1. Field of the Invention
The invention relates to a method of sanitizing a fabric load with steam in a fabric treatment appliance.
2. Description of the Related Art
Some fabric treatment appliances, such as a washing machine, a clothes dryer, and a fabric refreshing or revitalizing machine, utilize steam generators for various reasons. The steam from the steam generator can be used to, for example, heat water, heat a load of fabric items and any water absorbed by the fabric items, dewrinkle fabric items, remove odors from fabric items, etc. The steam can also be employed for imparting heat to the fabric load to sanitize the fabric items whereby all or a portion of microorganisms, such as bacteria, fungi, and viruses, present on the fabric items are killed, removed, or otherwise rendered innocuous. However, sanitizing the fabric items with steam heat requires raising the temperature of the fabric items to a relatively high temperature, which can require a relatively large amount of energy. Therefore, it is desirable to sanitize fabric items with steam while consuming less energy.
The invention relates to a method of operating a fabric treatment appliance according to one embodiment of the invention comprising at least one of a tub and drum configured to hold a fabric load comprises heating the fabric load and, after heating the fabric load, sanitizing the fabric load by heating the fabric load with steam in such a way to reduce the energy consumed as compared to prior methods or systems.
As such, the sanitizing of the fabric load can occur immediately after the initial heating of the fabric load.
The sanitizing of the fabric load can comprise increasing a temperature of the fabric load to a predetermined temperature. The predetermined temperature is about 70° C. The sanitizing of the fabric load can further comprise maintaining the fabric load temperature at the predetermined temperature for a predetermined time. The predetermined time can be about 10 minutes.
The sanitizing of the fabric load can comprise heating the fabric load for a predetermined time. The predetermined time can be about 30 minutes.
The sanitizing of the fabric load can comprise rotating the at least one of the tub and drum. The rotating of the at least one of the tub and drum can occur during an introduction of steam into the at least one of the tub and drum. The rotating the at least one of the tub and drum can comprise tumbling the fabric load. The tumbling of the fabric load can comprise tumbling the fabric load in alternating directions.
The sanitizing of the fabric load can comprise subjecting the fabric load to a sanitizing agent.
The initial heating of the fabric load can comprise subjecting the fabric load to heated liquid. The method can further comprise extracting the heated liquid from the fabric load prior to sanitizing the fabric load.
In one embodiment, the heated liquid comprises water and detergent. The method can further comprise rinsing the fabric load with rinse liquid after the sanitizing of the fabric load. The method can further comprise extracting the rinse liquid from the fabric load.
In another embodiment, the heated liquid comprises rinse water.
The heated liquid can have a temperature within a range of about 25° C. to about 60° C. In one embodiment, the heated liquid temperature can be about 40° C.
The initial heating of the fabric load can comprise heating the fabric load to a first temperature above ambient temperature. The sanitizing of the fabric load can comprises heating the fabric load to a sanitization temperature greater than the first temperature. The sanitizing of the fabric load can further comprise maintaining the sanitization temperature for a predetermined time.
In the drawings:
Referring now to the figures,
The washing machine 10 of the illustrated embodiment comprises a cabinet 12 that houses a stationary tub 14. A rotatable drum 16 mounted within the tub 14 defines a fabric treatment chamber and includes a plurality of perforations 18, and liquid can flow between the tub 14 and the drum 16 through the perforations 18. The drum 16 further comprises a plurality of baffles 20 disposed on an inner surface of the drum 16 to lift fabric items contained in the drum 16 while the drum 16 rotates, as is well known in the washing machine art. A motor 22 coupled to the drum 16 through a belt 24 rotates the drum 16. Both the tub 14 and the drum 16 can be selectively closed by a door 26.
Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine comprising a rotatable drum, perforate or imperforate, that holds fabric items and a fabric moving element, such as an agitator, impeller, nutator, and the like, that induces movement of the fabric items to impart mechanical energy to the fabric articles for cleaning action. In some vertical axis washing machines, the drum rotates about a vertical axis generally perpendicular to a surface that supports the washing machine. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis. As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum, perforated or imperforate, that holds fabric items and washes the fabric items by the fabric items rubbing against one another as the drum rotates. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action that imparts the mechanical energy to the fabric articles. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined relative to the horizontal axis. Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles. In vertical axis machines a clothes mover, such as an agitator, auger, impeller, to name a few, moves within a wash basket to impart mechanical energy directly to the clothes or indirectly through wash liquid in the wash basket. The clothes mover is typically moved in a reciprocating rotational movement. The illustrated exemplary washing machine of
The motor 22 can rotate the drum 16 at various speeds in opposite rotational directions. In particular, the motor 22 can rotate the drum 16 at tumbling speeds wherein the fabric items in the drum 16 rotate with the drum 16 from a lowest location of the drum 16 towards a highest location of the drum 16, but fall back to the lowest location of the drum 16 before reaching the highest location of the drum 16. The rotation of the fabric items with the drum 16 can be facilitated by the baffles 20. Typically, the force applied to the fabric items at the tumbling speeds is less than about 1 G. Alternatively, the motor 22 can rotate the drum 16 at spin speeds wherein the fabric items rotate with the drum 16 without falling. In the washing machine art, the spin speeds can also be referred to as satellizing speeds or sticking speeds. Typically, the force applied to the fabric items at the spin speeds is greater than or about equal to 1 G. As used herein, “tumbling” of the drum 16 refers to rotating the drum at a tumble speed, “spinning” the drum 16 refers to rotating the drum 16 at a spin speed, and “rotating” of the drum 16 refers to rotating the drum 16 at any speed.
