Synchronization of configurable elements of today's modules, e.g., field programmable gate arrays (“FPGAs”), dynamically programmable gate arrays (“DPGAs”), etc., is usually accomplished using the clock of the module. This type of time-controlled synchronization poses many problems because it is often not known in advance how much time is needed for a task until a final result is available. Another problem with time-controlled synchronization is that the event on which the synchronization is based is not triggered by the element to be synchronized itself but rather by an independent element. In this case, two different elements are involved in the synchronization. This leads to a considerably higher administrative complexity.
European Patent No. 0 726 532 describes a method of controlling data flow in SIMD machines composed of several processors arranged as an array. An instruction is sent to all processors which dynamically selects the target processor of a data transfer. The instruction is sent by a higher-level instance to all processors (broadcast instruction) and includes a destination field and a target field. The destination field controls a unit in the processor element to dynamically determine the neighboring processor element to which the result is to be sent. The operand register of another processor element in which another result is to be stored is dynamically selected with the target field.
The present invention relates to a method which permits self-synchronization of elements to be synchronized. Synchronization is neither implemented nor managed by a central entity. By shifting synchronization into each element, more synchronization tasks can also be performed simultaneously, because independent elements no longer interfere with one another when accessing the central synchronization entity.
In accordance with an example embodiment of the present invention, in a module, e.g., a data flow processor (“DFP”) or a DPGA, with a two- or multi-dimensionally arranged programmable cell structure, each configurable element can access the configuration and status register of other configurable elements over an interconnecting structure and thus can have an active influence on their function and operation. A matrix of such cells is referred to below as a processing array (PA). The configuration can thus be accomplished by a load logic from the PA in addition to the usual method.
The present invention provides a module which is freely programmable during the running time and can also be reconfigured during the running time. Configurable elements on the chip have one or more configuration registers for different functions. Both read and write access to these configuration registers is permitted. In the method described here, it is assumed that a configuration can be set in an element to be configured for the following information.
A cell is configured by a command which determines the function of the cell to be executed. In addition, configuration data is entered to set the interconnection with other cells and the contents of the status register. After this operation, the cell is ready for operation.
To permit flexible and dynamic cooperation of many cells, each cell can have read or write access to all the configuration registers of another cell. Which of the many configuration registers is accessed by reading or writing is specified by the type of command with which the cell has been configured. Each command that can be executed by the cell exists in as many different types of addressing as there are different independent configuration registers in an element to be configured.
Example: A cell has the configuration register described above (interconnection, command and status) and is to execute the command ADD which performs an addition. It is then possible to select through the various types of ADD command where the result of this function is to be transferred.
Control and Synchronization Trigger: In addition to the result, each cell can generate a quantity of trigger signals. The trigger signals need not necessarily be transferred to the same target cell as the result of processing the configured command. One trigger signal or a combination of multiple trigger signals triggers a certain action in the target cell or puts the cell in a certain state. A description of the states is also to be found in the text below. The following are examples of trigger signals:
Due to the possibility of indicating in the processing cell into which register of the target cell the result is to be entered and which type of trigger signal is to be generated, a quantity of management data can be generated from a data stream. This management data is not a result of the actual task to be processed by the chip, but instead it serves only the functions of management, synchronization, optimization, etc. of the internal state.
Each cell can assume the following states which are represented by suitable coding in the status register, for example:
Due to these various states and the possibility of read and write access to the various registers of a cell, each cell can assume an active administrative role. In contrast with that, all existing modules of this type have a central management entity which must always know and handle the entire state of the module.
To achieve greater flexibility, there is another class of commands which change types after the first execution. Based on the example of the ADD command, a command is then as follows:
This possibility can be expanded as desired, so that even commands of the type ADD-C-V-A-C- . . . -B are conceivable. Each command can assume all permutated combinations of the various types of addressing and triggers.
Reconfiguration Control by RECONFIG Trigger: In the previous method, each element to be configured received a RECONFIG trigger from an external entity to enter the “reconfigurable” state. This, had the disadvantage that distribution of the RECONFIG trigger necessitated a considerable interconnection and configuration expense: Due to the structure of the interconnection, this disadvantage can be eliminated. All configurable elements which are related by the interconnecting information represent a directional graph. Such a graph may have multiple roots (sources) and multiple leaves (targets). The configurable elements are expanded so that they propagate an incoming RECONFIG trigger in the direction of either their outgoing registers, their ingoing registers or a combination thereof. Due to this propagation, all the configurable elements that are directly connected to the configurable element also receive the RECONFIG trigger.
A configuration (graph) can be brought completely into the “reconfigurable” state by sending a RECONFIG trigger to all the roots and propagating the RECONFIG trigger in the direction of the output registers. The quantity of roots in a graph to which a RECONFIG trigger must be sent is considerably smaller than the total quantity of nodes in the graph. This greatly minimizes the complexity. Of course, a RECONFIG trigger may also be sent to all leaves. In this case, the RECONFIG trigger is propagated in the direction of the input registers.
Due to the use of both options or a combination of both methods, a minimum quantity of configurable elements to which a RECONFIG trigger must be sent can be calculated.
The configurable elements can receive an addition record to their status register, indicating whether or not an incoming RECONFIG trigger is to be propagated. This information is needed when two or more different graphs are connected at one or more points (i.e., they have a transition) and it is not desirable for one of the other graphs to enter the “reconfigurable” state. One or more configurable elements thus behave like a lock.
In addition, the status register can be expanded so that an additional entry indicates the direction in which an incoming RECONFIG trigger is to be relayed.
The method described here can be applied to all types of triggers and/or data. In this way, it is possible to establish an automatic distribution hierarchy needing very few access opportunities from the outside to set it in operation.
Implementation of Multiple Functions Simultaneously in the Same Configurable Elements
Basic Function and Required Triggers: An especially complex variant of calling up various macros by a condition is presented below: In execution of a condition (IF COMP THEN A ELSE B; where COMP is a comparison, and A and B are operations to be executed), no GO and STOP triggers are generated. Instead, a trigger vector (TRIGV) is generated, indicating to which result the comparison COMP has led. The trigger vector can therefore assume the states “equal,” “greater” or “less.”
The vector is sent to a following cell which selects exactly a certain configuration register (corresponding to A or B) from a plurality of configuration registers on the basis of the state of the vector. What this achieves is that, depending on the result of the preceding comparison, another function is performed over the data. States such as “greater-equal,” “less-equal” and “equal-not equal” are triggered by writing the same configuration data to two configuration registers. For example, with “greater-equal” the configuration register “greater” and the configuration register “equal” are written with the same configuration word, while the configuration register “less” contains another configuration word.
In implementating trigger vectors TRIGV, no restriction to the states “greater,” “less” and “equal” is necessary. To analyze large “CASE . . . OF” constructs, any number n representing the state of the CASE may be relayed as trigger vectors TRIGV-m to the downstream cell(s). In other words, n indicates the comparison within the CASE which was correct in analysis of the applied data. For implementation of the function assigned to the comparison within the CASE, n is relayed to the executing cells to select the corresponding function. Although the cells need at least three configuration registers in the “greater/less/equal” case, the number of configuration registers must correspond exactly to at least the maximum value of n (max (n)) when using TRIGV-m.
Propagation of the Required Function by Triggers: TRIGV/TRIGV-m are sent to the first cell processing the data. In this cell, TRIGV/TRIGV-M are analyzed and the data is processed accordingly. TRIGV/TRIGV-m are relayed (propagated) together with the data to the downstream cells. They are propagated to all cells executing a certain function on the basis of the analysis (IF or CASE). Propagation is linked directly to propagation of data packages, i.e., propagation is synchronous with the data. TRIGV/TRIGV-m generated at time t are linked to data present at time t at first processing cells CELLS1 (see
A link is by no means such that the TRIG/TRIG-V generated at time t are linked to data applied to CELLS1 at time told<t.
Reacting to the Presence or Absence of Triggers: In special cases, it is necessary to react to the absence of a trigger, i.e., a trigger state occurs, but no change in trigger vector is initiated. Appropriate and important information can also be transferred to the downstream cells in this case. For example, in a comparison of “greater,” “less,” “equal,” the trigger signal “equal” is not present and does not change when switching from the state “less” to the state “greater.” Nevertheless, the absence of “equal” does contain information, namely “not equal.”
To be able to react to both states “present” and “not present,” an entry in the configuration register of the cell is added, indicating which of the states is to be reacted to.
Furthermore, a signal TRIGRDY indicating the presence of a trigger is added to trigger vector TRIGV representing states “equal,” “greater” and “less.” This is necessary because the state “not present” on one of the vectors does not provide any more information regarding the presence of a trigger per se.
TRIGRDY can be used as a handshake protocol between the transmitting cell and the receiving cell by having the receiving cell generate a TRIGACK as soon as it has analyzed the trigger vectors. Only after arrival of TRIGACK does the transmitting cell cancel the trigger state.
On the basis of an entry into the configuration register, a determination is made as to whether to wait for receipt of a TRIGACK or whether the trigger channel is to proceed unsynchronized when a trigger vector is sent out.
Use in Microprocessors
In microprocessors of the most recent architecture, conditional jumps are no longer executed by the known method of branch prediction, i.e., prediction of a jump. Speculative prediction of jumps introduced to increase processor performance calculated jumps in advance on the basis of speculative algorithms and had to reload the entire processor pipeline if the calculations were faulty, which led to a considerable loss of power.
To eliminate these losses, the new predicate/NOP method was introduced. A status flag one bit wide is assigned to each command, indicating whether the command is to be executed—or not. There may be any desired quantity of status flags. Commands are assigned to status flags by a compiler during the translation of the code. The status flags are managed by comparison operations assigned to them at the time of execution and indicate the result of the respective comparison.
Depending on the state of a status flag assigned to a command, the command is then executed by the processor (if the status flag indicates “execute”) or the command is not executed and is replaced by an NOP (if the status flag indicates “not execute”). NOP stands for “No OPERATION,” which means that the processor does not execute any operation in this cycle. Therefore, the cycle is lost for meaningful operations.
Two options are proposed for optimizing the cycle loss:
Multiple Command Registers per Computer Unit: A modern microprocessor has several relatively independent processors.
According to the trigger principle presented here, the individual processors are each equipped with several command registers, with a command register of a processor of a microprocessor being synonymous with a configuration register according to conventional FPGA, DFP, etc. modules. The respective active command register is selected
a) on the basis of trigger vectors generated by other processors on the basis of comparisons,
b) on the basis of multibit status flags (hereinafter referred to as status vectors) allocated to compare commands according to today's related art method.
Revised VLIW Command Set: One special embodiment is possible through VLIW command sets. Thus, several possible commands depending on one comparison can be combined to give one command within one command word. A VLIW word of any width is subdivided into any desired quantity of commands (codes). Each individual one of these codes is referenced by a trigger vector or a status vector. This means that one of the existing codes is selected from the VLIW word and processed during the running time.
The table illustrates a possible VLIW word with four codes referenced by a 2-bit trigger vector or a 2-bit status flag:
VLIW Command Word:
Assignment:
Trigger Vector/Status Flag:
Expansion of Hardware in Comparison with Conventional FPGAs and DFPs.
Additional Registers: A status register and a configuration register are added to the configuration registers conventionally used in DFPs. Both registers are controlled by the PLU bus and have a connection to the state machine of the sequence control system of the respective cell.
Change in PLU Bus: The configurable registers M-/F-PLUREG in FPGAs and DFPs are managed exclusively over the PLU bus, which represents the connection to the load logic. To guarantee the function according to the present invention, an additional access option must be possible through the normal system bus between the cells. The same thing is true for the new status register and configuration register.
