This application claims priority to EP 15189847.5, filed Oct. 14, 2015, which is hereby incorporated by reference.
The present disclosure generally relates to a method of rotating a sample container carrier of a laboratory sample distribution system, to a laboratory sample distribution system and to a laboratory automation system comprising a laboratory sample distribution system.
Known laboratory sample distribution systems are typically used in laboratory automation systems in order to transport samples contained in sample containers between different laboratory stations.
A typical laboratory sample distribution system provides for a high throughput and for reliable operation. In order to identify sample containers that are transported by a laboratory sample distribution system, these sample containers are typically marked with barcodes. Such barcodes can be read using barcode reading devices.
While identification of sample containers using barcodes is, in principle, a reliable and simple method for identification, it has been recognized that a specific problem arises in laboratory sample distribution systems when barcodes do not extend over a whole horizontal circumference of a sample container, because a barcode reading device has typically only the ability to detect less than 180° of a sample container. Thus, there arises a need for ensuring that barcodes can be read reliably in a laboratory sample distribution system.
Therefore, there is a need for a method to simplify readout of barcodes independently of its circumferential coverage.
According to the present disclosure, a method of rotating a sample container carrier of a laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise samples. The laboratory sample distribution system can also comprise a transport plane. The transport plane can be adapted to support the sample container carriers. The laboratory sample distribution system can also comprise a driver. The driver can be adapted to move the sample container carriers on top of the transport plane. The laboratory sample distribution system can also comprise a control device. The control device can be configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths. The method can comprise the steps: a) moving the sample container carrier and/or a rotator element comprising a linear surface relative to each other on the transport plane such that the sample container carrier abuts the linear surface and b) moving the sample container carrier and/or the rotator element relative to each other on the transport plane such that the linear surface exerts a rotating force on the sample container carrier.
Accordingly, it is a feature of the embodiments of the present disclosure to provide for a method to simplify readout of barcodes independently of its circumferential coverage. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.
A method of rotating a sample container carrier of a laboratory sample distribution system is presented.
The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise laboratory samples.
The laboratory sample distribution system can further comprise a transport plane. The transport plane can be adapted to support the sample container carriers.
The laboratory sample distribution system can further comprise a driver. The driver can be adapted to move the sample container carriers in two dimensions on top of the transport plane.
The laboratory sample distribution system can further comprise a control device. The control device can be configured to control the driver such that the sample container carriers move over the transport plane along predetermined transport paths. The control device can be adapted to activate the driver such that the sample container carriers move simultaneously and independently from one another along pre-calculated routes.
The method can comprise the following steps a) moving the sample container carrier to be rotated and/or a (first) rotator element comprising a (first) linear and/or planar surface relative to each other on the transport plane, e.g. along linear paths, such that (until) the sample container carrier abuts (is in contact with) the linear and/or planar surface, and b) linearly and/or translatory, moving the sample container carrier and/or the (first) rotator element relative to each other on the transport plane, such that the (first) linear surface exerts a rotating force on the sample container carrier.
A sample container carrier can e.g. be rotated until a sample container carried by the sample container carrier is oriented such that a barcode placed on the sample container can be read by a barcode reading device.
For performing the method, only the sample container carrier itself and a rotator element may be needed.
According to an embodiment, the sample container carrier can have a circular horizontal cross-section, especially in a plane substantially parallel to the transport plane. This can allow for easy and smooth rotation of the sample container carrier.
According to an embodiment, in step b, the rotator element can move on the transport plane while the sample container carrier can be held in a constant position on the transport plane. In other words, the sample container carrier may not move translatory while being rotated.
According to an embodiment, in step a, a further (second) rotator element comprising a further (second) linear surface ican be moved on the transport plane such that (until) the sample container carrier abuts (is in contact with) the further (second) linear surface. In step b, the further (second) rotator element can be moved relative to the sample container carrier such that the further (second) linear surface can exert a further (second) rotating force on the sample container carrier, the further (second) rotating force amplifying the (first) rotating force.