The washing machine 10 of
The exemplary washing machine 10 further includes a steam generation system. The steam generation system comprises a steam generator 60 that receives liquid from the water supply 28 through a second supply conduit 62. The inlet valve 34 controls flow of the liquid from the water supply 28 and through the second supply conduit 62 to the steam generator 60. The inlet valve 34 can be positioned in any suitable location between the water supply 28 and the steam generator 60. A steam conduit 66 fluidly couples the steam generator 60 to a steam inlet 68, which introduces steam into the tub 14. The steam inlet 68 can couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a rear wall of the tub 14 in
The washing machine 10 can further include an exhaust conduit that directs steam that leaves the tub 14 externally of the washing machine 10. The exhaust conduit can be configured to exhaust the steam directly to the exterior of the washing machine 10. Alternatively, the exhaust conduit can be configured to direct the steam through a condenser prior to leaving the washing machine 10. Examples of exhaust systems are disclosed in the following patent applications, which are incorporated herein by reference in their entirety: Ser. No. 11/464,506, titled “Fabric Treating Appliance Utilizing Steam,” Ser. No. 11/464,501, titled “A Steam Fabric Treatment Appliance with Exhaust,” Ser. No. 11/464,521, titled “Steam Fabric Treatment Appliance with Anti-Siphoning,” and Ser. No. 11/464,520, titled “Determining Fabric Temperature in a Fabric Treating Appliance,” all filed concurrently herewith.
The steam generator 60 can be any type of device that converts the liquid to steam. For example, the steam generator 60 can be a tank-type steam generator that stores a volume of liquid and heats the volume of liquid to convert the liquid to steam. Alternatively, the steam generator 60 can be an in-line steam generator that converts the liquid to steam as the liquid flows through the steam generator 60. As another alternative, the steam generator 60 can comprise a heating element located in the sump 38 to heat liquid in the sump 38. The steam generator 60 can produce pressurized or non-pressurized steam.
Exemplary steam generators are disclosed in our Ser. No. 11/450,528, titled “Removal of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” Ser. No. 11/450,836, titled “Prevention of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” and Ser. No. 11/450,714, titled “Draining Liquid From a Steam Generator of a Fabric Treatment Appliance,” all filed Jun. 9, 2006, in addition to Ser. No. 11/464,509, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance,” Ser. No. 11/464,514, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Weight Sensor,” and Ser. No. 11/464,513, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Temperature Sensor,” all filed concurrently herewith, which are incorporated herein by reference in their entirety.
In addition to producing steam, the steam generator 60, whether an in-line steam generator, a tank-type steam generator, or any other type of steam generator, can heat water to a temperature below a steam transformation temperature, whereby the steam generator 60 produces hot water. The hot water can be delivered to the tub 14 and/or drum 16 from the steam generator 60. The hot water can be used alone or can optionally mix with cold water in the tub 14 and/or drum 16. Using the steam generator to produce hot water can be useful when the steam generator 60 couples only with a cold water source of the water supply 28.
The liquid supply and recirculation system and the steam generator system can differ from the configuration shown in
Other alternatives for the liquid supply and recirculation system are disclosed in Ser. No. 11/450,636, titled “Method of Operating a Washing Machine Using Steam;” Ser. No. 11/450,529, titled “Steam Washing Machine Operation Method Having Dual Speed Spin Pre-Wash;” and Ser. No. 11/450,620, titled “Steam Washing Machine Operation Method Having Dry Spin Pre-Wash,” all filed Jun. 9, 2006, which are incorporated herein by reference in their entirety.
The washing machine 10 can further comprise a controller coupled to various working components of the washing machine 10, such as the pump 44, the motor 22, the inlet valve 34, the detergent dispenser 32, and the steam generator 60, to control the operation of the washing machine 10. The controller can receive data from the working components and can provide commands, which can be based on the received data, to the working components to execute a desired operation of the washing machine 10.
The washing machine of
A method of operating the washing machine 10 according to the invention comprises sanitizing a load of fabric items in the fabric treatment chamber, which, as described above, is defined by the drum 16 but can also or alternatively be defined by the tub 14 (e.g., if the washing machine 10 does not include the drum 16). As used herein, “sanitizing” refers to killing, removing, or otherwise rendering innocuous all or a portion of unsanitary microorganisms, such as bacteria, fungi, and viruses, present on the fabric items. The sanitizing process involves heating the fabric items, such as with steam from the steam generator 60, to increase a temperature of the fabric items to a sanitization temperature sufficiently high to sanitize the fabric items. The sanitization temperature can be an empirically determined temperature or can be a temperature set by a sanitization standard. An exemplary range for the sanitization temperature is from about 65° C. to about 70° C. Within this range, it has been determined that an exemplary suitable sanitization temperature is about 70° C.
According to one embodiment of the invention, the sanitization process occurs after the fabric items have been heated to a temperature less than the sanitization temperature as another step in the wash cycle. By conducting the sanitization process after a heating step in the wash cycle, less energy is consumed in the sanitization process because the temperature of the fabric items is already partially raised from the heating step. For example, heating the fabric items from a temperature above ambient temperature to the sanitization temperature requires less energy than heating the same fabric items from ambient temperature to the sanitization temperature.