The only part of the system bus relevant for the registers is the part that is interconnected to the PAE over the BM UNIT, i.e., the interface between the system buses and the PAE. Therefore, the bus is relayed from the BM UNIT to the registers where upstream multiplexers or upstream gates are responsible for switching between the PLU bus and the system bus relevant for the PAE. The multiplexers or gates are switched so that they always switch the system bus relevant for the PAE through, except after resetting the module (RESET) or when the RECONFIG trigger is active.
Expansions of Configurable Elements (PAEs) with Respect to Conventional FPGAs and DFPs: Trigger Sources: A configurable element can receive triggers from several sources at the same time. Due to this possibility, flexible semantics of the triggers can be achieved with the help of masking registers.
Multiple Configuration Registers: Instead of one configuration register, a PAE has multiple (max(n)) configuration registers.
Configuration State Machine and Multiplexer: Downstream from the configuration registers is a multiplexer which selects one of the possible configurations.
The multiplexer is controlled by a separate state machine or a state machine integrated into the PAE state machine, controlling the multiplexer on the basis of incoming trigger vectors.
Trigger Analysis and Configuration: A configurable element may contain a masking register in which it is possible to set the trigger inputs to which a trigger signal must be applied, so that the conditions for an action of the configurable element are met. A configurable element reacts not only to a trigger, but also to a set combination of triggers. In addition, a configurable element can perform prioritization of simultaneously incoming triggers.
Incoming triggers are recognized on the basis of the TRIGRDY signal. The trigger vectors are analyzed here according to configuration data also present in the configuration registers.
Trigger Handshake: As soon as the trigger vectors have been analyzed, a TRIGACK is generated for confirmation of the trigger vector.
BM UNIT: The BM UNIT is expanded so that it relays triggers coming from the bus to the sync unit and SM unit according to the configuration in M-PLUREG. Triggers generated by the EALU (e.g., comparator values “greater,” “less,” “equal,” 0 detectors, plus and minus signs, carryovers, error states (division by 0, etc.), etc.) are relayed from the BM UNIT to the bus according to the wiring information in M-PLUREG.
Expansions of System Bus: The system bus, i.e., the bus system between the cells (PAEs), is expanded so that information is transferred together with the data over the target register. This means that an address which selects the desired register on receipt of the data is also sent. Likewise, the system bus is expanded by the independent transfer of trigger vectors and trigger handshakes.
In this case the trigger signal sent is a STEP trigger, causing counter 0101 to execute its configured function once. The counter decrements its count by one and compares whether it has reached a value of 0. If this is not the case, a GO trigger is sent to macro 0103. This GO trigger signal causes macro 0103 to resume its function.
This process is repeated until counter 0101 has reached a value of 0. In this case, a trigger signal is sent to macro 0102, where it triggers a function.
A very fine synchronization can be achieved due to this interaction of triggers.
BM UNIT 0411 sends trigger signals over 0415 to SYNC UNIT 0412. 0411 receives results from the EALU over 0414 (“equal,” “greater,” “less,” “result=0” “result positive,” “result negative,” carry-over (positive and negative), etc.) to convert the results into trigger vectors. As an alternative, states generated by the SYNC UNIT or the STATE MACHINE can be relayed to the BM UNIT over 0415.
The trigger signals transmitted by the BM UNIT to bus 0404 can be used there as STEP/STOP/GO triggers, RECONFIG triggers or for selecting a configuration register, depending on the configuration of the configurable elements to be analyzed. Which function a generated trigger will execute in the configurable elements to be analyzed is determined by interconnection 0404 and the configuration of the respective configurable element. One and the same trigger may have different functions with different configurable elements. 0416 is the result output of R-REGsft to bus system 0404 and the following configurable elements.
Due to the delays, data and trigger signals of the earlier time t−2 are available at time t between the second and third pipeline steps, for example.
The trigger vectors (i.e., the results of the comparison) generated by 0501 look as follows over t:
TRIGV is relayed together with the result over register 0603 to the downstream configurable elements to permit pipelining according to
A time-offset transfer offers the advantage that no additional time is necessary for setting the configuration registers in the downstream configurable elements, because the setting is made before receiving the data (simultaneously with the release of the result).
0703 selects whether the command from 0701 or an NOP is to be executed. In execution of an NOP, one clock cycle is lost. 0703 has a symbolic character, because executing unit 0702 could also in principle be controlled directly by 0704.
In
The multiplexer selects which command register supplies the code for the instantaneous execution.
Due to this technology, a valid command is executed instead of an NOP even in the worst case with conditional jumps, so no clock cycle is wasted.
The following provides an explanation of various names, functions and terms described above.
Name Convention
Function Convention
NOT Function!
AND Function &
OR Function #
GATE Function G
BM UNIT: Unit for switching data to the bus systems outside the PAE. Switching is done over multiplexers for the data inputs and gates for the data outputs. OACK lines are implemented as open collector drivers. The BM UNIT is controlled by the M-PLUREG.
Data receiver: The unit(s) that process(es) the results of the PAE further.
Data transmitter: The unit(s) that make(s) available the data for the PAE as operands.
Data word: A data word consists of a bit series of any desired length. This bit series represents a processing unit for a system. Commands for processors or similar modules as well as pure data can be coded in a data word.
DFP: Data flow processor according to German Patent/Unexamined Patent No. 44 16 881.
DPGA: Dynamically configurable FPGAs. Related art.
EALU: Expanded arithmetic logic unit. ALU which has been expanded by special functions which are needed or appropriate for operation of a data processing system according to German Patent No. 441 16 881 A1. These are counters in particular.
Elements: Collective term for all types of self-contained units which can be used as part of an electronic module.
Event: An event can be analyzed by a hardware element of any type suitable for use and can prompt a conditional action as a reaction to this analysis. Events thus include, for example:
trigger signal from other elements within the module
F-PLUREG: Register in which the function of the PAE is set. Likewise, the one shot and sleep mode are also set. The register is written by the PLU.
H level: Logic 1 level, depending on the technology used..
Configurable element: A configurable element is a unit of a logic module which can be set for a special function by a configuration word. Configurable elements are thus all types of RAM cells, multiplexers, arithmetic logic units, registers and all types of internal and external network writing, etc.
Configurable cell: See logic cells.
Configure: Setting the function and interconnecting a logic unit, an (FPGA) cell or a PAE (see: Reconfigure).
Configuration data: Any quantity of configuration words.
Configuration memory: The configuration memory contains one or more configuration words.
Configuration word: A configuration word consists of a bit series of any desired length. This bit series represents a valid setting for the element to be configured, so that a functional unit is obtained.
Load logic: Unit for configuring and reconfiguring the PAE. Embodied by a microcontroller specifically adapted to its function.
Logic cells: Configurable cells used in DFPs, FPGAs, DPGAs, fulfilling simple logic or arithmetic functions according to their configuration.
L level: Logic 0 level, depending on the technology used.
M-PLUREG: Register in which the interconnection of the PAE is set. The register is written by the PLU.
O-REG: Operand register for storing the operands of the EALU. Permits independence of the PAE of the data transmitters in time and function. This simplifies the transfer of data because it can take place in an asynchronous or package-oriented manner. At the same time, the possibility of reconfiguring the data transmitters independently of the PAE or reconfiguring the PAE independently of the data transmitters is created.
PLU: Unit for configuring and reconfiguring the PAE. Embodied by a microcontroller specifically adapted to its function.
Propagate: Controlled relaying of a received signal.
RECONFIG: Reconfigurable state of a PAE.
RECONFIG trigger: Setting a PAE in the reconfigurable state.
SM UNIT: State machine UNIT. State machine controlling the EALU.
Switching table: A switching table is a ring memory which is addressed by a control. The entries in a switching table may accommodate any desired configuration words. The control can execute commands. The switching table reacts to trigger signals and reconfigures configurable elements on the basis of an entry in a ring memory.
Synchronization signals: Status signals generated by a configurable element or a processor and relayed to other configurable elements or processors to control and synchronize the data processing. It is also possible to return a synchronization signal with a time lag (stored) to one and the same configurable element or processor.
TRIGACK/TRIGRDY: Handshake of the triggers.
Trigger: Synonymous with synchronization signals.
Reconfigure: Configuring any desired quantity of PAEs again while any desired remaining quantity of PAEs continue their own function (see: Configure).
Processing cycle: A processing cycle describes the period of time needed by a unit to go from one defined and/or valid state into the next defined and/or valid state.
VLIW: Very large instruction word. Coding of microprocessors, prior art method.
Cells: Synonymous with configurable elements.
Number | Date | Country | Kind |
---|---|---|---|
197 04 728 | Feb 1997 | DE | national |
This application is a divisional reissue of U.S. Reissue patent application Ser. No. 12/109,280, filed on Apr. 24, 2008, which is a reissue application of U.S. patent application Ser. No. 10/379,403, filed on Mar. 4, 2003, now U.S. Pat. No. 7,036,036, which is a continuation of U.S. patent application Ser. No. 09/369,653, filed Aug. 6, 1999, now U.S. Pat. No. 6,542,998, which is a continuation-in-part of PCT/DE98/00334, filed on Feb. 7, 1998, and is a continuation-in-part of U.S. patent application Ser. No. 08/946,812, filed on Oct. 8, 1997, now U.S. Pat. No. 6,081,903, and claims the benefit of the priority datedates of these cases under 35 U.S.C. §120, each of which is expressly incorporated herein by reference in its entirety. This application also claims the benefit, under 35 U.S.C. §119, of the priority date of German Application No. DE 19704728.9, filed on Feb. 8, 1997, under 35 U.S.C. §119, which is expressly incorporated herein by reference in its entirety. Further, more than one reissue application of U.S. Pat. No. 7,036,036 has been filed. Specifically, the reissue applications are application Ser. No. 12/109,280, application Ser. No. 12/909,061, application Ser. No. 12/909,150, and application Ser. No. 12/909,203, the latter three of which were all filed on Oct. 21, 2010 as divisional reissue applications of application Ser. No. 12/109,280.