Using the further (second) rotator element, the sample container carrier can be rotated by not only one, but two rotator elements. This can provide for a smoother operation and for clamping or fixation of the sample container carrier between the two rotator elements. A drifting of the sample container carrier can thus be prevented.
According to an embodiment, the further rotator element can be moved and held substantially parallel to the rotator element. This can lead to a defined exertion of the (first) rotating force and the further (second) rotating force.
According to an embodiment, the further (second) rotator element can be moved such that the further (second) rotating force can have the same magnitude as the (first) rotating force. This can, for example, be achieved by moving the two rotator elements with the same speed.
According to an embodiment, in step b, the sample container carrier can move on the transport plane relative to the rotator element while the rotator element can be held in a constant position on or besides (adjacent to) the transport plane. In this embodiment, the rotator element can be held fixed and does not have to comprise a means for moving it on the transport plane.
It can be noted that it can also be possible to move both the sample container carrier and the rotator element simultaneously in order to exert the rotating force.
According to an embodiment, each linear surface can define a plane which can be substantially perpendicular to the transport plane. This can provide for a good mechanical contact between the linear surface and the sample container carrier.
Alternatively, the linear or planar surface of the rotator element may define a plane or may be a plane, or area, substantially parallel to or lying in the transport plane. The linear or planar surface of the rotator element may be part of the transport plane. The linear or planar surface of the rotator element being part of the transport plane may have a coefficient of friction differing from a coefficient of friction of the remaining transport plane. By moving the sample container carrier partially over the linear or planar surface of the rotator element, the rotating force can be exerted due to the different coefficients of friction.
According to some embodiments, each linear surface can be a knurled, toothed or rubber-coated surface. According to further embodiments, the sample container carrier can have a knurled, toothed or rubber-coated outer surface abutting or being intended to be in contact with the linear surface. By such measures, friction between the linear surface and the sample container carrier can be significantly increased, which can ease operation when rotating the sample container carrier.
According to an embodiment, the sample container carrier can be rotated in step b in a field of view of a barcode reading device until a barcode located on the sample container or on the sample container carriercan be facing towards the barcode reading device. Thus, the barcode can be read easily and reliably by the barcode reading device.
A laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of sample container carriers. The sample container carriers can be adapted to carry one or more sample containers. The sample containers can comprise laboratory samples to be analyzed by laboratory stations.
The laboratory sample distribution system can further comprise a transport plane. The transport plane can be adapted to support the sample container carriers.
The laboratory sample distribution system can further comprise a driver. The driver can be adapted to move the sample container carriers on top of the transport plane.
The laboratory sample distribution system can further comprise a control device (e.g. microprocessor and corresponding software and hardware). The control device can be configured to control the driver such that the sample container carriers can move over the transport plane along predetermined transport paths. The control device can also be configured to activate the driver such that the sample container carriers can move simultaneously and independently from one another along pre-calculated routes.
The laboratory sample distribution system can further comprise at least one rotator element comprising a linear or planar surface. Furthermore, the control device can be configured to perform a method according to the present disclosure.
By the laboratory sample distribution system, a sample container, or a sample container carrier, can be rotated, e.g. such that a barcode or another identification element located on the sample container, or the sample container carrier, can be easily read, for example, by a barcode reading device.
According to an embodiment, each sample container carrier and/or each rotator element can comprise a number (e.g. 1 to 10) of magnetically active devices, e.g. incorporated as permanent magnets. The rotator element may comprise two magnetically active devices. In such an embodiment, the driver may be embodied as electro-magnetic actuators such that a magnetic drive force can be applied to the sample container carriers and/or to the rotator elements.
According to an alternative embodiment, the driver may be embodied as a number of wheels driven by electric motors comprised by each sample container carrier and/or each rotator element and controllable by the control device. This can allow for self-propelled sample container carriers and/or rotator elements which can omit the need for electro-magnetic actuators or other external parts for the driver.
According to an embodiment, the laboratory sample distribution system can comprise a barcode reading device having a field of view. The control device can be configured to perform the disclosed method such that the sample container carrier can be rotated in the field of view. Thus, the sample container carrier can be moved into the field of view of the barcode reading device without taking care of its orientation. Once it is in the field of view, the disclosed method can be performed in order to rotate the sample container carrier such that a barcode can be read by the barcode reading device. As there is no further need for transportation until the barcode will be read, an inadvertent rotation of the sample container carrier that could decrease visibility of the barcode may not take place.