The heating of the fabric items prior to the sanitization process can occur in any suitable manner, such as by subjecting the fabric items to heated liquid. The heated liquid can be, for example, the liquid associated with a conventional step in a wash process, such as a wash step, where the heated liquid typically comprises water and a wash aid (e.g., detergent), or a rinse step, where the heated liquid typically comprises water. The temperature of the heated liquid is above ambient temperature, and an exemplary range for the temperature of the heated liquid is from about 25° C. to about 60° C. Within this range, an exemplary suitable temperature for the heated liquid is about 40° C. Because the temperature of the heated liquid is above ambient temperature, the heated liquid raises the temperature of the fabric items above ambient temperature.
Exemplary embodiments of the method of operating a washing machine with steam and involving sanitizing the fabric load are illustrated in
As an example, the wash step 102 can include submerging at least a portion of the drum 16 in a liquid comprising water and a wash aid, such as detergent, and rotating the drum 16 through the liquid to wash the fabric items. Alternatively, the wash step 102 can include spraying a liquid, such as the liquid comprising water and the wash aid, onto the fabric load while the drum 16 rotates. For a vertical axis washing machine, the wash step 102 can involve movement of the fabric moving element. Regardless of the type of wash step 102, the wash step 102 in the embodiment shown in
With continued reference to
The exemplary sanitization step 104 initiates with rotating the drum in step 110. According to one embodiment, the rotating of the drum corresponds to rotating the drum at a tumbling speed so that the fabric load tumbles in the drum 16. The drum 16 can rotate in alternating directions or in a single direction. Either after or when the drum 16 begins to rotate, steam is introduced into the tub 14 and/or the drum 16, such as by the steam generator 60, in step 112. The introduction of steam in the step 112 continues until the fabric load reaches a predetermined temperature, which corresponds to the sanitization temperature and can comprise continuously or intermittently introducing the steam. The temperature of the fabric load can be determined in any suitable manner, and an exemplary method of determining the fabric load temperature is described in the above-incorporated patent applications having Ser. No. 11/464,506, entitled Fabric Treating Appliance Utilizing Steam, Ser. No. 11/464,501 entitled A Steam Fabric Treatment Appliance With Exhaust, Ser. No. 464,521 entitled Fabric Treatment Appliance With Anti-Siphoning, and Ser. No 11/464,520 entitled Determining Fabric Temperature In A Fabric Treating Appliance all filed concurrently herewith.
Once the fabric load reaches the predetermined temperature, the temperature of the fabric load is maintained in step 114 for a predetermined time. The temperature can be maintained by continuously or intermittently introducing steam. Alternatively, the maintaining of the temperature can occur without any additional introduction of steam. The predetermined time can be an empirically determined time and is preferably sufficiently long to accomplish a desired sanitization level of the fabric load. The predetermined time can depend on several factors, including fabric type and load size. An exemplary range of suitable predetermined time is from about 5 minutes to about 15 minutes, and within this range, an exemplary suitable predetermined time has been determined to be about 10 minutes.
The drum 16 can continue to rotate during the step 114 of maintaining the predetermining temperature. The rotation of the drum 16 can be continuous, intermittent, in alternating directions, and/or in a single direction. After the predetermined time for maintaining the predetermined temperature expires, the drum rotation can cease immediately or after a period of time in step 116.
Referring back to
Following the rinse step 106, the method 100 continues with the extraction step 108. During the extraction step 108, the drum 16 rotates at a spinning speed to extract excess rinse liquid from the fabric load. The spinning of the drum 16 can occur in any suitable manner, such as according to a spin profile that can include speed ramps and speed plateaus.
As stated above, the sanitization step 104 can be any suitable process that accomplishes sanitization of the fabric items with steam, and an alternative to the exemplary sanitization step 104 of
The exemplary alternative sanitization step 104A initiates with rotating the drum in step 110A, such as at a tumbling speed in one direction or alternating directions. Either after or when the drum 16 begins to rotate, steam is introduced into the tub 14 and/or the drum 16, such as by the steam generator 60, in step 118. The introduction of steam in the step 118 continues for a predetermined time and can comprise continuously or intermittently introducing the steam. The predetermined time can be an empirically determined time and is preferably sufficiently long to accomplish a desired sanitization level of the fabric load. The predetermined time, therefore, inherently includes the fabric items reaching the sanitization temperature and can depend on several factors, including fabric type and load size. An exemplary range of suitable predetermined time is from about 5 minutes to about 15 minutes, and within this range, an exemplary suitable predetermined time has been determined to be about 10 minutes.
The drum 16 can continue to rotate during the step 118 of introducing the steam. The rotation of the drum 16 can be continuous, intermittent, in alternating directions, and/or in a single direction. After the predetermined time for introducing the steam expires, the drum rotation can cease immediately or after a period of time in step 116A.
Alternative examples of the method 100 shown in
Referring particularly to
Referring now to
By performing the sanitization step 104C at the end of the method 100C, the fabric load is heated when the user removes the fabric load from the washing machine 10, thereby providing the user a warm feel at the end of the wash cycle. Alternatively, the warm feel can be provided by simply heating the fabric load with steam at the end of the wash cycle, such as during the extraction step or after the extraction step. When the steam is introduced after the extraction step, the drum 16 can rotate, such as at a tumbling speed, while during the steam introduction.