Number | Name | Date | Kind |
---|---|---|---|
2067477 | Cooper | Jan 1937 | A |
3242998 | Gubbins | Mar 1966 | A |
3564506 | Bee et al. | Feb 1971 | A |
3681578 | Stevens | Aug 1972 | A |
3753008 | Guarnaschelli | Aug 1973 | A |
3754211 | Rocher et al. | Aug 1973 | A |
3757608 | Willner | Sep 1973 | A |
3855577 | Vandierendonck | Dec 1974 | A |
3956589 | Weathers et al. | May 1976 | A |
4151611 | Sugawara et al. | Apr 1979 | A |
4233667 | Devine et al. | Nov 1980 | A |
4414547 | Knapp et al. | Nov 1983 | A |
4498134 | Hansen et al. | Feb 1985 | A |
4498172 | Bhavsar | Feb 1985 | A |
4566102 | Hefner | Jan 1986 | A |
4571736 | Agrawal et al. | Feb 1986 | A |
4590583 | Miller | May 1986 | A |
4591979 | Iwashita | May 1986 | A |
4594682 | Drimak | Jun 1986 | A |
4623997 | Tulpule | Nov 1986 | A |
4646300 | Goodman et al. | Feb 1987 | A |
4663706 | Allen et al. | May 1987 | A |
4667190 | Fant et al. | May 1987 | A |
4682284 | Schrofer | Jul 1987 | A |
4686386 | Tadao | Aug 1987 | A |
4706216 | Carter | Nov 1987 | A |
4720778 | Hall et al. | Jan 1988 | A |
4720780 | Dolecek | Jan 1988 | A |
4739474 | Holsztynski | Apr 1988 | A |
4760525 | Webb | Jul 1988 | A |
4761755 | Ardini et al. | Aug 1988 | A |
4791603 | Henry | Dec 1988 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4852043 | Guest | Jul 1989 | A |
4852048 | Morton | Jul 1989 | A |
4860201 | Stolfo et al. | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4873666 | Lefebvre et al. | Oct 1989 | A |
4882687 | Gordon | Nov 1989 | A |
4884231 | Mor et al. | Nov 1989 | A |
4891810 | de Corlieu et al. | Jan 1990 | A |
4901268 | Judd | Feb 1990 | A |
4910665 | Mattheyses et al. | Mar 1990 | A |
4918440 | Furtek et al. | Apr 1990 | A |
4939641 | Schwartz et al. | Jul 1990 | A |
4959781 | Rubinstein et al. | Sep 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4972314 | Getzinger et al. | Nov 1990 | A |
4992933 | Taylor | Feb 1991 | A |
5010401 | Murakami et al. | Apr 1991 | A |
5014193 | Garner et al. | May 1991 | A |
5015884 | Agrawal et al. | May 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5023775 | Poret | Jun 1991 | A |
5031179 | Yoshida et al. | Jul 1991 | A |
5034914 | Osterlund | Jul 1991 | A |
5036473 | Butts et al. | Jul 1991 | A |
5036493 | Nielsen | Jul 1991 | A |
5041924 | Blackborow et al. | Aug 1991 | A |
5043978 | Nagler et al. | Aug 1991 | A |
5047924 | Fujioka et al. | Sep 1991 | A |
5055997 | Sluijter et al. | Oct 1991 | A |
5065308 | Evans | Nov 1991 | A |
5072178 | Matsumoto | Dec 1991 | A |
5076482 | Kozyrski et al. | Dec 1991 | A |
5081375 | Pickett et al. | Jan 1992 | A |
5099447 | Myszewski | Mar 1992 | A |
5103311 | Sluijter et al. | Apr 1992 | A |
5109503 | Cruickshank et al. | Apr 1992 | A |
5113498 | Evan et al. | May 1992 | A |
5115510 | Okamoto et al. | May 1992 | A |
5119290 | Loo et al. | Jun 1992 | A |
5123109 | Hillis | Jun 1992 | A |
5125801 | Nabity et al. | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5142469 | Weisenborn | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5193202 | Jackson et al. | Mar 1993 | A |
5203005 | Horst | Apr 1993 | A |
5204935 | Mihara et al. | Apr 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5212716 | Ferraiolo et al. | May 1993 | A |
5212777 | Gove et al. | May 1993 | A |
5218302 | Loewe et al. | Jun 1993 | A |
5226122 | Thayer et al. | Jul 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5233539 | Agrawal et al. | Aug 1993 | A |
5237686 | Asano et al. | Aug 1993 | A |
5243238 | Kean | Sep 1993 | A |
5245616 | Olson | Sep 1993 | A |
5247689 | Ewert | Sep 1993 | A |
RE34444 | Kaplinsky | Nov 1993 | E |
5274593 | Proebsting | Dec 1993 | A |
5276836 | Fukumaru et al. | Jan 1994 | A |
5287472 | Horst | Feb 1994 | A |
5287511 | Robinson et al. | Feb 1994 | A |
5287532 | Hunt | Feb 1994 | A |
5294119 | Vincent et al. | Mar 1994 | A |
5301284 | Estes et al. | Apr 1994 | A |
5301344 | Kolchinsky | Apr 1994 | A |
5303172 | Magar et al. | Apr 1994 | A |
5311079 | Ditlow et al. | May 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5343406 | Freeman et al. | Aug 1994 | A |
5347639 | Rechtschaffen et al. | Sep 1994 | A |
5349193 | Mott et al. | Sep 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5355508 | Kan | Oct 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5365125 | Goetting et al. | Nov 1994 | A |
5379444 | Mumme | Jan 1995 | A |
5386154 | Goetting et al. | Jan 1995 | A |
5386518 | Reagle et al. | Jan 1995 | A |
5392437 | Matter et al. | Feb 1995 | A |
5408643 | Katayose | Apr 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5412795 | Larson | May 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5418953 | Hunt et al. | May 1995 | A |
5421019 | Holsztynski et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5425036 | Liu et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5428526 | Flood et al. | Jun 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5435000 | Boothroyd et al. | Jul 1995 | A |
5440245 | Galbraith et al. | Aug 1995 | A |
5440538 | Olsen et al. | Aug 1995 | A |
5442790 | Nosenchuck | Aug 1995 | A |
5444394 | Watson et al. | Aug 1995 | A |
5448186 | Kawata | Sep 1995 | A |
5450022 | New | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5469003 | Kean | Nov 1995 | A |
5473266 | Ahanin et al. | Dec 1995 | A |
5473267 | Stansfield | Dec 1995 | A |
5475583 | Bock et al. | Dec 1995 | A |
5475803 | Stearns et al. | Dec 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5477525 | Okabe | Dec 1995 | A |
5483620 | Pechanek et al. | Jan 1996 | A |
5485103 | Pedersen et al. | Jan 1996 | A |
5485104 | Agrawal et al. | Jan 1996 | A |
5489857 | Agrawal et al. | Feb 1996 | A |
5491353 | Kean | Feb 1996 | A |
5493239 | Zlotnick | Feb 1996 | A |
5493663 | Parikh | Feb 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5502838 | Kikinis | Mar 1996 | A |
5504439 | Tavana | Apr 1996 | A |
5506998 | Kato et al. | Apr 1996 | A |
5510730 | El Gamal et al. | Apr 1996 | A |
5511173 | Yamaura et al. | Apr 1996 | A |
5513366 | Agarwal et al. | Apr 1996 | A |
5521837 | Frankle et al. | May 1996 | A |
5522083 | Gove et al. | May 1996 | A |
5525971 | Flynn | Jun 1996 | A |
5530873 | Takano | Jun 1996 | A |
5530946 | Bouvier et al. | Jun 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5532957 | Malhi | Jul 1996 | A |
5535406 | Kolchinsky | Jul 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5537580 | Giomi et al. | Jul 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541530 | Cliff et al. | Jul 1996 | A |
5544336 | Kato et al. | Aug 1996 | A |
5548773 | Kemeny et al. | Aug 1996 | A |
5550782 | Cliff et al. | Aug 1996 | A |
5555434 | Carlstedt | Sep 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5561738 | Kinerk et al. | Oct 1996 | A |
5568624 | Sites et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572710 | Asano et al. | Nov 1996 | A |
5574927 | Scantlin | Nov 1996 | A |
5574930 | Halverson, Jr. et al. | Nov 1996 | A |
5581731 | King et al. | Dec 1996 | A |
5581734 | DiBrino et al. | Dec 1996 | A |
5583450 | Trimberger et al. | Dec 1996 | A |
5584013 | Cheong et al. | Dec 1996 | A |
5586044 | Agrawal et al. | Dec 1996 | A |
5587921 | Agrawal et al. | Dec 1996 | A |
5588152 | Dapp et al. | Dec 1996 | A |
5590345 | Barker et al. | Dec 1996 | A |
5590348 | Phillips et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5600597 | Kean et al. | Feb 1997 | A |
5600845 | Gilson | Feb 1997 | A |
5602999 | Hyatt | Feb 1997 | A |
5603005 | Bauman et al. | Feb 1997 | A |
5606698 | Powell | Feb 1997 | A |
5608342 | Trimberger | Mar 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5617577 | Barker et al. | Apr 1997 | A |
5619720 | Garde et al. | Apr 1997 | A |
5625806 | Kromer | Apr 1997 | A |
5625836 | Barker et al. | Apr 1997 | A |
5627992 | Baror | May 1997 | A |
5634131 | Matter et al. | May 1997 | A |
5635851 | Tavana | Jun 1997 | A |
5642058 | Trimberger et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5649176 | Selvidge et al. | Jul 1997 | A |
5649179 | Steenstra et al. | Jul 1997 | A |
5652529 | Gould et al. | Jul 1997 | A |
5652894 | Hu et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5655124 | Lin | Aug 1997 | A |
5656950 | Duong et al. | Aug 1997 | A |
5657330 | Matsumoto | Aug 1997 | A |
5659785 | Pechanek et al. | Aug 1997 | A |
5659797 | Zandveld et al. | Aug 1997 | A |
5675262 | Doung et al. | Oct 1997 | A |
5675743 | Mavity | Oct 1997 | A |
5675757 | Davidson et al. | Oct 1997 | A |
5675777 | Glickman | Oct 1997 | A |
5677909 | Heide | Oct 1997 | A |
5680583 | Kuijsten | Oct 1997 | A |
5682491 | Pechanek et al. | Oct 1997 | A |
5682544 | Pechanek et al. | Oct 1997 | A |
5687325 | Chang | Nov 1997 | A |
5694602 | Smith | Dec 1997 | A |
5696791 | Yeung | Dec 1997 | A |
5696976 | Nizar et al. | Dec 1997 | A |
5701091 | Kean | Dec 1997 | A |
5705938 | Kean | Jan 1998 | A |
5706482 | Matsushima et al. | Jan 1998 | A |
5713037 | Wilkinson et al. | Jan 1998 | A |
5717890 | Ichida et al. | Feb 1998 | A |
5717943 | Barker et al. | Feb 1998 | A |
5727229 | Kan et al. | Mar 1998 | A |
5732209 | Vigil et al. | Mar 1998 | A |
5734869 | Chen | Mar 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5737516 | Circello et al. | Apr 1998 | A |
5737565 | Mayfield | Apr 1998 | A |
5742180 | DeHon et al. | Apr 1998 | A |
5745734 | Craft et al. | Apr 1998 | A |
5748872 | Norman | May 1998 | A |
5748979 | Trimberger | May 1998 | A |
5752035 | Trimberger | May 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5754820 | Yamagami | May 1998 | A |
5754827 | Barbier et al. | May 1998 | A |
5754871 | Wilkinson et al. | May 1998 | A |
5754876 | Tamaki et al. | May 1998 | A |
5760602 | Tan | Jun 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768629 | Wise et al. | Jun 1998 | A |
5773994 | Jones | Jun 1998 | A |
5778237 | Yamamoto et al. | Jul 1998 | A |
5778439 | Timberger et al. | Jul 1998 | A |
5781756 | Hung | Jul 1998 | A |
5784313 | Trimberger et al. | Jul 1998 | A |
5784630 | Saito et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5794059 | Barker et al. | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5801547 | Kean | Sep 1998 | A |
