The present invention relates generally to systems having a plurality of receive antennas and, more particularly, to selecting a number of receive antennas from the plurality of receive antennas and processing signals from the selected antennas.
Multiple Input Multiple Output (MIMO) systems are known to those of ordinary skill in the art. In a MIMO system, a stream of bits is demultiplexed into a predetermined number of substreams. Each substream is sent out over a different antenna. The signals get mixed through the wireless channel. Signal processing is applied to the signals at the set of receive antennas to unscramble the data. The unscrambled data streams are multiplexed into the original high rate bit stream. In such systems, only a portion (e.g., if three substreams were used, only one third) of the spectrum, which would normally have been required is actually used.
Orthogonal Frequency Division Multiplexing (OFDM) is known to those of ordinary skill in the art. OFDM is a modulation technique useful for transmitting large amounts of data over a radio wave. The OFDM technique modulates multiple carriers at different frequencies with the same symbol rate such that the signals can be recovered without mutual interference. The receiver acquires the signal, digitizes the acquired signal, and performs a Fast Fourier Transform (FFT) on the digitized signal to get back to the frequency domain. The modulation is then recovered on each carrier. This technique results in a large amount of data being transmitted in a relatively small bandwidth.
The MIMO systems provide high spectral efficiency. Multiple transmit multiple receive antenna links increase the capacity of MIMO and MIMO OFDM systems. However, the implementation of high spectral efficiency is difficult due to the complexity of the systems and the resultant high costs.
It would, therefore, be desirable to provide a method of selecting receive antennas for MIMO and MIMO OFDM systems, which reduces the cost and complexity of the MIMO and MIMO OFDM receivers.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Referring to
As described above, MIMO and MIMO OFDM systems require relatively complex and expensive receivers. A method is presented by which performing receive antenna selection is provided, thereby reducing the complexity and cost of the receiver in MIMO and MIMO OFDM systems.
It is known that the incremental gain of additional receive antennas in MIMO and MIMO ODFM systems is negligible when the number of receive antennas K is larger than the number of transmit antennas M. Hence, through receive antenna selection the reduced receiver complexity is possible without significant loss in the capacity of the system. There are several selection methods based on the capacity or the signal-to-interference and noise power ratio (SINR). These approaches require
computations of their own criteria, i.e., the capacity or the SINR, where K is the number of receive antennas and S represents the number of selected antennas.
A MIMO system with K receive antennas and M transmit antennas will be used to describe the present invention. In slowly time-varying flat fading channel (also known as a Rayleigh fading channel) the received vector can be modeled as:
y=x+w=Hs+w Equation (1)
where y is the received vector with size K×1, x is the data component of y, K by M matrix H represents the channel, M×1 vector s is the transmitted vector with an identity correlation matrix and w is the noise vector.
Each element in channel matrix H is an independent complex Gaussian random variable with a variance equal to unity. The transmitted vector s is normalized such that Tr{ssH}=P where sH is the Hermitian transpose of vector s, and P is the total transmitted power. The entries of w are independent and identically distributed, and are defined by w(i)˜N(O, σ2) where N indicates normal distribution and σ2 is the noise power). The entries are independent over time and i.
S receive antennas are selected out of K antennas according to several criteria. By checking the capacity, S receive antennas are chosen out of K antennas in a way that the capacity is maximized. Alternatively, by examining the SINR, which is directly related to bit or symbol error rate, the selection of S receive antennas out of K antennas can also be performed.
In one embodiment, the receiver selects S antennas that allow a maximization of the capacity
where Is is the S×S identity matrix,
is the mean signal-to-noise ratio (SNR) per receiver branch, reduced matrix {tilde over (H)} is created by deleting K-S rows of channel matrix H, and S({tilde over (H)}) represents the set of all possible reduced matrices {tilde over (H)}.
Since there are
possible reduced channel matrices {tilde over (H)}, the capacity is evaluated as many times as
The determinant in Equation (2) can be written as
where r is the rank of the reduced channel matrix {tilde over (H)} and λk is the singular value of reduced channel matrix {tilde over (H)}. The rank and the singular values are maximized for the maximum capacity.