The exemplary embodiments of the method 100, 100B, 100C have been described as including the wash step 102, 102B, 102C, the rinse step 106, 106B, 106C, and the extraction step 108, 108B, 108C. However, it is within the scope of the invention for the methods 100, 100B, 100C to include only one or a subset of the wash, rinse, and extraction steps. Furthermore, it is contemplated that other steps, such as a pre-wash step, can be included in the methods 100, 100B, 100C. The sanitization step 104, 104A can also be executed as a stand-alone step rather than in the context of a wash cycle. When used as a stand-alone step, the sanitization step 104, 104A can be conducted following input of a user command to begin the sanitization step 104, 104A.
In addition to sanitizing the fabric items with heat, the sanitization step 104, 104A can include introducing a sanitizing agent or chemical into the tub 14 and/or drum 16 to facilitate the sanitization process. The sanitizing agent can be any suitable agent, and examples of the sanitizing agent include, but are not limited to, chlorine, chloramines, chlorine dioxide, alcohols, hydrogen peroxide, ozone, phenol and other phenolics, quaternary ammonium salts, and hypochlorites (e.g., sodium hypochlorite).
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
Number | Name | Date | Kind |
---|---|---|---|
369609 | Montanye | Sep 1887 | A |
382289 | Ballard | May 1888 | A |
480037 | Rowe et al. | Aug 1892 | A |
647112 | Pearson | Apr 1900 | A |
956458 | Walter | Apr 1910 | A |
1089334 | Dickerson | Mar 1914 | A |
1616372 | Janson | Feb 1927 | A |
1676763 | Anetsberger et al. | Jul 1928 | A |
1852179 | McDonald | Apr 1932 | A |
2314332 | Ferris | Mar 1943 | A |
2434476 | Wales | Jan 1948 | A |
2778212 | Dayton et al. | Jan 1957 | A |
2800010 | Dunn | Jul 1957 | A |
2845786 | Chrisman | Aug 1958 | A |
2881609 | Brucken | Apr 1959 | A |
2937516 | Czaika | May 1960 | A |
2966052 | Syles | Dec 1960 | A |
3035145 | Rudolph | May 1962 | A |
3060713 | Burkall | Oct 1962 | A |
3223108 | Martz, Jr. | Dec 1965 | A |
3234571 | Buss | Feb 1966 | A |
3347066 | Klausner | Oct 1967 | A |
3498091 | Mason | Mar 1970 | A |
3550170 | Davis | Dec 1970 | A |
3697727 | Neuman et al. | Oct 1972 | A |
3707855 | Buckley | Jan 1973 | A |
3712089 | Toth | Jan 1973 | A |
3801077 | Pearson | Apr 1974 | A |
3830241 | Dye et al. | Aug 1974 | A |
3869815 | Bullock | Mar 1975 | A |
3890987 | Marcussen et al. | Jun 1975 | A |
3935719 | Henderson | Feb 1976 | A |
4020396 | Gambale et al. | Apr 1977 | A |
4034583 | Miessler | Jul 1977 | A |
4045174 | Fuhring et al. | Aug 1977 | A |
4108000 | Norris | Aug 1978 | A |
4177928 | Bergkvist | Dec 1979 | A |
4207683 | Horton | Jun 1980 | A |
4214148 | Fleischauer | Jul 1980 | A |
4263258 | Kalasek | Apr 1981 | A |
4332047 | Kuttelwesch | Jun 1982 | A |
4373430 | Allen | Feb 1983 | A |
4386509 | Kuttelwesch | Jun 1983 | A |
4432111 | Hoffmann et al. | Feb 1984 | A |
4489574 | Spendel | Dec 1984 | A |
4496473 | Sanderson | Jan 1985 | A |
4527343 | Danneberg | Jul 1985 | A |
4646630 | McCoy et al. | Mar 1987 | A |
4761305 | Ochiai | Aug 1988 | A |
4777682 | Dreher et al. | Oct 1988 | A |
4784666 | Brenner et al. | Nov 1988 | A |
4809597 | Lin | Mar 1989 | A |
4879887 | Kagi et al. | Nov 1989 | A |
4920668 | Henneberger et al. | May 1990 | A |
4987627 | Cur et al. | Jan 1991 | A |
4991545 | Rabe et al. | Feb 1991 | A |
5032186 | Childers et al. | Jul 1991 | A |
5050259 | Tsubaki et al. | Sep 1991 | A |
5052344 | Kosugi et al. | Oct 1991 | A |