5801715 | Norman | Sep 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5804986 | Jones | Sep 1998 | A |
5815004 | Trimberger et al. | Sep 1998 | A |
5815715 | Kayhan | Sep 1998 | A |
5815726 | Cliff | Sep 1998 | A |
5821774 | Veytsman et al. | Oct 1998 | A |
5828229 | Cliff et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5831448 | Kean | Nov 1998 | A |
5832288 | Wong | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838988 | Panwar et al. | Nov 1998 | A |
5841973 | Kessler et al. | Nov 1998 | A |
5844422 | Trimberger et al. | Dec 1998 | A |
5844888 | Markkula, Jr. et al. | Dec 1998 | A |
5848238 | Shimomura et al. | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5857097 | Henzinger et al. | Jan 1999 | A |
5857109 | Taylor | Jan 1999 | A |
5859544 | Norman | Jan 1999 | A |
5860119 | Dockser | Jan 1999 | A |
5862403 | Kanai et al. | Jan 1999 | A |
5865239 | Carr | Feb 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5867723 | Chin et al. | Feb 1999 | A |
5870620 | Kadosumi et al. | Feb 1999 | A |
5884075 | Hester et al. | Mar 1999 | A |
5887162 | Williams et al. | Mar 1999 | A |
5887165 | Martel et al. | Mar 1999 | A |
5889533 | Lee | Mar 1999 | A |
5889982 | Rodgers et al. | Mar 1999 | A |
5892370 | Eaton et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5895487 | Boyd et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5901279 | Davis, III | May 1999 | A |
5913925 | Kahle et al. | Jun 1999 | A |
5915099 | Takata et al. | Jun 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5924119 | Sindhu et al. | Jul 1999 | A |
5926638 | Inoue | Jul 1999 | A |
5927423 | Wada et al. | Jul 1999 | A |
5933023 | Young | Aug 1999 | A |
5933642 | Greenbaum et al. | Aug 1999 | A |
5936424 | Young et al. | Aug 1999 | A |
5943242 | Vorbach et al. | Aug 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5960200 | Eager et al. | Sep 1999 | A |
5966143 | Breternitz, Jr. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5978583 | Ekanadham et al. | Nov 1999 | A |
5996048 | Cherabuddi et al. | Nov 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6003143 | Kim et al. | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6020758 | Patel et al. | Feb 2000 | A |
6020760 | Sample et al. | Feb 2000 | A |
6021490 | Vorbach et al. | Feb 2000 | A |
6023564 | Trimberger | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6026478 | Dowling | Feb 2000 | A |
6026481 | New et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6035371 | Magloire | Mar 2000 | A |
6038650 | Vorbach et al. | Mar 2000 | A |
6038656 | Martin et al. | Mar 2000 | A |
6044030 | Zheng et al. | Mar 2000 | A |
6045585 | Blainey | Apr 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6049222 | Lawman | Apr 2000 | A |
6049866 | Earl | Apr 2000 | A |
6052524 | Pauna | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6054873 | Laramie | Apr 2000 | A |
6055619 | North et al. | Apr 2000 | A |
6058266 | Megiddo et al. | May 2000 | A |
6058469 | Baxter | May 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6072348 | New et al. | Jun 2000 | A |
6075935 | Ussery et al. | Jun 2000 | A |
6076157 | Borkenhagen et al. | Jun 2000 | A |
6077315 | Greenbaum et al. | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6081903 | Vorbach et al. | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6086628 | Dave et al. | Jul 2000 | A |
6088795 | Vorbach et al. | Jul 2000 | A |
6092174 | Roussakov | Jul 2000 | A |
RE36839 | Simmons et al. | Aug 2000 | E |
6096091 | Hartmann | Aug 2000 | A |
6105105 | Trimberger et al. | Aug 2000 | A |
6105106 | Manning | Aug 2000 | A |
6108760 | Mirsky et al. | Aug 2000 | A |
6118724 | Higginbottom | Sep 2000 | A |
6119181 | Vorbach et al. | Sep 2000 | A |
6122719 | Mirsky et al. | Sep 2000 | A |
6125072 | Wu | Sep 2000 | A |
6125408 | McGee et al. | Sep 2000 | A |
6127908 | Bozler et al. | Oct 2000 | A |
6128720 | Pechanek et al. | Oct 2000 | A |
6134166 | Lytle et al. | Oct 2000 | A |
6137307 | Iwanczuk et al. | Oct 2000 | A |
6145072 | Shams et al. | Nov 2000 | A |
6150837 | Beal et al. | Nov 2000 | A |
6150839 | New et al. | Nov 2000 | A |
6154048 | Iwanczuk et al. | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6154826 | Wulf et al. | Nov 2000 | A |
6157214 | Marshall | Dec 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6172520 | Lawman et al. | Jan 2001 | B1 |
6173419 | Barnett | Jan 2001 | B1 |
6173434 | Wirthlin et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6185256 | Saito et al. | Feb 2001 | B1 |
6185731 | Maeda et al. | Feb 2001 | B1 |
6188240 | Nakaya | Feb 2001 | B1 |
6188650 | Hamada et al. | Feb 2001 | B1 |
6191614 | Schultz et al. | Feb 2001 | B1 |
6198304 | Sasaki | Mar 2001 | B1 |
6201406 | Iwanczuk et al. | Mar 2001 | B1 |
6202163 | Gabzdyl et al. | Mar 2001 | B1 |
6202182 | Abramovici et al. | Mar 2001 | B1 |
6204687 | Schultz et al. | Mar 2001 | B1 |
6211697 | Lien et al. | Apr 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6212650 | Guccione | Apr 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6216223 | Revilla et al. | Apr 2001 | B1 |
6219833 | Solomon et al. | Apr 2001 | B1 |
RE37195 | Kean | May 2001 | E |
6230307 | Davis et al. | May 2001 | B1 |
6240502 | Panwar et al. | May 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6247147 | Beenstra et al. | Jun 2001 | B1 |
6249756 | Bunton et al. | Jun 2001 | B1 |
6252792 | Marshall et al. | Jun 2001 | B1 |
6256724 | Hocevar et al. | Jul 2001 | B1 |
6260114 | Schug | Jul 2001 | B1 |
6260179 | Ohsawa et al. | Jul 2001 | B1 |
6262908 | Marshall et al. | Jul 2001 | B1 |
6263430 | Trimberger et al. | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6279077 | Nasserbakht et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282701 | Wygodny et al. | Aug 2001 | B1 |
6285624 | Chen | Sep 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6289369 | Sundaresan | Sep 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6298043 | Mauger et al. | Oct 2001 | B1 |
6298396 | Loyer et al. | Oct 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6301706 | Maslennikov et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6311265 | Beckerle et al. | Oct 2001 | B1 |
6321298 | Hubis | Nov 2001 | B1 |
6321366 | Tseng et al. | Nov 2001 | B1 |
6321373 | Ekanadham et al. | Nov 2001 | B1 |
6338106 | Vorbach et al. | Jan 2002 | B1 |
6339424 | Ishikawa et al. | Jan 2002 | B1 |
6339840 | Kothari et al. | Jan 2002 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6373779 | Pang et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6378068 | Foster et al. | Apr 2002 | B1 |
6381624 | Colon-Bonet et al. | Apr 2002 | B1 |
6389379 | Lin et al. | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6400601 | Sudo et al. | Jun 2002 | B1 |
6404224 | Azegami et al. | Jun 2002 | B1 |
6405185 | Pechanek et al. | Jun 2002 | B1 |
6405299 | Vorbach et al. | Jun 2002 | B1 |
6421808 | McGeer | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6425054 | Nguyen | Jul 2002 | B1 |
6425068 | Vorbach | Jul 2002 | B1 |
6426649 | Fu et al. | Jul 2002 | B1 |
6427156 | Chapman et al. | Jul 2002 | B1 |
6430309 | Pressman et al. | Aug 2002 | B1 |
6434642 | Camilleri et al. | Aug 2002 | B1 |
6434672 | Gaither | Aug 2002 | B1 |
6434695 | Esfahani et al. | Aug 2002 | B1 |
6434699 | Jones et al. | Aug 2002 | B1 |
6437441 | Yamamoto | Aug 2002 | B1 |
6438747 | Schreiber et al. | Aug 2002 | B1 |
6449283 | Chao et al. | Sep 2002 | B1 |
6456628 | Greim et al. | Sep 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6476634 | Bilski | Nov 2002 | B1 |
6477643 | Vorbach et al. | Nov 2002 | B1 |
6480937 | Vorbach et al. | Nov 2002 | B1 |
6480954 | Trimberger et al. | Nov 2002 | B2 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487709 | Keller et al. | Nov 2002 | B1 |
6490695 | Zagorski et al. | Dec 2002 | B1 |
6496740 | Robertson et al. | Dec 2002 | B1 |
6496902 | Faanes et al. | Dec 2002 | B1 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6504398 | Lien et al. | Jan 2003 | B1 |
6507898 | Gibson et al. | Jan 2003 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6512804 | Johnson et al. | Jan 2003 | B1 |
6513077 | Vorbach et al. | Jan 2003 | B2 |
6516382 | Manning | Feb 2003 | B2 |
6518787 | Allegrucci et al. | Feb 2003 | B1 |
6519674 | Lam et al. | Feb 2003 | B1 |
6523107 | Stansfield et al. | Feb 2003 | B1 |
6525678 | Veenstra et al. | Feb 2003 | B1 |
6526520 | Vorbach et al. | Feb 2003 | B1 |
6538468 | Moore | Mar 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6539415 | Mercs | Mar 2003 | B1 |
6539438 | Ledzius et al. | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6542394 | Marshall et al. | Apr 2003 | B2 |
6542844 | Hanna | Apr 2003 | B1 |
6542998 | Vorbach | Apr 2003 | B1 |
6553395 | Marshall et al. | Apr 2003 | B2 |
6553479 | Mirsky et al. | Apr 2003 | B2 |
6567834 | Marshall et al. | May 2003 | B1 |
6571381 | Vorbach et al. | May 2003 | B1 |
6587939 | Takano | Jul 2003 | B1 |
6598128 | Yoshioka et al. | Jul 2003 | B1 |
6606704 | Adiletta et al. | Aug 2003 | B1 |
6624819 | Lewis | Sep 2003 | B1 |
6625631 | Ruehle | Sep 2003 | B2 |
6631487 | Abramovici et al. | Oct 2003 | B1 |
6633181 | Rupp | Oct 2003 | B1 |
6657457 | Hanrahan et al. | Dec 2003 | B1 |
6658564 | Smith et al. | Dec 2003 | B1 |
6665758 | Frazier et al. | Dec 2003 | B1 |
6668237 | Guccione et al. | Dec 2003 | B1 |
6681388 | Sato et al. | Jan 2004 | B1 |
6687788 | Vorbach et al. | Feb 2004 | B2 |
6694434 | McGee et al. | Feb 2004 | B1 |
6697979 | Vorbach et al. | Feb 2004 | B1 |
6704816 | Burke | Mar 2004 | B1 |
6708223 | Wang et al. | Mar 2004 | B1 |
6708325 | Cooke et al. | Mar 2004 | B2 |
6717436 | Kress et al. | Apr 2004 | B2 |
6721830 | Vorbach et al. | Apr 2004 | B2 |
6725334 | Barroso et al. | Apr 2004 | B2 |
6728871 | Vorbach et al. | Apr 2004 | B1 |
6745317 | Mirsky et al. | Jun 2004 | B1 |
6748440 | Lisitsa et al. | Jun 2004 | B1 |
6751722 | Mirsky et al. | Jun 2004 | B2 |
6754805 | Juan | Jun 2004 | B1 |
6757847 | Farkash et al. | Jun 2004 | B1 |