There may be a case in which there are two rows of the channel matrix H, which are identical. Clearly only one of these rows should be selected in reduced channel matrix {tilde over (H)}. Since these two rows carry the same information, either row of these two rows can be deleted without losing any information about the transmitted vector. In addition if the rows have different powers (i.e., magnitude square of the norm of the row), then the lower power row can be deleted.
When there are no identical rows then the next two rows whose correlation is the next highest are chosen for the deletion. In this manner the reduced channel matrix {tilde over (H)} whose rows are maximally uncorrelated and have maximum powers are obtained. This leads to several methods for determining the highest correlation rate among the set of receive antennas.
A first method (method 1) for determining the highest correlation rate is performed in accordance with the formula:
where X={1, 2, . . . K}, hk is the kth row of channel matrix H, hl is the lth row of channel matrix H, k≠1, and k, lϵX.
The correlation rate is determined by taking the absolute value of the inner product of the two arguments. The result is the square root of the sum of the products of each value in the h vectors.
A second method (method 2) for determining the highest correlation rate is performed in accordance with the formula:
where X={1, 2, . . . K}, hk is the kth row of channel matrix H, hl is the lth row of channel matrix H, k≠1, and k, lϵX.
Another method (method 3) for determining the highest correlation rate is performed in accordance with the formula:
where X={1, 2, . . . K}, hk is the kth row of channel matrix H, hl is the lth row of channel matrix H, k>1, and k, lϵX.
Yet another method (method 4) for determining the highest correlation rate is performed in accordance with the formula:
Corr(k,l)=|hk,hl| Equation (7)
where X={1, 2, . . . K}, hk is the kth row of channel matrix H, hl is the lth row of channel matrix H, k>1, and k, lϵX.
Method 4 is the least complex method to implement. The above methods do not require the SNR value and are based mainly on the correlation E{yk,yl+} where E is the expected value of the inner product of two output vector y's average, of the sum of the products of each value in y's.
As an alternative method when the SNR is available, the mutual information between received vector Yk and received vector Yl is used. The zero-valued mutual information means the received vector Yk and the received vector Yl carry totally different information. This occurs when the corresponding channel vector hk and hl are orthogonal. The channel vector hk is defined as the k-th row of the channel matrix H. If the mutual information is maximum, the received vector yk and the received vector yl carry the same information so that one of them can be deleted. The mutual information is defined as
I(yk;yl)=H(yk)+H(yl)−H(yk,yl) Equation (8)
In the MIMO system the mutual information can be written as
Since the mutual information is bounded as following
0≤I(yk;yl)≤min(H(yk),H(yl)) Equation (10)
the normalized mutual information is defined below as
as a measure of how close the two random variables are. The entropy calculation of the received vector yk requires both the signal and noise power, whereas the mutual information needs the SNR only.
This can be overcome as follows. The scaling of receive vector yk to c·yk, where the non-zero real number c is chosen in the way that the noise variance is equal to one, will not normalize mutual information. The scaling does not change the mutual information while the entropy of c·yk becomes
The normalized mutual information is redefined as
Then, the normalized mutual information becomes
The procedure for calculating the normalized mutual information (method 5) is done in accordance with the formula:
I0(yk;yl) Equation (15)
where X={1, 2, . . . K}, k>1, and k, lϵX.
The mutual information based technique can also be applied to the data component xk in order to avoid requiring the SNR value. Then, the mutual information between the data component xk and the data component xl is
Similarly, the normalized mutual information is defined below as
The procedure for calculating the normalized mutual information (method 6) is done in accordance with the formula:
I0(xk;xl) Equation (18)
where X={1, 2, . . . K}, k>1, and k, lϵX.
Having described receiver antenna selection techniques with respect to MIMO systems, the following describes receiver selection techniques with respect to MIMO OFDM systems.
In a MIMO OFDM system with N subcarriers, the channel matrix under time invariant channel can be modeled as a block diagonal matrix
represents the channel matrix between K receive and M transmit antennas at subcarrier n. The capacity becomes
In the correlation based methods (methods 1-4 described above for a MIMO system) the correlation must now be averaged over the subcarriers to provide the same function for a MIMO OFDM system. For example, the correlation formula used in method 1 for a MIMO system is modified to account for the subcarriers to become method 7, which is performed in accordance with the formula:
where X={1, 2, . . . K}, hk(n) is the kth row of channel matrix at subcarrier n H(n), k≠1, and k, lϵX.