5058194 | Violi | Oct 1991 | A |
5063609 | Lorimer | Nov 1991 | A |
5107606 | Tsubaki et al. | Apr 1992 | A |
5146693 | Dottor et al. | Sep 1992 | A |
5152252 | Bolton et al. | Oct 1992 | A |
5154197 | Auld et al. | Oct 1992 | A |
5172654 | Christiansen | Dec 1992 | A |
5172888 | Ezekoye | Dec 1992 | A |
5199455 | Dlouhy | Apr 1993 | A |
5212969 | Tsubaki et al. | May 1993 | A |
5219370 | Farrington et al. | Jun 1993 | A |
5219371 | Shim et al. | Jun 1993 | A |
5279676 | Oslin et al. | Jan 1994 | A |
5291758 | Lee | Mar 1994 | A |
5293761 | Jang | Mar 1994 | A |
5315727 | Lee | May 1994 | A |
5345637 | Pastryk et al. | Sep 1994 | A |
5570626 | Vos | Nov 1996 | A |
5619983 | Smith | Apr 1997 | A |
5727402 | Wada | Mar 1998 | A |
5732664 | Badeaux, Jr. | Mar 1998 | A |
5743034 | Debourg et al. | Apr 1998 | A |
5758377 | Cimetta et al. | Jun 1998 | A |
5768730 | Matsumoto et al. | Jun 1998 | A |
5815637 | Allen et al. | Sep 1998 | A |
6029300 | Kawaguchi et al. | Feb 2000 | A |
6067403 | Morgandi | May 2000 | A |
6094523 | Zelina et al. | Jul 2000 | A |
6122849 | Kida et al. | Sep 2000 | A |
6161306 | Clodic | Dec 2000 | A |
6178671 | Zwanenburg et al. | Jan 2001 | B1 |
6295691 | Chen | Oct 2001 | B1 |
6327730 | Corbett | Dec 2001 | B1 |
6434857 | Anderson et al. | Aug 2002 | B1 |
6451066 | Estes et al. | Sep 2002 | B2 |
6460381 | Yoshida et al. | Oct 2002 | B1 |
6585781 | Roseen | Jul 2003 | B1 |
6622529 | Crane | Sep 2003 | B1 |
6647931 | Morgandi et al. | Nov 2003 | B1 |
6691536 | Severns et al. | Feb 2004 | B2 |
6772751 | Deuringer et al. | Aug 2004 | B2 |
6789404 | Kim et al. | Sep 2004 | B2 |
6823878 | Gadini | Nov 2004 | B1 |
6874191 | Kim et al. | Apr 2005 | B2 |
6889399 | Steiner et al. | May 2005 | B2 |
7021087 | France et al. | Apr 2006 | B2 |
7096828 | Tippmann | Aug 2006 | B2 |
7290412 | Yang et al. | Nov 2007 | B2 |
7325330 | Kim et al. | Feb 2008 | B2 |
7404304 | Yang et al. | Jul 2008 | B2 |
7421752 | Donadon et al. | Sep 2008 | B2 |
7490491 | Yang et al. | Feb 2009 | B2 |
7490493 | Kim et al. | Feb 2009 | B2 |
7520146 | Kim et al. | Apr 2009 | B2 |
7600402 | Shin et al. | Oct 2009 | B2 |
7765628 | Wong et al. | Aug 2010 | B2 |
20010032599 | Fisher et al. | Oct 2001 | A1 |
20030215226 | Nomura et al. | Nov 2003 | A1 |
20030226999 | Hage | Dec 2003 | A1 |
20040163184 | Waldron et al. | Aug 2004 | A1 |
20040187527 | Kim et al. | Sep 2004 | A1 |
20040187529 | Kim et al. | Sep 2004 | A1 |
20040200093 | Wunderlin et al. | Oct 2004 | A1 |
20040206480 | Maydanik et al. | Oct 2004 | A1 |
20040221474 | Slutsky et al. | Nov 2004 | A1 |
20040237603 | Kim et al. | Dec 2004 | A1 |
20040244432 | Kim et al. | Dec 2004 | A1 |
20040244438 | North | Dec 2004 | A1 |
20040255391 | Kim et al. | Dec 2004 | A1 |
20050000031 | Price et al. | Jan 2005 | A1 |
20050028297 | Kim et al. | Feb 2005 | A1 |
20050034248 | Oh et al. | Feb 2005 | A1 |
20050034249 | Oh et al. | Feb 2005 | A1 |
20050034250 | Oh et al. | Feb 2005 | A1 |
20050034487 | Oh et al. | Feb 2005 | A1 |
20050034488 | Oh et al. | Feb 2005 | A1 |
20050034489 | Oh et al. | Feb 2005 | A1 |
20050034490 | Oh et al. | Feb 2005 | A1 |
20050050644 | Severns et al. | Mar 2005 | A1 |
20050072382 | Tippmann, Sr. | Apr 2005 | A1 |
20050072383 | Powell et al. | Apr 2005 | A1 |
20050092035 | Shin et al. | May 2005 | A1 |
20050132503 | Yang et al. | Jun 2005 | A1 |
20050132504 | Yang et al. | Jun 2005 | A1 |
20050132756 | Yang et al. | Jun 2005 | A1 |
20050144734 | Yang et al. | Jul 2005 | A1 |
20050144735 | Yang et al. | Jul 2005 | A1 |
20050144737 | Roepke et al. | Jul 2005 | A1 |