The sample containers can typically be designed as tubes made of glass or transparent plastic and can typically have an opening at an upper end. The sample containers can be used to contain, store and transport samples such as blood samples or chemical samples.
The transport plane can also be denoted as transport surface. The transport plane can support the sample container carriers, what can also be denoted as carrying the sample container carriers.
The electro-magnetic actuators can typically be built as electromagnets, having a solenoid surrounding a ferromagnetic core. These electro-magnetic actuators may be energized in order to provide for a magnetic field that can be used to move or drive the sample container carriers and the rotator element(s). For that purpose, the at least one magnetically active device in each sample container carrier and/or rotator element may be a permanent magnet. Alternatively or additionally, an electromagnet can be used.
The control device can typically be a microprocessor, a microcontroller, a field programmable gate array, a standard computer, or a similar device. In a typical embodiment, the control device can comprise a processor and storage. Program code can be stored in the storage in order to control the behavior of the processor when the program code is executed by the processor.
The sample container carriers can typically be adapted to move in two dimensions on the transport plane. For that purpose, the electro-magnetic actuators may be arranged in two dimensions below the transport plane. The electro-magnetic actuators may be arranged in a grid, or matrix, having rows and columns along which the electro-magnetic actuators can be arranged.
A laboratory automation system is also presented. The laboratory automation system can comprise a number of laboratory stations such as, for example, pre-analytical, analytical and/or post-analytical stations. It can further comprise a laboratory sample distribution system adapted to distribute sample container carriers between the laboratory stations.
The laboratory stations may be arranged adjacent to the laboratory sample distribution system.
Pre-analytical stations may be adapted to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.
Analytical stations may be adapted to use a sample or part of the sample and a reagent to generate a measured signal, the measured signal indicating if and in which concentration, if any, an analyte is existing.
Post-analytical stations may be adapted to perform any kind of post-processing of the samples, sample containers and/or sample container carriers.
The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.
Referring initially to
The first rotator element 200 can comprise a first linear surface 210 and a second linear surface 220. Both linear surfaces 210, 220 can be oriented along a substantially straight line. Furthermore, the linear surfaces 210, 220 can be toothed. The first rotator element 200 can further comprise a first magnetically active device 230 and a second magnetically active device 235. The magnetically active devices 230, 235 can be embodied as permanent magnets. The first and second rotator element 200 and 300 can be identically embodied, i.e. the second rotator element 300 accordingly can comprise a first linear surface 310 and a second linear surface 320. Both linear surfaces 310, 320 can be oriented along a substantially straight line. Furthermore, the linear surfaces 310, 320 can be toothed. The second rotator element 300 can further comprise a first magnetically active device 330 and a second magnetically active device 335. The magnetically active devices 330, 335 can be embodied as permanent magnets.
In
In order to rotate the sample container carrier 140, the first rotator element 200 can be moved along a direction shown by an arrow 240 and the second rotator element 300 can be moved along a direction shown by an arrow 340. This can result in the exertion of respective rotating forces on the sample container carrier 140 leading to a rotation of the sample container carrier 140 as shown by an arrow 149. Thus, the sample container carrier 140 can be easily and reliably rotated by moving the rotator elements 200, 300 appropriately.
The fact that the first linear surfaces 210, 310 can be toothed can lead to increased friction between the rotator elements 200, 300 and the sample container carrier 140, which can simplify rotation.
The respective second linear surfaces 220, 320 may not be used in the shown embodiment. The rotator elements 200, 300 can also have been equipped with only one respective linear surface. However, it can be noted that the provision of two linear surfaces for each rotator element 200, 300 can increase flexibility of operation.
It can be noted that the laboratory stations 20, 30 are only shown exemplarily here, and that typical laboratory automation systems can comprise more than two laboratory stations.