Similarly, the correlation formula used in method 2 for a MIMO system is modified to become method 8 for a MIMO OFDM system, which is performed in accordance with the formula:
where X={1, 2, . . . K}, hk(n) is the kth row of channel matrix at subcarrier n H(n), k≠1, and k, lϵX.
The correlation formula used in method 3 for a MIMO system is replaced with method 9 for a MIMO OFDM system, which is performed in accordance with the formula:
where X={1, 2, . . . K}, hk(n) is the kth row of channel matrix at subcarrier n H(n), k≠1 and k, lϵX.
The correlation formula used in method 4 for a MIMO system is replaced with method 10 for a MIMO OFDM system, which is performed in accordance with the formula:
where X={1, 2, . . . K}, hk(n) is the kth row of channel matrix at subcarrier n H(n), k≠1 and k, lϵX.
Defining the received vector at the k-th receive antenna as yk=[yk(1) yk(2) . . . yk(N)]T where yk(n) is the k-th receive antenna output at the n-th subcarrier, the mutual information in the MIMO OFDM system becomes
I(yk;yl)=H(yl)−H(yloyl) Equation (25)
The block diagonal property of the MIMO OFDM channel matrix defines the mutual information to be
Hence, the mutual information-based techniques used in the MIMO systems are modified to use the following normalized mutual information and to take into account the subcarrier n. Method 5 for a MIMO system is replaced by method 11 for a MIMO OFDM system wherein:
where yk is the k-th receive vector at subcarrier n, yl is the l-th receive vector at subcarrier n, c is a constant, H is a channel matrix, k>1, and k, lϵX.
Similarly, method 6 for a MIMO system is replaced by method 12 for a MIMO OFDM system, which is performed in accordance with the formula:
where yk is the k-th receive vector at subcarrier n, yl is the l-th receive vector at subcarrier n, c is a constant, H is a channel matrix, k>1, and k, lϵX.
Referring now to
Alternatively, the processing and decision blocks represent steps performed by functionally equivalent circuits such as a digital signal processor circuit or an application specific integrated circuit (ASIC). The flow diagrams do not depict the syntax of any particular programming language. Rather, the flow diagrams illustrate the functional information one of ordinary skill in the art requires to fabricate circuits or to generate computer software to perform the processing required in accordance with the present invention. It should be noted that many routine program elements, such as initialization of loops and variables and the use of temporary variables are not shown. It will be appreciated by those of ordinary skill in the art that unless otherwise indicated herein, the particular sequence of steps described is illustrative only and can be varied without departing from the spirit of the invention. Thus, unless otherwise stated the steps described below are unordered meaning that, when possible, the steps can be performed in any convenient or desirable order.
The process starts at step 10 wherein a set of receive antennas of a MIMO or MIMO OFDM receiver are identified. In the present example, the set of receive antennas comprise six antennas referred to as antenna 1-antenna 6 respectively. While a set of six receive antennas are used in this example, it should be appreciated that any number of receive antennas could be used.
The process then proceeds to step 20 where a determination is made as to the number of antennas to be used. For example, if the MIMO or MIMO 01-DM receiver has a set of six receive antennas, it may be desirable to only process signals from two of the six antennas. While only two of six receive antennas are used in this example, it should be appreciated that any number of receive antennas could be used.
At step 30 an operation is executed for each antenna of the set of receive antennas. The operation may relate to determining the amount of correlation between each antenna, which each other antenna of the set, or determining an amount of mutual information between antennas of the set.
At step 40 the two antennas, which yielded the maximum results of the operation performed in step 30 are selected. In the present example, if a correlation operation was performed and it turned out that antennas 4 and 6 were the most closely correlated pair, than these two antennas are selected.
Following step 40, step 50 is executed wherein one of the two antennas (antenna 4, antenna 6) is deleted from the set of receive antennas. Therefore, either antenna 4 or antenna 6 is deleted from the set of receive antennas. Thus, initially the set of receive antennas included antennas 1-6, and antenna 4 is deleted, leaving five remaining antennas in the set of receive antennas (antennas 1-3 and 5-6).