20050205482 | Gladney | Sep 2005 | A1 |
20050220672 | Takahashi et al. | Oct 2005 | A1 |
20050223503 | Hong et al. | Oct 2005 | A1 |
20050223504 | Lee et al. | Oct 2005 | A1 |
20050252250 | Oh et al. | Nov 2005 | A1 |
20050262644 | Oak et al. | Dec 2005 | A1 |
20060000242 | Yang et al. | Jan 2006 | A1 |
20060001612 | Kim | Jan 2006 | A1 |
20060005581 | Banba | Jan 2006 | A1 |
20060010613 | Jeon et al. | Jan 2006 | A1 |
20060010727 | Fung | Jan 2006 | A1 |
20060010937 | Kim et al. | Jan 2006 | A1 |
20060016020 | Park | Jan 2006 | A1 |
20060090524 | Jeon et al. | May 2006 | A1 |
20060096333 | Park et al. | May 2006 | A1 |
20060101586 | Park et al. | May 2006 | A1 |
20060101588 | Park et al. | May 2006 | A1 |
20060101867 | Kleker | May 2006 | A1 |
20060107468 | Urbanet et al. | May 2006 | A1 |
20060112585 | Choi et al. | Jun 2006 | A1 |
20060117596 | Kim et al. | Jun 2006 | A1 |
20060130354 | Choi et al. | Jun 2006 | A1 |
20060137105 | Hong et al. | Jun 2006 | A1 |
20060137107 | Lee et al. | Jun 2006 | A1 |
20060150689 | Kim et al. | Jul 2006 | A1 |
20060151005 | Kim et al. | Jul 2006 | A1 |
20060151009 | Kim et al. | Jul 2006 | A1 |
20060191077 | Oh et al. | Aug 2006 | A1 |
20060191078 | Kim et al. | Aug 2006 | A1 |
20060277690 | Pyo et al. | Dec 2006 | A1 |
20070006484 | Moschuetz et al. | Jan 2007 | A1 |
20070028398 | Kwon et al. | Feb 2007 | A1 |
20070084000 | Bernardino et al. | Apr 2007 | A1 |
20070101773 | Park et al. | May 2007 | A1 |
20070107472 | Kim et al. | May 2007 | A1 |
20070107884 | Sirkar et al. | May 2007 | A1 |
20070125133 | Oh et al. | Jun 2007 | A1 |
20070130697 | Oh et al. | Jun 2007 | A1 |
20070136956 | Kim et al. | Jun 2007 | A1 |
20070137262 | Kim et al. | Jun 2007 | A1 |
20070169279 | Park et al. | Jul 2007 | A1 |
20070169280 | Kim et al. | Jul 2007 | A1 |
20070169282 | Kim | Jul 2007 | A1 |
20070169521 | Kim et al. | Jul 2007 | A1 |
20070180628 | Ahn | Aug 2007 | A1 |
20070186591 | Kim et al. | Aug 2007 | A1 |
20070186592 | Kim et al. | Aug 2007 | A1 |
20070186593 | Ahn | Aug 2007 | A1 |
20070199353 | Woo et al. | Aug 2007 | A1 |
20070240458 | Kim et al. | Oct 2007 | A1 |
20070283505 | Wong et al. | Dec 2007 | A1 |
20070283508 | Wong et al. | Dec 2007 | A1 |
20070283509 | Wong et al. | Dec 2007 | A1 |
20070283728 | Wong et al. | Dec 2007 | A1 |
20080006063 | Ahn et al. | Jan 2008 | A1 |
20080019864 | Savage et al. | Jan 2008 | A1 |
20080028801 | Czyzewski et al. | Feb 2008 | A1 |
20080115740 | You | May 2008 | A1 |
20090056034 | Herkle et al. | Mar 2009 | A1 |
20090056036 | Herkle et al. | Mar 2009 | A1 |
20090056762 | Pinkowski et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1330526 | Jul 1994 | CA |
1664222 | Sep 2005 | CN |
1962988 | May 2007 | CN |
1962998 | May 2007 | CN |
1965123 | May 2007 | CN |
101003939 | Jul 2007 | CN |
101008148 | Aug 2007 | CN |
101024915 | Aug 2007 | CN |
12203 | Feb 1881 | DE |
42920 | Apr 1888 | DE |
69929 | Aug 1893 | DE |
132104 | Jul 1902 | DE |
176355 | Oct 1906 | DE |
243328 | Feb 1912 | DE |
283533 | Apr 1915 | DE |
317887 | Jan 1920 | DE |
427025 | Mar 1926 | DE |
435088 | Oct 1926 | DE |
479594 | Jul 1929 | DE |
668963 | Dec 1938 | DE |
853433 | Oct 1952 | DE |
894685 | Oct 1953 | DE |
1847016 | Feb 1962 | DE |
1873622 | Jun 1963 | DE |
2202345 | Aug 1973 | DE |
2226373 | Dec 1973 | DE |
2245532 | Mar 1974 | DE |
7340082 | May 1975 | DE |
2410107 | Sep 1975 | DE |
2533759 | Feb 1977 | DE |
3103529 | Aug 1982 | DE |
3139466 | Apr 1983 | DE |
3408136 | Sep 1985 | DE |
3501008 | Jul 1986 | DE |