The laboratory sample distribution system 100 can comprise a transport surface 110, on which elements such as a sample container carrier 140 or the rotator elements 200, 300 can be placed and can move.
Below the transport plane 110 a plurality of electro-magnetic actuators 120 can be arranged. Each electro-magnetic actuator 120 can comprise a ferromagnetic core 125. A number of position sensors 130, embodied as Hall sensors, are distributed over the transport plane 110.
The electro-magnetic actuators 120 and the position sensors 130 can all be electrically connected with a control device 150. The control device 150 can be configured to drive the electro-magnetic actuators 120 and to read out information from the position sensors 130.
The sample container carrier 140 can comprise a magnetically active device embodied as a permanent magnet. The permanent magnet is not visible in
The permanent magnet of the sample container carrier 140 can interact with magnetic fields generated by the electro-magnetic actuators 120. Thus, the control device 150 can move the sample container carrier 140 over the transport plane 110 in two dimensions using the electro-magnetic actuators 120.
The magnetic field generated by the permanent magnet of the sample container carrier 140 can also be detected by the position sensors 130. Thus, the control device 150 can monitor the position of the sample container carrier 140.
The sample container carrier 140 can carry a sample container 145. The sample container 145 can be embodied as a conventional laboratory sample tube being able to contain a sample, such as a blood sample.
It can be to be understood that the sample container carrier 140 is only shown exemplarily here, and that a typical laboratory sample distribution system 100 can comprise a plurality of such sample container carriers 140.
On the outer surface of the sample container 145 a barcode 146 can be located. The barcode 146 can give information about the sample contained in the sample container 145. For example, in the case of a medical sample data relating to a patient, a hospital or a suspected disease can be coded by the barcode 146.
In order to read out the barcode 146, the laboratory sample distribution system 100 can comprise a conventional barcode reading device 160 embodied as a camera. The barcode reading device 160 can be connected to the control device 150.
As depicted in
Due to the permanent magnets 230, 235, 330, 335, the control device 150 can move the rotator elements 200, 300 similarly to a sample container carrier 140. Thus, the control device 150 can move the rotator elements 200, 300 according to the concept shown and discussed with respect to
Thus, the sample container carrier 140 can be rotated using the rotator elements 200, 300 until the barcode 146 is visible by the barcode reading device 160. This can allow for easy and reliable readout of the barcode 146.
It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
For the purposes of describing and defining the present disclosure, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