At step 60 a determination is made as to whether the remaining set of antennas has the desired number of antennas left in the set. In this instance five antennas are remaining, while it is desired to have only two remaining, so steps 40 and 50 are executed again. Each iteration of steps 40 and 50 result in another antenna being removed from the set of receive antennas. Steps 40 and 50 are repeated until there are only two antennas remaining in the set of receive antennas. Once the desired number of antennas is left in the set of receive antennas, step 70 is executed.
At step 70, the antennas remaining in the set of receive antennas are used, and signals from these antennas are processed. The method then ends at step 80.
Referring now to
The FER (frame error rate) is shown in
A method of performing receive antenna selection for MIMO and MIMO OFDM systems has been described. The method executes a determination operation for a set of receive antennas, determines a maximum result of the determination operation for two of the antennas, eliminates one of the two antennas from the set of antennas, and repeats the determination and elimination process until only a predetermined number of antennas remain in the set. The signals from these remaining antennas are then processed. The present invention reduces receiver complexity and cost.
Having described preferred embodiments of the invention it will now become apparent to those of ordinary skill in the art that other embodiments incorporating these concepts may be used. Additionally, the software included as part of the invention may be embodied in a computer program product that includes a computer useable medium. For example, such a computer usable medium can include a readable memory device, such as a hard drive device, a CD-ROM, a DVD-ROM, or a computer diskette, having computer readable program code segments stored thereon. The computer readable medium can also include a communications link, either optical, wired, or wireless, having program code segments carried thereon as digital or analog signals. Accordingly, it is submitted that that the invention should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the appended claims.
The Abstract of the Disclosure is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 14/710,751, filed May 13, 2015, by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” which is a continuation of U.S. patent application Ser. No. 14/252,467, filed Apr. 14, 2014 by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” (now U.S. Pat. No. 9,059,764), which is a continuation of U.S. patent application Ser. No. 12/912,399 filed Oct. 26, 2010 by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” (now U.S. Pat. No. 8,725,102), which is a continuation of U.S. patent application Ser. No. 11/897,312 filed Aug. 30, 2007 by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” (now U.S. Pat. No. 7,844,240), which is a continuation of U.S. patent application Ser. No. 11/321,785 filed Dec. 29, 2005 by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” (now U.S. Pat. No. 7,283,798), which is a continuation of U.S. patent application Ser. No. 10/324,168 filed Dec. 19, 2002 by Winters et al., entitled “Method of Selecting Receive Antennas for MIMO Systems,” (now U.S. Pat. No. 7,006,810). All sections of the aforementioned applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6744864 | Garfinkel | Jun 2004 | B1 |
6774864 | Evans et al. | Aug 2004 | B2 |
7283798 | Winters et al. | Oct 2007 | B1 |
7844240 | Winters et al. | Nov 2010 | B1 |
7933629 | Kwon et al. | Apr 2011 | B2 |
8345789 | Ruscitto | Jan 2013 | B2 |
8396109 | Farjad-Rad | Mar 2013 | B2 |
9362999 | Winters | Jun 2016 | B2 |
20030035491 | Walton et al. | Feb 2003 | A1 |
20030083016 | Evans et al. | May 2003 | A1 |
20030162519 | Smith et al. | Aug 2003 | A1 |
20050003863 | Gorokhov | Jan 2005 | A1 |
20070169151 | Vishloff | Jul 2007 | A1 |
20080317014 | Veselinovic | Dec 2008 | A1 |
20120236955 | Zhou | Sep 2012 | A1 |
20130002487 | Hosoya | Jan 2013 | A1 |
20130114513 | Taoka | May 2013 | A1 |
20130195035 | Taoka | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160254852 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14710751 | May 2015 | US |
Child | 15151561 | US | |
Parent | 14252467 | Apr 2014 | US |
Child | 14710751 | US | |
Parent | 12912399 | Oct 2010 | US |
Child | 14252467 | US | |
Parent | 11897312 | Aug 2007 | US |
Child | 12912399 | US | |
Parent | 11321785 | Dec 2005 | US |
Child | 11897312 | US | |
Parent | 10324168 | Dec 2002 | US |
Child | 11321785 | US |