6757892 | Gokhale et al. | Jun 2004 | B1 |
6782445 | Olgiati et al. | Aug 2004 | B1 |
6785826 | Durham et al. | Aug 2004 | B1 |
6802026 | Patterson et al. | Oct 2004 | B1 |
6803787 | Wicker, Jr. | Oct 2004 | B1 |
6820188 | Stansfield et al. | Nov 2004 | B2 |
6829697 | Davis et al. | Dec 2004 | B1 |
6836842 | Guccione et al. | Dec 2004 | B1 |
6847370 | Baldwin et al. | Jan 2005 | B2 |
6859869 | Vorbach | Feb 2005 | B1 |
6868476 | Rosenbluth | Mar 2005 | B2 |
6871341 | Shyr | Mar 2005 | B1 |
6874108 | Abramovici et al. | Mar 2005 | B1 |
6886092 | Douglass et al. | Apr 2005 | B1 |
6901502 | Yano et al. | May 2005 | B2 |
6928523 | Yamada | Aug 2005 | B2 |
6957306 | So et al. | Oct 2005 | B2 |
6961924 | Bates et al. | Nov 2005 | B2 |
6975138 | Pani et al. | Dec 2005 | B2 |
6977649 | Baldwin et al. | Dec 2005 | B1 |
7000161 | Allen et al. | Feb 2006 | B1 |
7007096 | Lisitsa et al. | Feb 2006 | B1 |
7010667 | Vorbach | Mar 2006 | B2 |
7010687 | Ichimura | Mar 2006 | B2 |
7028107 | Vorbach et al. | Apr 2006 | B2 |
7036114 | McWilliams et al. | Apr 2006 | B2 |
7038952 | Zack et al. | May 2006 | B1 |
7043416 | Lin | May 2006 | B1 |
7144152 | Rusu et al. | Dec 2006 | B2 |
7155708 | Hammes et al. | Dec 2006 | B2 |
7164422 | Wholey et al. | Jan 2007 | B1 |
7210129 | May et al. | Apr 2007 | B2 |
7216204 | Rosenbluth | May 2007 | B2 |
7237087 | Vorbach et al. | Jun 2007 | B2 |
7249351 | Songer et al. | Jul 2007 | B1 |
7254649 | Subramanian et al. | Aug 2007 | B2 |
7340596 | Crosland et al. | Mar 2008 | B1 |
7346644 | Langhammer et al. | Mar 2008 | B1 |
7350178 | Crosland et al. | Mar 2008 | B1 |
7382156 | Pani et al. | Jun 2008 | B2 |
7455450 | Liu et al. | Nov 2008 | B2 |
7595659 | Vorbach et al. | Sep 2009 | B2 |
7650448 | Vorbach et al. | Jan 2010 | B2 |
7657877 | Vorbach et al. | Feb 2010 | B2 |
7759968 | Hussein et al. | Jul 2010 | B1 |
7873811 | Wolinski et al. | Jan 2011 | B1 |
20010001860 | Bieu | May 2001 | A1 |
20010003834 | Shimonishi | Jun 2001 | A1 |
20010010074 | Nishihara et al. | Jul 2001 | A1 |
20010018733 | Fujii et al. | Aug 2001 | A1 |
20010032305 | Barry | Oct 2001 | A1 |
20020004916 | Marchand et al. | Jan 2002 | A1 |
20020010853 | Trimberger et al. | Jan 2002 | A1 |
20020013861 | Adiletta et al. | Jan 2002 | A1 |
20020038414 | Taylor | Mar 2002 | A1 |
20020045952 | Blemel | Apr 2002 | A1 |
20020051482 | Lomp | May 2002 | A1 |
20020073282 | Chauvel et al. | Jun 2002 | A1 |
20020083308 | Pereira et al. | Jun 2002 | A1 |
20020099759 | Gootherts | Jul 2002 | A1 |
20020103839 | Ozawa | Aug 2002 | A1 |
20020124238 | Metzgen | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020143505 | Drusinsky | Oct 2002 | A1 |
20020144229 | Hanrahan | Oct 2002 | A1 |
20020147932 | Brock et al. | Oct 2002 | A1 |
20020152060 | Tseng | Oct 2002 | A1 |
20020156962 | Chopra et al. | Oct 2002 | A1 |
20020162097 | Meribout | Oct 2002 | A1 |
20020165886 | Lam | Nov 2002 | A1 |
20030001615 | Sueyoshi et al. | Jan 2003 | A1 |
20030014743 | Cooke et al. | Jan 2003 | A1 |
20030046607 | May et al. | Mar 2003 | A1 |
20030052711 | Taylor | Mar 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030056062 | Prabhu | Mar 2003 | A1 |
20030056085 | Vorbach | Mar 2003 | A1 |
20030056091 | Greenberg | Mar 2003 | A1 |
20030056202 | May et al. | Mar 2003 | A1 |
20030061542 | Bates et al. | Mar 2003 | A1 |
20030062922 | Douglass et al. | Apr 2003 | A1 |
20030070059 | Dally et al. | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093662 | Vorbach et al. | May 2003 | A1 |
20030097513 | Vorbach et al. | May 2003 | A1 |
20030123579 | Safavi et al. | Jul 2003 | A1 |
20030135686 | Vorbach et al. | Jul 2003 | A1 |
20030154349 | Berg et al. | Aug 2003 | A1 |
20030192032 | Andrade et al. | Oct 2003 | A1 |
20030226056 | Yip et al. | Dec 2003 | A1 |
20040015899 | May et al. | Jan 2004 | A1 |
20040025005 | Vorbach et al. | Feb 2004 | A1 |
20040039880 | Pentkovski et al. | Feb 2004 | A1 |
20040078548 | Claydon et al. | Apr 2004 | A1 |
20040088689 | Hammes | May 2004 | A1 |
20040088691 | Hammes et al. | May 2004 | A1 |
20040168099 | Vorbach et al. | Aug 2004 | A1 |
20040199688 | Vorbach et al. | Oct 2004 | A1 |
20050066213 | Vorbach et al. | Mar 2005 | A1 |
20050091468 | Morita et al. | Apr 2005 | A1 |
20050144210 | Simkins et al. | Jun 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20060036988 | Allen et al. | Feb 2006 | A1 |
20060230094 | Simkins et al. | Oct 2006 | A1 |
20060230096 | Thendean et al. | Oct 2006 | A1 |
20070050603 | Vorbach et al. | Mar 2007 | A1 |
20070083730 | Vorbach et al. | Apr 2007 | A1 |
20080313383 | Morita et al. | Dec 2008 | A1 |
20090085603 | Paul et al. | Apr 2009 | A1 |
20090193384 | Sima et al. | Jul 2009 | A1 |
20100306602 | Kamiya et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
42 21 278 | Jan 1994 | DE |
44 16 881 | Nov 1994 | DE |
4416881.0 | Nov 1994 | DE |
38 55 673 | Nov 1996 | DE |
196 54 593 | Jul 1998 | DE |
19654595 | Jul 1998 | DE |
19654846 | Jul 1998 | DE |
197 04 044 | Aug 1998 | DE |
197 04 728 | Aug 1998 | DE |
19704728 | Aug 1998 | DE |
197 04 742 | Sep 1998 | DE |
19651075 | Oct 1998 | DE |
198 22 776 | Mar 1999 | DE |
198 07 872 | Aug 1999 | DE |
198 61 088 | Feb 2000 | DE |
199 26 538 | Dec 2000 | DE |
100 28 397 | Dec 2001 | DE |
100 36 627 | Feb 2002 | DE |
101 29 237 | Apr 2002 | DE |
102 04 044 | Aug 2003 | DE |
0 208 457 | Jan 1987 | EP |
0 221 360 | May 1987 | EP |
0 398 552 | Nov 1990 | EP |
0 428 327 | May 1991 | EP |
0428327 | May 1991 | EP |
748 051 | Dec 1991 | EP |
0748051 | Dec 1991 | EP |
0 463 721 | Jan 1992 | EP |
0 477 809 | Apr 1992 | EP |
0 485 690 | May 1992 | EP |
0 497 029 | Aug 1992 | EP |
0 539 595 | May 1993 | EP |
0539595 | May 1993 | EP |
0 638 867 | Aug 1994 | EP |
0 628 917 | Dec 1994 | EP |
0 678 985 | Oct 1995 | EP |
0 686 915 | Dec 1995 | EP |
0 696 001 | Feb 1996 | EP |
0 707 269 | Apr 1996 | EP |
0 726 532 | Aug 1996 | EP |
735 685 | Oct 1996 | EP |
0835685 | Oct 1996 | EP |
0 746 106 | Dec 1996 | EP |
0 926 594 | Jun 1999 | EP |
1 102 674 | Jul 1999 | EP |
726532 | Aug 2000 | EP |
1 061 439 | Dec 2000 | EP |
1 115 204 | Jul 2001 | EP |
1 146 432 | Oct 2001 | EP |
1 669 885 | Jun 2006 | EP |
2 752 466 | Feb 1998 | FR |
2 304 438 | Mar 1997 | GB |
58-058672 | Apr 1983 | JP |
1044571 | Feb 1989 | JP |
1-229378 | Sep 1989 | JP |
2-130023 | May 1990 | JP |
2-226423 | Sep 1990 | JP |
5-265705 | Oct 1993 | JP |
5-276007 | Oct 1993 | JP |
5-509184 | Dec 1993 | JP |
6-266605 | Sep 1994 | JP |
7-086921 | Mar 1995 | JP |
7-154242 | Jun 1995 | JP |
8-148989 | Jun 1995 | JP |
7-182160 | Jul 1995 | JP |
7-182167 | Jul 1995 | JP |
8-044581 | Feb 1996 | JP |
8-069447 | Mar 1996 | JP |
8-101761 | Apr 1996 | JP |
8-102492 | Apr 1996 | JP |
8-106443 | Apr 1996 | JP |
8-221164 | Aug 1996 | JP |
8-250685 | Sep 1996 | JP |
9-027745 | Jan 1997 | JP |
9-237284 | Sep 1997 | JP |
9-294069 | Nov 1997 | JP |
11-046187 | Feb 1999 | JP |
11-184718 | Jul 1999 | JP |
11-307725 | Nov 1999 | JP |
2000-076066 | Mar 2000 | JP |
2000-181566 | Jun 2000 | JP |
2000-201066 | Jul 2000 | JP |
2000-311156 | Nov 2000 | JP |
2001-500682 | Jan 2001 | JP |
2001-167066 | Jun 2001 | JP |
2001-510650 | Jul 2001 | JP |
2001-236221 | Aug 2001 | JP |
2002-0033457 | Jan 2002 | JP |
3-961028 | Aug 2007 | JP |
A9004835 | May 1990 | WO |
WO9004835 | May 1990 | WO |
WO9011648 | Oct 1990 | WO |
WO9201987 | Feb 1992 | WO |
A9311503 | Jun 1993 | WO |
WO9311503 | Jun 1993 | WO |
WO9406077 | Mar 1994 | WO |
9408399 | Apr 1994 | WO |
9500161 | Jan 1995 | WO |
9526001 | Sep 1995 | WO |
0707269 | Apr 1996 | WO |
WO9810517 | Mar 1998 | WO |
WO9826356 | Jun 1998 | WO |
WO9828697 | Jul 1998 | WO |
WO9829952 | Jul 1998 | WO |
WO9831102 | Jul 1998 | WO |
WO9835294 | Aug 1998 | WO |
WO9835299 | Aug 1998 | WO |
WO9900731 | Jan 1999 | WO |
WO9900739 | Jan 1999 | WO |
WO9912111 | Mar 1999 | WO |
WO9932975 | Jul 1999 | WO |
WO9940522 | Aug 1999 | WO |
WO9944120 | Sep 1999 | WO |
WO9944147 | Sep 1999 | WO |
WO0017771 | Mar 2000 | WO |
WO0038087 | Jun 2000 | WO |
WO0045282 | Aug 2000 | WO |
WO0049496 | Aug 2000 | WO |
WO0077652 | Dec 2000 | WO |
WO0155917 | Aug 2001 | WO |
WO0213000 | Feb 2002 | WO |
WO0221010 | Mar 2002 | WO |
WO0229600 | Apr 2002 | WO |
WO0250665 | Jun 2002 | WO |
WO02071196 | Sep 2002 | WO |
WO02071248 | Sep 2002 | WO |
WO02071249 | Sep 2002 | WO |
WO02103532 | Dec 2002 | WO |
WO03017095 | Feb 2003 | WO |
WO03023616 | Mar 2003 | WO |
WO03025781 | Mar 2003 | WO |
WO03032975 | Apr 2003 | WO |
WO03036507 | May 2003 | WO |
WO 03091875 | Nov 2003 | WO |
WO2004053718 | Jun 2004 | WO |
WO2004114128 | Dec 2004 | WO |
WO2005045692 | May 2005 | WO |
WO 2007030395 | Mar 2007 | WO |
Entry |
---|
U.S. Reexamination Application Control No. 90/010,979, Vorbach et al., filed May 4, 2010. |
U.S. Reexamination Application Control No. 90/011,087, Vorbach et al., filed Jul. 8, 2010. |
U.S. Reexamination Application Control No. 90/010,450, Vorbach et al. filed Mar. 27, 2009. |
U.S. Appl. No. 60/109,417, Jefferson et al., filed Nov. 18, 1998. |
Abnous et al., “Ultra-Low-Power Domain-Specific Multimedia Processors,” U.C. Berkeley, 1996 IEEE, pp. 461-470. |
Abnous, A., et al., “The Pleiades Architecture,” Chapter I of The Application of Programmable DSPs in Mobile Communications, A. Gatherer and A. Auslander, Ed., Wiley, 2002, pp. 1-33. |
Advanced RISC Machines, “Introduction to AMBA,” Oct. 1996, Section 1, pp. 1-7. |
ARM, “The Architecture for the Digital World,” http://www.arm.com/products/ Mar. 18, 2009, 3 pages. |
ARM, “The Architecture for the Digital World; Milestones,” http://www.arm.com/aboutarm/milestones.html Mar. 18, 2009, 5 pages. |
Albahama, O.T. et al., “On the Viability of FPGA-Based Integrated Coprocessors,” Dept. of Electrical and Electronic Engineering, Imperial College of Science, London, 1999 IEEE, pp. 206-215. |
Altera, “Flex 8000 Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-62. |
Altera, “Flex 10K Embedded Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-128. |
Altera, “APEX 20K Programmable Logic Device Family,” Altera Corporation Data Sheet, Mar. 2004, ver. 5.1, pp. 1-117. |
