of the hot roof area, including the top flanges of the top end frames and intermediate roof beams because of their direct exposure to severe weather conditions. Cold temperatures and cooling effects of rain and snow can accelerate corrosion by causing the internal steel temperature to drop below the Acid Dew Point of the process gases. This results in various types of acids condensing on the cold steel surfaces, resulting in oxidation, corrosion and accelerated deterioration of these components.
A major repair of the upper girders, including the top end frames and intermediate roof beams, of an electrostatic precipitator will generally require relieving the load from the girders before repairs can be made. The load on the girders includes the collecting electrodes, discharge electrodes, high voltage frames and hot roof. Thus, the present method of repair or replacement of these elements is very labor intensive, expensive and typically requires an extended plant outage to complete the work.
The method of repairing an electrostatic precipitator of this invention eliminates the requirement for removal of the discharge and collecting electrodes 34 and 40, respectively, high voltage frames, etc. of an electrostatic precipitator during repair or replacement of the upper girders and hot roof, if required. The method of repair of an electrostatic precipitator of this invention thus significantly reduces the cost of repair and the down time of the electrostatic precipitator and the equipment of apparatus generating the waste gas stream treated by the electrostatic precipitator.
The method of repairing an electrostatic precipitator of this invention includes building a temporary support truss assembly, preferably having vertical members and horizontal truss members. The method of this invention then includes supporting and fixing the temporary support truss assembly on the electrostatic precipitator, preferably at the level of the hot roof, wherein the vertical truss members of the temporary support truss assembly are supported on the structural casing walls or side frames and partition frames of the electrostatic precipitator. The method of this invention then includes transferring the weight of the internal electrical components of the electrostatic precipitator, including the discharge electrodes, collecting electrodes and high voltage frames from the upper girders of the electrostatic precipitator, including the top end frames and intermediate roof beams, to the temporary support truss assembly. The method of this invention then includes repairing or replacing the upper girders of the electrostatic precipitator, and then transferring the weight of the electrical components of the electrostatic precipitator from the temporary support truss assembly to the repaired or replaced upper girders. In most applications, the temporary support truss is then removed. As will be understood, this method of repairing an electrostatic precipitator of this invention significantly reduces the cost of repair and down time of the electrostatic precipitator and therefore the down time of the facility generating the waste gas stream cleaned by the electrostatic precipitator.
The method of this invention may also be utilized to replace the hot roof of the electrostatic precipitator, which is also subject to exposure to severe weather conditions and therefore generally requires replacement at the time of the replacement or the repair of the upper girders. In one preferred embodiment of the method of this invention, the temporary support truss assembly is fixed to the hot roof of the electrostatic precipitator by brackets welded or otherwise affixed to the hot roof. The method of this invention may then include the complete removal and replacement of the hot roof.
In one disclosed embodiment of the method of repairing an electrostatic precipitator with this invention, the method includes supporting the collecting electrode anvil beams of the electrostatic precipitator on temporary support truss hanger rods suspended from the temporary support truss assembly. Further, in a disclosed embodiment of the method of this invention, the method includes lowering the high voltage support frames, which support the discharge electrodes, onto the collecting electrodes, such that both the discharge electrodes and the collecting electrodes are or will be temporarily supported by the temporary support truss assembly. The method of this invention thus eliminates the requirement for removing the internal electrical components of the electrostatic precipitator when repairing or replacing the upper girders of the electrostatic precipitator, including the top end frames and intermediate roof beams, thus substantially reducing the cost and time of repair and downtime of the electrostatic precipitator.
Other advantages and meritorious features of this invention will be more fully understood from the following description of the preferred embodiments and the drawings, a brief description of which follows.
As will be understood by those skilled in this art, the disclosed embodiments of the apparatus utilized in the method of repairing an electrostatic precipitator of this invention are for illustrative purposes only and various modifications may be made to the disclosed method of this invention within the purview of the appended claims. As described above, the method of this invention may be utilized to repair or replace the upper girders of an electrostatic precipitator without requiring removal of the electrical internal components from the electrostatic precipitator including the collecting electrodes, discharge electrodes and the high voltage frames. The method of this invention may also be utilized to repair or replace the hot roof of the electrostatic precipitator as described herein.