3627988 | Apr 1987 | DE |
8703344 | Jul 1988 | DE |
4116673 | Nov 1992 | DE |
4225847 | Feb 1994 | DE |
4413213 | Oct 1995 | DE |
4443338 | Jun 1996 | DE |
29707168 | Jun 1997 | DE |
19730422 | Jan 1999 | DE |
19736794 | Feb 1999 | DE |
19742282 | Feb 1999 | DE |
19743508 | Apr 1999 | DE |
19751028 | May 1999 | DE |
19903951 | Aug 2000 | DE |
10028944 | Dec 2001 | DE |
10035904 | Jan 2002 | DE |
10039904 | Feb 2002 | DE |
10043165 | Feb 2002 | DE |
10312163 | Nov 2003 | DE |
10260163 | Jul 2004 | DE |
102005051721 | May 2007 | DE |
102007023020 | May 2008 | DE |
0043122 | Jan 1982 | EP |
0132884 | Feb 1985 | EP |
0135484 | Mar 1985 | EP |
0217981 | Apr 1987 | EP |
0222264 | May 1987 | EP |
0280782 | Sep 1988 | EP |
0284554 | Sep 1988 | EP |
0287990 | Oct 1988 | EP |
0302125 | Aug 1989 | EP |
363708 | Apr 1990 | EP |
0383327 | Aug 1990 | EP |
0404253 | Dec 1990 | EP |
0511525 | Nov 1992 | EP |
0574341 | Dec 1993 | EP |
0582092 | Feb 1994 | EP |
0638684 | Feb 1995 | EP |
0672377 | Sep 1995 | EP |
0726349 | Aug 1996 | EP |
0768059 | Apr 1997 | EP |
0785303 | Jul 1997 | EP |
0808936 | Nov 1997 | EP |
0816550 | Jan 1998 | EP |
0821096 | Jan 1998 | EP |
0839943 | May 1998 | EP |
1163387 | Dec 2001 | EP |
1275767 | Jan 2003 | EP |
1275767 | Jan 2003 | EP |
1351016 | Oct 2003 | EP |
1411163 | Apr 2004 | EP |
1437547 | Jul 2004 | EP |
1441059 | Jul 2004 | EP |
1441175 | Jul 2004 | EP |
1464750 | Oct 2004 | EP |
1464751 | Oct 2004 | EP |
1469120 | Oct 2004 | EP |
1505193 | Feb 2005 | EP |
1507028 | Feb 2005 | EP |
1507029 | Feb 2005 | EP |
1507030 | Feb 2005 | EP |
1507031 | Feb 2005 | EP |
1507032 | Feb 2005 | EP |
1507033 | Feb 2005 | EP |
1507033 | Feb 2005 | EP |
1529875 | May 2005 | EP |
1544345 | Jun 2005 | EP |
1548175 | Jun 2005 | EP |
1550760 | Jul 2005 | EP |
1555338 | Jul 2005 | EP |
1555339 | Jul 2005 | EP |
1555340 | Jul 2005 | EP |
1561853 | Aug 2005 | EP |
1584728 | Oct 2005 | EP |
1619284 | Jan 2006 | EP |
1655408 | May 2006 | EP |
1659205 | May 2006 | EP |
1666655 | Jun 2006 | EP |
1696066 | Aug 2006 | EP |
1731840 | Dec 2006 | EP |
1746197 | Jan 2007 | EP |
1783262 | May 2007 | EP |
1813704 | Aug 2007 | EP |
1813709 | Aug 2007 | EP |
1865099 | Dec 2007 | EP |
1865101 | Dec 2007 | EP |
1889966 | Feb 2008 | EP |
1936023 | Jun 2008 | EP |
2306400 | Oct 1976 | FR |
2525645 | Oct 1983 | FR |
2581442 | Nov 1986 | FR |
2688807 | Sep 1993 | FR |
21286 | Jan 1898 | GB |
191010567 | Jan 1911 | GB |
191010792 | Jan 1911 | GB |
191022943 | Jan 1911 | GB |
191024005 | Jan 1911 | GB |
191103554 | Jan 1911 | GB |
102466 | Dec 1916 | GB |
285384 | Nov 1928 | GB |
397236 | Aug 1933 | GB |
514440 | Nov 1939 | GB |
685813 | Jan 1953 | GB |
799788 | Aug 1958 | GB |
835250 | May 1960 | GB |
881083 | Nov 1961 | GB |
889500 | Feb 1962 | GB |
1155268 | Jun 1969 | GB |
1331623 | Sep 1973 | GB |
1352955 | May 1974 | GB |
1366852 | Sep 1974 | GB |
2219603 | Dec 1989 | GB |
2309071 | Jul 1997 | GB |
2348213 | Sep 2000 | GB |
10423 | Nov 2009 | GB |
21024 | Feb 2010 | GB |
35021275 | Aug 1950 | JP |
36023044 | Sep 1960 | JP |
36000067 | Jul 1961 | JP |
52146973 | Dec 1977 | JP |
54068072 | May 1979 | JP |
57094480 | May 1982 | JP |
57094480 | Jun 1982 | JP |
57032858 | Jul 1982 | JP |
60138399 | Jul 1985 | JP |
61128995 | Jun 1986 | JP |
62066891 | Mar 1987 | JP |
2049700 | Feb 1990 | JP |
02161997 | Jun 1990 | JP |
02026465 | Jul 1990 | JP |
02198595 | Aug 1990 | JP |
2239894 | Sep 1990 | JP |
2242088 | Sep 1990 | JP |
02267402 | Nov 1990 | JP |
03025748 | Jun 1991 | JP |
3137401 | Jun 1991 | JP |