Altera, “2. TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices,” Altera Corporation, Jul. 2005, 28 pages. |
Altera, “APEX II Programmable Logic Device Family,” Altera Corporation Data Sheet, Aug. 2002, Ver. 3.0, 99 pages. |
Asari, K. et al., “FeRAM circuit technology for system on a chip,” Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999), pp. 193-197. |
Athanas et al., “Processor Reconfiguration Through Instruction-Set Metamorphosis,” 1993, IEEE Computers, pp. 11-18. |
Atmel, 5-K-50K Gates Coprocessor FPGA with Free Ram, Data Sheet, Jul. 2006, 55 pages. |
Atmel, FPGA-based FIR Filter Application Note, Sep. 1999, 10 pages. |
Atmel, “An Introduction to DSP Applications using the AT40K FPGA,” FPGA Application Engineering, San Jose, CA, Apr. 2004, 15 pages. |
Atmel, Configurable Logic Design & Application Book, Atmel Corporation, 1995, pp. 2-19 through 2-25. |
Atmel, Field Programmable Gate Array Configuration Guide, AT6000 Series Configuration Data Sheet, Sep. 1999, pp. 1-20. |
Bacon, D. et al., “Compiler Transformations for High-Performance Computing,” ACM Computing Surveys, 26(4):325-420 (1994). |
Bakkes, P.J., et al., “Mixing Fixed and Reconfigurable Logic for Array Processing,” Dept. of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, 1996 IEEE, pp. 118-125. |
Ballagh et al., “Java Debug Hardware Models Using JBits,” 8th Reconfigurable Architectures Workshop, 2001, 8 pages. |
Beck et al., “From control flow to data flow,” TR 89/1050, Oct. 1989, Dept. of Computer Science, Cornell University, Ithaca, NY, pp. 1-25. |
Becker, J., “A Partitioning Compiler for Computers with Xputer-based Accelerators,” 1997, Kaiserslautern University, 326 pp. |
Becker, J. et al., “Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC),” IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (Feb. 2003), 6 pages. |
Becker, J., “Configurable Systems-on-Chip (CSoC),” (Invited Tutorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (Sep. 2002), 6 pages. |
Becker et al., “Automatic Parallelism Exploitation for FPL-Based Accelerators,” 1998, Proc. 31st Annual Hawaii International Conference on System Sciences, pp. 169-178. |
Bellows et al., “Designing Run-Time Reconfigurable Systems with JHDL,” Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, The Netherlands, 2001, pp. 29-45. |
“BlueGene/L—Hardware Architecture Overview,” BlueGene/L design team, IBM Research, Oct. 17, 2003 slide presentation, pp. 1-23. |
“BlueGene/L: the next generation of scalable, supercomputer,” Kissel et al., Lawrence Livermore National Laboratory, Livermore, California, Nov. 18, 2002, 29 pages. |
BlueGene Project Update, Jan. 2002, IBM slide presentation, 20 pages. |
BlueGene/L, “An Overview of the BlueGene/L Supercomputer,” The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory, 2002 IEEE. pp. 1-22. |
Bratt, A, “Motorola field programmable analogue arrays, present hardware and future trends,” Motorola Programmable Technology Centre, Gadbrook Business Centre, Northwich, Cheshire, 1998, The Institute of Electrical Engineers, IEE. Savoy Place, London, pp. 1-5. |
Callahan, et al., “The Garp Architecture and C Compiler,” Computer, Apr. 2000, pp. 62-69. |
Cardoso, J.M.P., et al., “A novel algorithm combining temporal partitioning and sharing of functional units,” University of Algarve, Faro, Portugal, 2001 IEEE, pp. 1-10. |
Cardoso, Joao M.P., and Markus Weinhardt, “XPP-VC: A C Compiler with Temporal Partitioning for the PACT-XPP Architecture,” Field-Programmable Logic and Applications. Reconfigurable Computing is Going Mainstream, 12th International Conference FPL 2002, Proceedings (Lecture Notes in Computer Science, vol. 2438) Springer-Verlag Berlin, Germany, 2002, pp. 864-874. |
Cardoso, J.M.P., “Compilation of Java™ Algorithms onto Reconfigurable Computing Systems with Exploitation of Opertional-Level Parallelism,” Ph.D. Thesis, Universidade Tecnica de Lisboa (UTL), Lisbon, Portugal Oct. 2000 (Table of Contents and English Abstract only). |
Cardoso, J.M.P., et al., “Compilation and Temporal Partitioning for a Coarse-Grain Reconfigurable Architecture,” New Algorithms, Architectures and Applications for Reconfigurable Computing, Lysacht, P. & Rosentiel, W. eds., (2005) pp. 105-115. |
Cardoso, J.M.P., et al., “Macro-Based Hardware Compilation of Java™ Bytecodes into a Dynamic Reconfigurable Computing System,” IEEE, Apr. 21, 1999, pp. 2-11. |
Chaudhry, G.M. et al., “Separated caches and buses for multiprocessor system,” Circuits and Systems, 1993; Proceedings of the 36th Midwest Symposium on Detroit, MI, USA, Aug. 16-18, 1993, New York, NY IEEE, Aug. 16, 1993, pp. 1113-1116, XP010119918 ISBN: 0-7803-1760-2. |
Chen et al., “A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths,” IEEE Journal of Solid-State Circuits, vol. 27, No. 12, Dec. 1992, pp. 1895-1904. |
Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0702, 2007, pp. 1-15, www.clearspeed.com. |
Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0306, 2006, pp. 1-14, www.clearspeed.com. |
Compton, K., et al., “Configurable Computing: A Survey of Systems and Software,” Northwestern University, Dept. of ECE, Technical Report, 1999, (XP-002315148), 39 pages. |
Cook, Jeffrey J., “The Amalgam Compiler Infrastructure,” Thesis at the University of Illinois at Urbana-Champaign (2004) Chapter 7 & Appendix G. |
Cronquist, D., et al., “Architecture Design of Reconfigurable Pipelined Datapaths,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, Proceedings of the 20th Anniversary Conference on Advanced Research in VSLI, 1999, pp. 1-15. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” pp. 434-437, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” p. 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. |
DeHon, A., “DPGA Utilization and Application,” MIT Artificial Intelligence Laboratory, Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays (FPGA 1996) IEEE Computer Society, pp. 1-7. |
DeHon, Andre, “Reconfigurable Architectures for General-Purpose Computing,” Massachusetts Institute of Technology, Technical Report AITR-1586, Oct. 1996, XP002445054, Cambridge, MA, pp. 1-353. |
Del Corso et al., “Microcomputer Buses and Links,” Academic Press Inc. Ltd., 1986, pp. 138-143, 277-285. |
Diniz, P., et al., “Automatic Synthesis of Data Storage and Control Structures for FPGA-based Computing Engines,” 2000, IEEE, pp. 91-100. |
Diniz, P., et al., “A behavioral synthesis estimation interface for configurable computing,” University of Southern California, Marina Del Rey, CA, 2001 IEEE, pp. 1-2. |
Donandt, “Improving Response Time of Programmable Logic Controllers by use of a Boolean Coprocessor,” AEG Research Institute Berlin, IEEE, 1989, pp. 4-167-4-169. |
Dutt, et al., “If Software is King for Systems-in-Silicon, What's New in Compilers?” IEEE, 1997, pp. 322-325. |
Ebeling, C., et al., “Mapping Applications to the RaPiD Configurable Architecture,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium, Publication Date: Apr. 16-18, 1997, 10 pages. |
Equator, Pixels to Packets, Enabling Multi-Format High Definition Video, Equator Technologies BSP-15 Product Brief, www.equator.com, 2001, 4 pages. |
Fawcett, B.K., “Map, Place and Route: The Key to High-Density PLD Implementation,” Wescon Conference, IEEE Center (Nov. 7, 1995) pp. 292-297. |
Ferrante, J., et al., “The Program Dependence Graph and its Use in Optimization ACM Transactions on Programming Languages and Systems,” Jul. 1987, USA, [online] Bd. 9, Nr., 3, pp. 319-349, XP002156651 ISSN: 0164-0935 ACM Digital Library. |
Fineberg, S, et al., “Experimental Analysis of a Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting,” Journal of Parallel and Distributed Computing, vol. 11, No. 3, Mar. 1991, pp. 239-251. |
Fornaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the 2nd Annual IEEE International Conference on Innovative Systems in Silicon, New York, NY, Oct. 1997, pp. 323-330. |
Forstner, “Wer Zuerst Kommt, Mahlt Zuerst!: Teil 3: Einsatzgebiete and Anwendungbeispiele von FIFO-Speichern,” Elektronik, Aug. 2000, pp. 104-109. |
Franklin, Manoj, et al., “A Fill-Unit Approach to Multiple Instruction Issue,” Proceedings of the Annual International Symposium on Microarchitecture, Nov. 1994, pp. 162-171. |
Freescale Slide Presentation, An Introduction to Motorola's RCF (Reconfigurable Compute Fabric) Technology, Presented by Frank David, Launched by Freescale Semiconductor, Inc., 2004, 39 pages. |
Galanis, M.D. et al., “Accelerating Applications by Mapping Critical Kernels on Coarse-Grain Reconfigurable Hardware in Hybrid Systems,” Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2005, 2 pages. |
Genius, D., et al., “A Case for Array Merging in Memory Hierarchies,” Proceedings of the 9th International Workshop on Compilers for Parallel Computers, CPC'01 (Jun. 2001), 10 pages. |
Gokhale, M.B., et al., “Automatic Allocation of Arrays to Memories in FPGA processors with Multiple Memory Banks,” Field-Programmable Custom Computing Machines, 1999, IEEE, pp. 63-69. |
Guccione et al., “JBits: Java based interface for reconfigurable computing,” Xilinx, Inc., San Jose, CA, 1999, 9 pages. |
Guo, Z. et al., “A Compiler Intermediate Representation for Reconfigurable Fabrics,” University of California, Riverside, Dept. of Electrical Engineering, IEEE 2006, 4 pages. |
Gwennap, Linley, “P6 Underscores Intel's Lead,” Microprocessor Report, vol. 9., No. 2, Feb. 16, 1995 (MicroDesign Resources), p. 1 and pp. 6-15. |
Gwennap, Linley, “Intel's P6 Bus Designed for Multiprocessing,” Microprocessor Report, vol. 9, No. 7 (MicroDesign Resources), May 30, 1995, p. 1 and pp. 6-10. |
Hammes, Jeff; et al., “Cameron: High Level Language Compilation for Reconfigurable Systems,” Department of Computer Science, Colorado State University, Conference on Parallel Architectures and Compilation Techniques, Oct. 12-16, 1999, 9 pages. |
Hartenstein, R. et al., “A new FPGA architecture for word-oriented datapaths,” Proc. FPL'94, Springer LNCS, Sep. 1994, pp. 144-155. |