The method of this invention includes first building a temporary truss assembly, one embodiment of which is shown at 20 in
In one preferred embodiment of the method of repairing an electrostatic precipitator of this invention, the vertical support truss members 22 of the temporary support truss assembly 20 are supported on the electrostatic precipitator above or in line with the casing walls or side frames and generally the partition frames of the electrostatic precipitator such that the bearing load on the temporary support truss assembly 20 is fully supported by the casing walls 63, sometimes referred to as the side frames, and the partition frames 64 of the electrostatic precipitator. As discussed below, in one preferred embodiment of the method of this invention, the temporary support truss assembly 20 is supported at the hot roof elevation 32 of the electrostatic precipitator (see also
The internal components or more accurately, the weight of the internal components is then transferred from the upper girders 60 and 62 of the electrostatic precipitator to the temporary support truss assembly 20. As will be understood by those skilled in this art, this can be accomplished in various ways. In one preferred embodiment, the weight of the discharge electrodes 34 is first transferred to the collecting electrodes 40 and the anvil beams 42 supporting the collecting electrodes 40 are then transferred to the temporary support truss assembly 20 as now described. As will be understood by those skilled in this art and as shown in
The method of this invention further includes transferring the weight of the collecting electrodes 40 (and thus also the discharge electrodes 34 and the high voltage support frames 36) from the upper girders of the electrostatic precipitator to the temporary support truss assembly 20. As will be understood by those skilled in this art, the collecting electrodes 40 are typically suspended from anvil beams 42 as shown in the Figures. Thus, in one preferred embodiment of the method of this invention, the anvil beams 42 are temporarily suspended from the temporary support truss assembly 20. As will be understood, the anvil beams 42 may be suspended by any suitable means from the temporary support truss assembly 20. In the disclosed embodiment of the method of this invention, the anvil beams 42 are suspended from the lower side truss members 24 by temporary support truss hanger rods 44 and brackets 46 as shown in
In a typical application, the top end frames and intermediate roof beams are removed with a cutting torch or the like and new upper girders are welded or otherwise secured in place in a conventional manner used to make a conventional electrostatic precipitator. The weight of the collecting electrodes 40, discharge electrodes 34 and the high voltage frames 36 (shown in
The method of repairing an electrostatic precipitator of this invention may also be utilized to repair or replace the hot roof 32 of the electrostatic precipitator. If the upper girders 60 and 62 are not replaced, there are other methods of replacing the hot roof 32. As will be understood by those skilled in this art, the hot roof 32 of the electrostatic precipitator is also exposed to the elements and generally must be replaced with the replacement of the upper girders of the electrostatic precipitator. In the disclosed embodiment of the method of repairing an electrostatic precipitator with this invention, the temporary support truss assembly 20 is affixed at the hot roof 32 elevation and the hot roof may then removed and replaced. In a disclosed embodiment of the method of this invention, the lower horizontal support truss members 24 are affixed to U-shaped brackets or hanger rod clips 50 which are welded or otherwise secured to the hot roof 32 as shown in
As will be understood by those skilled in this art, various modifications may be made to the method of repairing an electrostatic precipitator with this invention within the purview of the appended claims. As set forth above, the preferred configuration of the temporary support truss assembly 20 will depend upon the configuration of the electrostatic precipitator and the components of the electrostatic precipitator to be repaired or replaced. As will be understood by those skilled in this art, a conventional electrostatic precipitator includes a plurality of chambers and fields. The sectional end elevation of
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/776,019 filed Feb. 23, 2006.
Number | Name | Date | Kind |
---|---|---|---|
1584055 | Weiskopf | May 1926 | A |
1846169 | Weiskopf | Feb 1932 | A |
2711224 | Herber | Jun 1955 | A |
2999561 | Phyl | Sep 1961 | A |
3688475 | Dyla et al. | Sep 1972 | A |
3729815 | Quintilian et al. | May 1973 | A |
3759014 | Van Dyken et al. | Sep 1973 | A |
4303418 | Coe, Jr. | Dec 1981 | A |
4325714 | Wooldridge | Apr 1982 | A |
4360367 | Prior | Nov 1982 | A |
4375364 | Van Hoesen et al. | Mar 1983 | A |
4516992 | Jonelis | May 1985 | A |
4559064 | Ahern | Dec 1985 | A |
4747856 | Hicks et al. | May 1988 | A |
4840649 | Jonelis et al. | Jun 1989 | A |
4948399 | Reuffurth et al. | Aug 1990 | A |
5344481 | Pettersson | Sep 1994 | A |
5366540 | Bojsen | Nov 1994 | A |
5529608 | Jonelis | Jun 1996 | A |
5665147 | Taylor et al. | Sep 1997 | A |
6048385 | Koide | Apr 2000 | A |
6579349 | Ting et al. | Jun 2003 | B1 |
20070193449 | Smith | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
3540748 | May 1986 | DE |
Number | Date | Country | |
---|---|---|---|
20070193444 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60776019 | Feb 2006 | US |