04158896 | Jun 1992 | JP |
4158896 | Jun 1992 | JP |
05023493 | Feb 1993 | JP |
05115672 | May 1993 | JP |
05146583 | Jun 1993 | JP |
05269294 | Oct 1993 | JP |
5346485 | Dec 1993 | JP |
06123360 | May 1994 | JP |
08261689 | Oct 1996 | JP |
9133305 | May 1997 | JP |
10235088 | Sep 1998 | JP |
11047488 | Feb 1999 | JP |
11164979 | Jun 1999 | JP |
11164980 | Jun 1999 | JP |
11226290 | Aug 1999 | JP |
2000176192 | Jun 2000 | JP |
2003019382 | Jan 2003 | JP |
2003093775 | Apr 2003 | JP |
2003311068 | Nov 2003 | JP |
2003311084 | Nov 2003 | JP |
2003320324 | Nov 2003 | JP |
2003326077 | Nov 2003 | JP |
2004061011 | Feb 2004 | JP |
2004121666 | Apr 2004 | JP |
2004167131 | Jun 2004 | JP |
2004298614 | Oct 2004 | JP |
2004298616 | Oct 2004 | JP |
2004313793 | Nov 2004 | JP |
2005058740 | Mar 2005 | JP |
2005058741 | Mar 2005 | JP |
2005177440 | Jul 2005 | JP |
2005177445 | Jul 2005 | JP |
2005177450 | Jul 2005 | JP |
2005192997 | Jul 2005 | JP |
2005193003 | Jul 2005 | JP |
2006109886 | Apr 2006 | JP |
2006130295 | May 2006 | JP |
2004167131 | Sep 2007 | JP |
9319820 | Sep 1993 | KR |
1019950018856 | Jul 1995 | KR |
1019970011098 | Mar 1997 | KR |
1019970070295 | Nov 1997 | KR |
2019970039170 | Jul 1998 | KR |
200128631 | Aug 1998 | KR |
100146947 | Oct 1998 | KR |
20010015043 | Feb 2001 | KR |
10220010010111 | Feb 2001 | KR |
20040085509 | Oct 2004 | KR |
20050017481 | Feb 2005 | KR |
20060031165 | Apr 2006 | KR |
9214954 | Sep 1992 | WO |
9307798 | Apr 1993 | WO |
9319237 | Sep 1993 | WO |
9715709 | May 1997 | WO |
9803175 | Jan 1998 | WO |
0111134 | Feb 2001 | WO |
0174129 | Oct 2001 | WO |
03012185 | Feb 2003 | WO |
03012185 | Feb 2003 | WO |
03057966 | Jul 2003 | WO |
2004059070 | Jul 2004 | WO |
2004091359 | Oct 2004 | WO |
2005001189 | Jan 2005 | WO |
2005018837 | Mar 2005 | WO |
2005115095 | Dec 2005 | WO |
2006001612 | Jan 2006 | WO |
2006009364 | Jan 2006 | WO |
2006070317 | Jul 2006 | WO |
2006090973 | Aug 2006 | WO |
2006091054 | Aug 2006 | WO |
2006091057 | Aug 2006 | WO |
2006098571 | Sep 2006 | WO |
2006098572 | Sep 2006 | WO |
2006098573 | Sep 2006 | WO |
2006101304 | Sep 2006 | WO |
2006101312 | Sep 2006 | WO |
2006101336 | Sep 2006 | WO |
2006101336 | Sep 2006 | WO |
2006101345 | Sep 2006 | WO |
2006101358 | Sep 2006 | WO |
2006101360 | Sep 2006 | WO |
2006101361 | Sep 2006 | WO |
2006101362 | Sep 2006 | WO |
2006101363 | Sep 2006 | WO |
2006101365 | Sep 2006 | WO |
2006101372 | Sep 2006 | WO |
2006101376 | Sep 2006 | WO |
2006101377 | Sep 2006 | WO |
2006101377 | Sep 2006 | WO |
2006104310 | Oct 2006 | WO |
2006112611 | Oct 2006 | WO |
2006126778 | Nov 2006 | WO |
2006126779 | Nov 2006 | WO |
2006126799 | Nov 2006 | WO |
2006126803 | Nov 2006 | WO |
2006126804 | Nov 2006 | WO |
2006126810 | Nov 2006 | WO |
2006126811 | Nov 2006 | WO |
2006126813 | Nov 2006 | WO |
2006126815 | Nov 2006 | WO |
2006129912 | Dec 2006 | WO |
2006129913 | Dec 2006 | WO |
2006129915 | Dec 2006 | WO |
2006129916 | Dec 2006 | WO |
2007004785 | Jan 2007 | WO |
2007007241 | Jan 2007 | WO |
2007010327 | Jan 2007 | WO |
2007024050 | Mar 2007 | WO |
2007024056 | Mar 2007 | WO |
2007024057 | Mar 2007 | WO |
2007026989 | Mar 2007 | WO |
2007026990 | Mar 2007 | WO |
2007055475 | May 2007 | WO |
2007055510 | May 2007 | WO |
2007058477 | May 2007 | WO |
2007073012 | Jun 2007 | WO |
2007073013 | Jun 2007 | WO |
2007081069 | Jul 2007 | WO |
2007086672 | Aug 2007 | WO |
2007116255 | Oct 2007 | WO |
2007145448 | Dec 2007 | WO |
2008004801 | Jan 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080040871 A1 | Feb 2008 | US |