Hartenstein, R., “Coarse grain reconfigurable architectures,” Design Automation Conference, 2001, Proceedings of the ASP-DAC 2001 Asia and South Pacific, Jan. 30-Feb. 2, 2001, IEEE Jan. 30, 2001, pp. 564-569. |
Hartenstein et al., “Parallelizing Compilation for a Novel Data-Parallel Architecture,” 1995, PCAT-94, Parallel Computing: Technology and Practice, 13 pp. |
Hartenstein et al., “A Two-Level Co-Design Framework for Xputer-based Data-driven Reconfigurable Accelerators,” 1997, Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, 10 pp. |
Hastie et al., “The implementation of hardware subroutines on field programmable gate arrays,” Custom Integrated Circuits Conference, 1990, Proceedings of the IEEE 1990, May 16, 1990, pp. 31.3.1-31.4.3 (3 pages). |
Hauck, “The Roles of FPGAs in Reprogrammable Systems,” IEEE, Apr. 1998, pp. 615-638. |
Hauser, J.R., et al., “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” University of California, Berkeley, IEEE, Apr. 1997, pp. 12-23. |
Hauser, John Reid, (Dissertation) “Augmenting A Microprocessor with Reconfigurable Hardware,” University of California, Berkeley, Fall 2000, 255 pages (submitted in 3 PDFs, Parts 1-3). |
Hauser, John R., “The Garp Architecture,” University of California at Berkeley, Computer Science Division, Oct. 1997, pp. 1-55. |
Hedge, S.J., “3D Wasp Devices for On-line Signal and Data Processing,” 1994, International Conference on Wafer Scale Integration, pp. 11-21. |
Hendrich, N., et al., “Silicon Compilation and Rapid Prototyping of Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400,” Microprocessing & Microprogramming (Sep. 1992) vol. 35(1-5), pp. 287-294. |
Huang, Libo et al., “A New Architecture for Multiple-Precision Floating-Point Multiply-Add Fused Unit Design,” School of Computer National University of Defense Technology, China, IEEE 2007, 8 pages. |
Hwang, K., “Advanced Computer Architecture—Parallelism, Scalability, Programmability,” 1993, McGraw-Hill, Inc., pp. 348-355. |
Hwang, K., “Computer Architecture and Parallel Processing,” Data Flow Computers and VLSI Computations, XP-002418655, 1985 McGraw-Hill, Chapter 10, pp. 732-807. |
Hwang, L., et al., “Min-cut Replication in Partitioned Networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [online] Bd. 14, Nr. 1, Jan. 1995, pp. 96-106, XP00053228 USA ISSN: 0278-0070 IEEE Xplore. |
IBM Technical Disclosure Bulletin, IBM Corp., New York, XP000424878, Bd. 36, Nr. 11, Nov. 1, 1993, pp. 335-336. |
“IEEE Standard Test Access Port and Boundary-Scan Architecture,” IEEE Std. 1149.1990, 1993, pp. 1-127. |
IMEC, “ADRES multimedia processor & 3MF multimedia platform,” Transferable IP, IMEC Technology Description, (Applicants believe the date to be Oct. 2005), 3 pages. |
Intel, “Pentium Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide,” Intel Corporation, Dec. 1995, [submitted in 4 PDF files: Part I, Part II, Part III and Part IV], 458 pages. |
Intel, Intel MXP5800/MXP5400 Digital Media Processors, Architecture Overview, Jun. 2004, Revision 2.4, pp. 1-24. |
Inside DSP, “Ambric Discloses Massively Parallel Architecture,” Aug. 23, 2006, http://www.insidedsp.com/Articles/tabid/64/articleType/ArticleView/articleId/155/Default.aspx, 2 pages. |
Iseli, C., et al. “A C++ Compiler for FPGA Custom Execution Units Synthesis,” IEEE, 1995, pp. 173-179. |
Isshiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture,” 1996 IEEE, pp. 38-47. |
Jacob, J., et al., “Memory Interfacing and Instruction Specification for Reconfigurable Processors,” ACM Feb. 1999, pp. 145-154. |
Jantsch, Axel et al., “A Case Study on Hardware/Software Partitioning,” Royal Institute of Technology, Kista, Sweden, Apr. 10, 1994, IEEE, pp. 111-118. |
Jantsch, Axel et al., “Hardware/Software Partitioning and Minimizing Memory Interface Traffic,” Electronic System Design Laboratory, Royal Institute of Technology, ESDLab, Electrum 229, S-16440 Kista, Sweden (Apr. 1994), pp. 226-231. |
Jo, Manhwee et al., “Implementation of Floating-Point Operations for 3D Graphics on a Coarse-Grained Reconfigurable Architecture,” Design Automation Laboratory, School of EE/CS, Seoul National University, Korea, IEEE 2007, pp. 127-130. |
John, L., et al., “A Dynamically Reconfigurable Interconnect for Array Processors,” vol. 6, No. 1, Mar. 1998, IEEE, pp. 150-157. |
Kanter, David, “Nvidia's GT200: Inside a Parallel Processor,” http://www.realworldtech.com/page.cfm?ArticleID=RWT090989195242&p=1, Sep. 8, 2008, 27 pages. |
Kastrup, B., “Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU Featuring Philips CPLDs,” Proceedings of the PACT Workshop on Reconfigurable Computing, 1998, pp. 5-10. |
Kaul, M., et al., “An automated temporal partitioning and loop fission approach of FPGA based reconfigurable synthesis of DSP applications,” University of Cincinnati, Cincinnati, OH, ACM 1999, pp. 616-622. |
Kean, T.A., “Configurable Logic: A Dynamically Programmable Cellular Architecture and its VLSI Implementation,” University of Edinburgh (Dissertation) 1988, pp. 1-286. [in two PDFs, Pt.1 and Pt.2.]. |
Kean, T., et al., “A Fast Constant Coefficient Multiplier for the XC6200,” Xilinx, Inc., Lecture Notes in Computer Science, vol. 1142, Proceedings of the 6th International Workshop of Field-Programmable Logic, 1996, 7 pages. |
Kim et al., “A Reconfigurable Multifunction Computing Cache Architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems vol. 9, Issue 4, Aug 2001 pp. 509-523. |
Knittel, Gunter, “A PCI-compatible FPGA-Coprocessor for 2D/3D Image Processing,” University of Turgingen, Germany, 1996 IEEE, pp. 136-145. |
Koch, A., et al., “Practical Experiences with the SPARXIL Co-Processor,” 1998, IEEE, pp. 394-398. |
Koch, Andreas et al., “High-Level-Language Compilation for Reconfigurable Computers,” Proceedings of European Workshop on Reconfigurable Communication-Centric SOCS (Jun. 2005) 8 pages. |
Koren et al., “A data-driven VLSI array for arbitrary algorithms,” IEEE Computer Society, Long Beach, CA vol. 21, No. 10, Oct. 1, 1988, pp. 30-34. |
Kung, “Deadlock Avoidance for Systolic Communication,” 1988 Conference Proceedings of the 15th Annual International Symposium on Computer Architecture, May 30, 1998, pp. 252-260. |
Lange, H. et al., “Memory access schemes for configurable processors,” Field-Programmable Logic and Applications, International Workshop, FPL, Aug. 27, 2000, pp. 615-625, XP02283963. |
Larsen, S., et al., “Increasing and Detecting Memory Address Congruence,” Proceedings of the 2002 IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT'02), pp. 1-12 (Sep. 2002). |
Lee et al., “A new distribution network based on controlled switching elements and its applications,” IEEE/ACT Trans. of Networking, vol. 3, No. 1, pp. 70-81, Feb. 1995. |
Lee, Jong-eun, et al., “Reconfigurable ALU Array Architecture with Conditional Execution,” International Soc. Design Conference (ISOOC) [online] Oct. 25, 2004, Seoul, Korea, 5 pages. |
Lee, R. B., et al., “Multimedia extensions for general-purpose processors,” IEEE Workshop on Signal Processing Systems, SIPS 97—Design and Implementation (1997), pp. 9-23. |
Lee, Ming-Hau et al., “Design and Implementation of the MorphoSys Reconfigurable Computing Processors,” The Journal of VLSI Signal Processing, Kluwer Academic Publishers, BO, vol. 24, No. 2-3, Mar. 2, 2000, pp. 1-29. |
Ling, X., “WASMII: An MPLD with Data-Driven Control on a Virtual Hardware,” Journal of Supercomputing, Kluwer Acdemic Publishers, Dordrecht, Netherlands, 1995, pp. 253-276. |
Ling et al., “WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. [This reference is in Chinese, but should be comparable in content to the Ling et al. reference above.] |
Mano, M.M., “Digital Design,” by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984, pp. 119-125, 154-161. |
Margolus, N., “An FPGA architecture for DRAM-based systolic computations,” Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory, IEEE 1997, pp. 2-11. |
Maxfield,C., “Logic that Mutates While-U-Wait,” EDN (Bur. Ed) (USA), EDN (European Edition), Nov. 7, 1996, Cahners Publishing, USA, pp. 137-140, 142. |
Mei, Bingfeng, “A Coarse-Grained Reconfigurable Architecture Template and Its Compilation Techniques,” Katholeike Universiteit Leuven, PhD Thesis, Jan. 2005, IMEC vzw, Universitair Micro-Electronica Centrum, Belgium, pp. 1-195 (and Table of Contents). |
Mei, Bingfeng et al., “Design and Optimization of Dynamically Reconfigurable Embedded Systems,” IMEC vzw, 2003, Belgium, 7 pages, http://www.imec.be/reconfigurable/pdf/ICERSA—0l—design.pdf. |
Mei, Bingfeng et al., “Adres: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,” Proc. Field-Programmable Logic and Applications (FPL 03), Springer, 2003, pp. 61-70. |
Miller, M.J., et al., “High-Speed FIFOs Contend with Widely Differing Data Rates: Dual-port RAM Buffer and Dual-pointer System Provide Rapid, High-density Data Storage and Reduce Overhead,” Computer Design, Sep. 1, 1985, pp. 83-86. |
Mirsky, E. DeHon, “Matrix: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157-166. |
Miyamori, T., et al., “REMARC: Reconfigurable Multimedia Array Coprocessor,” Computer Systems Laboratory, Stanford University, IEICE Transactions on Information and Systems E Series D, 1999; (abstract): Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, p. 261, Feb. 22-25, 1998, Monterey, California, United States, pp. 1-12. |
Moraes, F., et al., “A Physical Synthesis Design Flow Based on Virtual Components,” XV Conference on Design of Circuits and Integrated Systems (Nov. 2000) 6 pages. |
Muchnick, S., “Advanced Compiler Design and Implementation,” (Morgan Kaufmann 1997), Table of Contents, 11 pages. |
Murphy, C., “Virtual Hardware Using Dynamic Reconfigurable Field Programmable Gate Arrays,” Engineering Development Centre, Liverpool John Moores University, UK, GERI Annual Research Symposium 2005, 8 pages. |
Myers, G. “Advances in Computer Architecture,” Wiley-Interscience Publication, 2nd ed., John Wiley & Sons, Inc., 1978, pp. 463-494. |
Nageldinger, U., “Design-Space Exploration for Coarse Grained Reconfigurable Architectures,” (Dissertation) Universitaet Kaiserslautern, 2000, Chapter 2, pp. 19-45. |