15189847 | Oct 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3273727 | Rogers et al. | Sep 1966 | A |
3653485 | Donlon | Apr 1972 | A |
3901656 | Durkos et al. | Aug 1975 | A |
4150666 | Brush | Apr 1979 | A |
4395164 | Beltrop et al. | Jul 1983 | A |
4544068 | Cohen | Oct 1985 | A |
4771237 | Daley | Sep 1988 | A |
5120506 | Saito et al. | Jun 1992 | A |
5295570 | Grecksch et al. | Mar 1994 | A |
5309049 | Kawada et al. | May 1994 | A |
5523131 | Isaacs et al. | Jun 1996 | A |
5530345 | Murari et al. | Jun 1996 | A |
5636548 | Dunn et al. | Jun 1997 | A |
5641054 | Mori et al. | Jun 1997 | A |
5651941 | Stark et al. | Jul 1997 | A |
5720377 | Lapeus et al. | Feb 1998 | A |
5735387 | Polaniec et al. | Apr 1998 | A |
5788929 | Nesti | Aug 1998 | A |
6045319 | Uchida et al. | Apr 2000 | A |
6062398 | Thalmayr | May 2000 | A |
6141602 | Igarashi et al. | Oct 2000 | A |
6151535 | Ehlers | Nov 2000 | A |
6184596 | Ohzeki | Feb 2001 | B1 |
6191507 | Peltier et al. | Feb 2001 | B1 |
6206176 | Blonigan et al. | Mar 2001 | B1 |
6255614 | Yamakawa et al. | Jul 2001 | B1 |
6260360 | Wheeler | Jul 2001 | B1 |
6279728 | Jung et al. | Aug 2001 | B1 |
6293750 | Cohen et al. | Sep 2001 | B1 |
6429016 | McNeil | Aug 2002 | B1 |
6444171 | Sakazume et al. | Sep 2002 | B1 |
6571934 | Thompson et al. | Jun 2003 | B1 |
7028831 | Veiner | Apr 2006 | B2 |
7078082 | Adams | Jul 2006 | B2 |
7122158 | Itoh | Oct 2006 | B2 |
7278532 | Martin | Oct 2007 | B2 |
7326565 | Yokoi et al. | Feb 2008 | B2 |
7425305 | Itoh | Sep 2008 | B2 |
7428957 | Schaefer | Sep 2008 | B2 |
7578383 | Itoh | Aug 2009 | B2 |
7597187 | Bausenwein et al. | Oct 2009 | B2 |
7850914 | Veiner et al. | Dec 2010 | B2 |
7858033 | Itoh | Dec 2010 | B2 |
7875254 | Garton et al. | Jan 2011 | B2 |
7939484 | Loeffler et al. | May 2011 | B1 |
8240460 | Bleau et al. | Aug 2012 | B1 |
8281888 | Bergmann | Oct 2012 | B2 |
8502422 | Lykkegaard | Aug 2013 | B2 |
8796186 | Shirazi | Aug 2014 | B2 |
9097691 | Onizawa et al. | Aug 2015 | B2 |
9187268 | Denninger et al. | Nov 2015 | B2 |
9211543 | Ohga et al. | Dec 2015 | B2 |
9239335 | Heise et al. | Jan 2016 | B2 |
9423410 | Buehr | Aug 2016 | B2 |
9423411 | Riether | Aug 2016 | B2 |
9810706 | Riether et al. | Nov 2017 | B2 |
20020009391 | Marquiss et al. | Jan 2002 | A1 |
20030089581 | Thompson | May 2003 | A1 |
20030092185 | Qureshi et al. | May 2003 | A1 |
20040050836 | Nesbitt et al. | Mar 2004 | A1 |
20040084531 | Itoh | May 2004 | A1 |
20050061622 | Martin | Mar 2005 | A1 |
20050109580 | Thompson | May 2005 | A1 |
20050194333 | Veiner et al. | Sep 2005 | A1 |
20050196320 | Veiner et al. | Sep 2005 | A1 |
20050226770 | Allen et al. | Oct 2005 | A1 |
20050242963 | Oldham et al. | Nov 2005 | A1 |
20050247790 | Itoh | Nov 2005 | A1 |
20050260101 | Nauck et al. | Nov 2005 | A1 |
20050271555 | Itoh | Dec 2005 | A1 |
20060000296 | Salter | Jan 2006 | A1 |
20060037709 | Itoh | Feb 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060219524 | Kelly | Oct 2006 | A1 |
20070116611 | DeMarco | May 2007 | A1 |
20070210090 | Sixt et al. | Sep 2007 | A1 |
20070248496 | Bondioli et al. | Oct 2007 | A1 |
20070276558 | Kim | Nov 2007 | A1 |
20080012511 | Ono | Jan 2008 | A1 |
20080029368 | Komori | Feb 2008 | A1 |
20080056328 | Rund et al. | Mar 2008 | A1 |
20080131961 | Crees et al. | Jun 2008 | A1 |
20090004732 | LaBarre et al. | Jan 2009 | A1 |
20090022625 | Lee et al. | Jan 2009 | A1 |
20090081771 | Breidford et al. | Mar 2009 | A1 |
20090128139 | Drenth et al. | May 2009 | A1 |
20090142844 | Le Comte | Jun 2009 | A1 |
20090180931 | Silbert et al. | Jul 2009 | A1 |
20090322486 | Gerstel | Dec 2009 | A1 |
20100000250 | Sixt | Jan 2010 | A1 |
20100152895 | Dai | Jun 2010 | A1 |
20100175943 | Bergmann | Jul 2010 | A1 |
20100186618 | King et al. | Jul 2010 | A1 |
20100255529 | Cocola et al. | Oct 2010 | A1 |
20100300831 | Pedrazzini | Dec 2010 | A1 |
20100312379 | Pedrazzini | Dec 2010 | A1 |
20110050213 | Furukawa | Mar 2011 | A1 |
20110124038 | Bishop et al. | May 2011 | A1 |
20110172128 | Davies et al. | Jul 2011 | A1 |
20110186406 | Kraus et al. | Aug 2011 | A1 |
20110287447 | Norderhaug et al. | Nov 2011 | A1 |
20120037696 | Lavi | Feb 2012 | A1 |
20120129673 | Fukugaki et al. | May 2012 | A1 |
20120178170 | Van Praet | Jul 2012 | A1 |
20120211645 | Tullo et al. | Aug 2012 | A1 |
20120275885 | Furrer et al. | Nov 2012 | A1 |
20120282683 | Mototsu | Nov 2012 | A1 |
20120295358 | Ariff et al. | Nov 2012 | A1 |
20120310401 | Shah | Dec 2012 | A1 |
20130034410 | Heise et al. | Feb 2013 | A1 |
20130126302 | Johns et al. | May 2013 | A1 |
20130153677 | Leen et al. | Jun 2013 | A1 |
20130180824 | Kleinikkink et al. | Jul 2013 | A1 |
20130263622 | Mullen et al. | Oct 2013 | A1 |
20130322992 | Pedrazzini | Dec 2013 | A1 |
20140170023 | Saito et al. | Jun 2014 | A1 |
20140234065 | Heise et al. | Aug 2014 | A1 |
20140234949 | Wasson et al. | Aug 2014 | A1 |
20140234978 | Heise et al. | Aug 2014 | A1 |
20150014125 | Hecht | Jan 2015 | A1 |
20150241457 | Miller | Aug 2015 | A1 |
20150273468 | Croquette et al. | Oct 2015 | A1 |
20150273691 | Pollack | Oct 2015 | A1 |
20150276775 | Mellars et al. | Oct 2015 | A1 |
20150276776 | Riether | Oct 2015 | A1 |
20150276777 | Riether et al. | Oct 2015 | A1 |
20150276781 | Riether et al. | Oct 2015 | A1 |
20150276782 | Riether | Oct 2015 | A1 |
20150360876 | Sinz | Dec 2015 | A1 |
20150360878 | Denninger et al. | Dec 2015 | A1 |
20160003859 | Wenczel et al. | Jan 2016 | A1 |
20160025756 | Pollack et al. | Jan 2016 | A1 |
20160054341 | Edelmann | Feb 2016 | A1 |
20160054344 | Heise et al. | Feb 2016 | A1 |
20160069715 | Sinz | Mar 2016 | A1 |
20160077120 | Riether | Mar 2016 | A1 |
20160097786 | Malinowski et al. | Apr 2016 | A1 |
20160229565 | Margner | Aug 2016 | A1 |
20160274137 | Baer | Sep 2016 | A1 |
20160282378 | Malinowski et al. | Sep 2016 | A1 |
20160341750 | Sinz et al. | Nov 2016 | A1 |
20160341751 | Huber et al. | Nov 2016 | A1 |
20170059599 | Riether | Mar 2017 | A1 |
20170096307 | Mahmudimanesh et al. | Apr 2017 | A1 |
20170097372 | Heise et al. | Apr 2017 | A1 |
20170101277 | Malinowski | Apr 2017 | A1 |
20170131307 | Pedain | May 2017 | A1 |
20170131309 | Pedain | May 2017 | A1 |
20170131310 | Volz et al. | May 2017 | A1 |
20170138971 | Heise et al. | May 2017 | A1 |
20170160299 | Schneider et al. | Jun 2017 | A1 |
20170168079 | Sinz | Jun 2017 | A1 |
20170174448 | Sinz | Jun 2017 | A1 |
20170184622 | Sinz et al. | Jun 2017 | A1 |
20170248623 | Kaeppeli et al. | Aug 2017 | A1 |
20170248624 | Kaeppeli et al. | Aug 2017 | A1 |
20170363608 | Sinz | Dec 2017 | A1 |
20180067141 | Mahmudimanesh et al. | Mar 2018 | A1 |
20180074087 | Heise et al. | Mar 2018 | A1 |
20180106821 | Vollenweider et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
201045617 | Apr 2008 | CN |
102109530 | Jun 2011 | CN |
3909786 | Sep 1990 | DE |
102012000665 | Aug 2012 | DE |
102011090044 | Jul 2013 | DE |
0601213 | Oct 1992 | EP |
0775650 | May 1997 | EP |
0916406 | May 1999 | EP |
1122194 | Aug 2001 | EP |
1524525 | Apr 2005 | EP |
2119643 | Nov 2009 | EP |
2148117 | Jan 2010 | EP |
2327646 | Jun 2011 | EP |
2447701 | May 2012 | EP |
2500871 | Sep 2012 | EP |
2502675 | Feb 2014 | EP |
2887071 | Jun 2015 | EP |
2165515 | Apr 1986 | GB |
S56-147209 | Nov 1981 | JP |
60-223481 | Nov 1985 | JP |
61-081323 | Apr 1986 | JP |
S61-069604 | Apr 1986 | JP |
S61-094925 | May 1986 | JP |
S61-174031 | Aug 1986 | JP |
S61-217434 | Sep 1986 | JP |
S62-100161 | May 1987 | JP |
S63-31918 | Feb 1988 | JP |
S63-48169 | Feb 1988 | JP |
S63-82433 | May 1988 | JP |
S63-290101 | Nov 1988 | JP |
1148966 | Jun 1989 | JP |
H01-266860 | Oct 1989 | JP |
H02-87903 | Mar 1990 | JP |
03-112393 | May 1991 | JP |
03-192013 | Aug 1991 | JP |
H03-38704 | Aug 1991 | JP |
H04-127063 | Apr 1992 | JP |
H05-69350 | Mar 1993 | JP |
H05-142232 | Jun 1993 | JP |
H05-180847 | Jul 1993 | JP |
06-26808 | Feb 1994 | JP |
H06-148198 | May 1994 | JP |
06-156730 | Jun 1994 | JP |
06-211306 | Aug 1994 | JP |
07-228345 | Aug 1995 | JP |
07-236838 | Sep 1995 | JP |
H07-301637 | Nov 1995 | JP |
H09-17848 | Jan 1997 | JP |
H11-083865 | Mar 1999 | JP |
H11-264828 | Sep 1999 | JP |
H11-304812 | Nov 1999 | JP |
H11-326336 | Nov 1999 | JP |
2000-105243 | Apr 2000 | JP |
2000-105246 | Apr 2000 | JP |
2001-124786 | May 2001 | JP |
2001-240245 | Sep 2001 | JP |
2005-001055 | Jan 2005 | JP |
2005-249740 | Sep 2005 | JP |
2006-106008 | Apr 2006 | JP |
2007-309675 | Nov 2007 | JP |
2007-314262 | Dec 2007 | JP |
2007-322289 | Dec 2007 | JP |
2009-036643 | Feb 2009 | JP |
2009-062188 | Mar 2009 | JP |
2009-145188 | Jul 2009 | JP |
2009-300402 | Dec 2009 | JP |
2010-243310 | Oct 2010 | JP |
2013-172009 | Feb 2013 | JP |
2013-190400 | Sep 2013 | JP |
685591 | Sep 1979 | SU |
1996036437 | Nov 1996 | WO |
2003042048 | May 2003 | WO |
2007024540 | Mar 2007 | WO |
2008133708 | Nov 2008 | WO |
2009002358 | Dec 2008 | WO |
2010042722 | Apr 2010 | WO |
2012170636 | Jul 2010 | WO |
20100087303 | Aug 2010 | WO |
2010129715 | Nov 2010 | WO |
2011138448 | Nov 2011 | WO |
2012158520 | Nov 2012 | WO |
2012158541 | Nov 2012 | WO |
2013152089 | Oct 2013 | WO |
2013169778 | Nov 2013 | WO |
2013177163 | Nov 2013 | WO |
2014059134 | Apr 2014 | WO |
2014071214 | May 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170108522 A1 | Apr 2017 | US |