Neumann, T., et al., “A Generic Library for Adaptive Computing Environments,” Field Programmable Logic and Applications, 11th International Conference, FPL 2001, Proceedings (Lecture Notes in Computer Science, vol. 2147) (2001) pp. 503-512. |
Nilsson, et al., “The Scalable Tree Protocol—A Cache Coherence Approaches for Large-Scale Multiprocessors,” IEEE, pp. 498-506, Dec. 1992. |
Norman, R.S., “Hyperchip Business Summary, The Opportunity,” Jan. 31, 2000, pp. 1-3. |
Ohmsha, “Information Processing Handbook,” edited by the Information Processing Society of Japan, pp. 376, Dec. 21, 1998. |
Olukotun, K., “The Case for a Single-Chip Microprocessor,” ACM Sigplan Notices, ACM, Association for Computing Machinery, New York, vol. 31, No. 9, Sep. 1996 pp. 2-11. |
Ozawa, Motokazu et al., “A Cascade ALU Architecture for Asynchronous Super-Scalar Processors,” IEICE Transactions on Electronics, Electronics Society, Tokyo, Japan, vol. E84-C, No. 2, Feb. 2001, pp. 229-237. |
PACT Corporation, “The XPP Communication System,” Technical Report 15 (2000), pp. 1-16. |
Parhami, B., “Parallel Counters for Signed Binary Signals,” Signals, Systems and Computers, 1989, Twenty-Third Asilomar Conference, vol. 1, pp. 513-516. |
PCI Local Bus Specification, Production Version, Revision 2.1, Portland, OR, Jun. 1, 1995, pp. 1-281. |
Piotrowski, A., “IEC-BUS, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten and Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25. [English Abstract Provided]. |
Pirsch, P. et al., “VLSI implementations of image and video multimedia processing systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, No. 7, Nov. 1998, pp. 878-891. |
Price et al., “Debug of Reconfigurable Systems,” Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187. |
Quenot, G.M., et al., “A Reconfigurable Compute Engine for Real-Time Vision Automata Prototyping,” Laboratoire Systeme de Perception, DGA/Etablissement Technique Central de l'Armement, France, 1994 IEEE, pp. 91-100. |
Razdan et al., A High-Performance Microarchitecture with Hardware-Programmable Functional Units, Micro-27, Proceedings of the 27th Annual International Symposium on Microarchitecture, IEEE Computer Society and Association for Computing Machinery, Nov. 30-Dec. 2, 1994, pp. 172-180. |
Ryo, A., “Auszug aus Handbuch der Informationsverarbeitung,” ed. Information Processing Society of Japan, Information Processing Handbook, New Edition, Software Information Center, Ohmsha, Dec. 1998, 4 pages. [Translation provided]. |
Saleeba, Z.M.G., “A Self-Reconfiguring Computer System,” Department of Computer Science, Monash University (Dissertation) 1998, pp. 1-306. |
Saleeba, M. “A Self-Contained Dynamically Reconfigurable Processor Architecture,” Sixteenth Australian Computer Science Conference, ASCS-16, QLD, Australia, Feb. 1993, pp. 59-70. |
Salefski, B. et al., “Re-configurable computing in wireless,” Annual ACM IEEE Design Automation Conference: Proceedings of the 38th conference on Design automation (2001) pp. 178-183. |
Schmidt, H. et al., “Behavioral synthesis for FGPA-based computing,” Carnegie Mellon University, Pittsburgh, PA, 1994 IEEE, pp. 125-132. |
Schmidt, U. et al., “Datawave: A Single-Chip Multiprocessor for Video Applications,” IEEE Micro, vol. 11, No. 3, May/Jun. 1991, pp. 22-25, 88-94. |
Schmit, et al., “Hidden Markov Modeling and Fuzzy Controllers in FPGAs, FPGAs for Custom Computing Machines,” 1995; Proceedings, IEEE Symposium in Napa Valley, CA, Apr. 1995, pp. 214-221. |
Schönfeld, M., et al., “The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and Fault Tolerance by Reconfiguration and Coding Techniques,” J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, ( Oct. 1, 1995)-vol. 11(1/2), pp. 51-74. |
Shin, D., et al., “C-based Interactive RTL Design Methodology,” Technical Report CECS-03-42 (Dec. 2003) pp. 1-16. |
Shirazi, et al., “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,” IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, Apr. 19-21, 1995, pp. 155-162. |
Short, Kenneth L., Microprocessors and Programmed Logic, Prentice Hall, Inc., New Jersey 1981, p. 34. |
Siemers, C., “Rechenfabrik Ansaetze Fuer Extrem Parallele Prozessoren,” Verlag Heinze Heise GmbH., Hannover, DE No. 15, Jul. 16, 2001, pp. 170-179. |
Siemers et al., “The •>S<puter: A Novel Micoarchitecture Model for Execution inside Superscalar and VLIW Processors Using Reconfigurable Hardware,” Australian Computer Science Communications, vol. 20, No. 4, Computer Architecture, Proceedings of the 3rd Australian Computer Architecture Conference, Perth, John Morris, Ed., Feb. 2-3, 1998, pp. 169-178. |
Simunic, et al., Source Code Optimization and Profiling of Energy Consumation in Embedded Systems, Proceedings of the 13th International Symposium on System Synthesis, Sep. 2000, pp. 193-198. |
Singh, H. et al., “MorphoSys: An Integrated Reconfigurable System for Data-Parallel Computation-Intensive Applications,” University of California, Irvine, CA. and Federal University of Rio de Janeiro, Brazil, 2000, IEEE Transactions on Computers, pp. 1-35. |
Skokan, Z.E., “Programmable logic machine (A programmable cell array),” IEEE Journal of Solid-State Circuits, vol. 18, Issue 5, Oct. 1983, pp. 572-578. |
Sondervan, J., “Retiming and logic synthesis,” Electronic Engineering (Jan. 1993) vol. 65(793), pp. 33, 35-36. |
Soni, M., “VLSI Implementation of a Wormhole Run-time Reconfigurable Processor,” Jun. 2001, (Masters Thesis)Virginia Polytechnic Institute and State University, 88 pages. |
Sueyoshi, T, “Present Status and Problems of the Reconfigurable Computing Systems Toward the Computer Evolution,” Department of Artificial Intelligence, Kyushi Institute of Technology, Fukuoka, Japan; Institute of Electronics, Information and Communication Engineers, vol. 96, No. 426, IEICE Technical Report (1996), pp. 111-119 [English Abstract Only]. |
Sundararajan et al., “Testing FPGA Devices Using JBits,” Proc. MAPLD 2001, Maryland, USA, Katz (ed.), NASA, CA, 8 pages. |
Sutton et al., “A Multiprocessor DSP System Using PADDI-2,” U.C. Berkeley, 1998 ACM, pp. 62-65. |
Tau, E., et al., “A First Generation DPGA Implementation,” FPD'95, pp. 138-143. |
Tenca, A.F., et al., “A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architectures,” University of California, Los Angeles, 1998, pp. 216-225. |
The XPP White Paper, Release 2.1, PACT—A Technical Perspective, Mar. 27, 2002, pp. 1-27. |
TMS320C54X DSP: CPU and Peripherals, Texas Instruments, 1996, 25 pages. |
TMS320C54x DSP: Mnemonic Instruction Set, Texas Instruments, 1996, 342 pages. |
Tsutsui, A., et al., “Yards: FPGA/MPU Hybrid Architecture for Telecommunication Data Processing,” NTT Optical Network Systems Laboratories, Japan, 1997 ACM, pp. 93-99. |
Vasell et al., “The Function Processor: A Data-Driven Processor Array for Irregular Computations,” Chalmers University of Technology, Sweden, 1992, pp. 1-21. |
Venkatachalam et al., “A highly flexible, distributed multiprocessor architecture for network processing,” Computer Networks, The International Journal of Computer and Telecommunications Networking, vol. 41, No. 5, Apr. 5, 2003, pp. 563-568. |
Villasenor, et al., “Configurable Computing Solutions for Automatic Target Recognition,” IEEE, 1996 pp. 70-79. |
Villasenor, et al., “Configurable Computing,” Scientific American, vol. 276, No. 6, Jun. 1997, pp. 66-71. |
Villasenor, et al., “Express Letters Video Communications Using Rapidly Reconfigurable Hardware,” IEEE Transactions on Circuits and Systems for Video Technology, IEEE, Inc., NY, Dec. 1995, pp. 565-567. |
Wada, et al., “A Performance Evaluation of Tree-based Coherent Distributed Shared Memory,” Proceedings of the Pacific RIM Conference on Communications, Comput and Signal Processing, Victoria, May 19-21, 1993, pp. 390-393. |
Waingold, E., et al., “Baring it all to software: Raw machines,” IEEE Computer, Sep. 1997, at 86-93. |
Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, p. 332 (definition of “dedicated”). |
Weinhardt, M., “Compilation Methods for Structure-programmable Computers,” dissertation, ISBN 3-89722-011-3, 1997. [Table of Contents and English Abstract Provided]. |
Weinhardt, Markus et al., “Pipeline Vectorization for Reconfigurable Systems,” 1999, IEEE, pp. 52-62. |
Weinhardt, Markus et al., “Pipeline Vectorization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, No. 2, Feb. 2001, pp. 234-248. |
Weinhardt, Markus et al., “Memory Access Optimization for Reconfigurable Systems,” IEEE Proceedings Computers and Digital Techniques, 48(3) (May 2001)pp. 1-16. |
Wittig, et al., “OneChip: An FPGA Processor with Reconfigurable Logic,” IEEE, 1996, pp. 126-135. |
Wolfe, M. et al., “High Performance Compilers for Parallel Computing,” (Addison-Wesley 1996) Table of Contents, 11 pages. |
Wu, et al., “A New Cache Directory Scheme,” IEEE, pp. 466-472, Jun. 1996. |
Xilinx, “Logic Cell Array Families: XC4000, XC4000A and XC4000H,” 1994, product description, pp. 2-7, 2-9, 2-14, 2-15, 8-16, and 9-14. |
Xilinx, “The Programmable Logic Data Book,” 1994, Section 2, pp. 1-231, Section 8, pp. 1, 23-25, 29, 45-52, 169-172. |
Xilinx, “Spartan and SpartanXL Families Field Programmable Gate Arrays,” Jan. 1999, Xilinx, pp. 4-3 through 4-70. |
Xilinx, “XC6200 Field Programmable Gate Arrays,” Apr. 24, 1997, Xilinx product description, pp. 1-73. |
Xilinx, “XC3000 Series Field Programmable Gate Arrays,” Nov. 6, 1998, Xilinx product description, pp. 1-76. |
Xilinx, “XC4000E and XC4000X Series Field Programmable Gate Arrays,” May 14, 1999, Xilinx product description, pp. 1-68. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v1.5) Jul. 17, 2002, Xilinx Production Product Specification, pp. 1-118. |
Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v2.2) Sep. 10, 2002, Xilinx Production Product Specification, pp. 1-52. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA User Guide,” Mar. 28, 2007, Xilinx user guide, pp. 1-559. |
Xilinx, “Virtex-II and Virtex-II Pro X FPGA Platform FPGAs: Complete Data Sheet,” (v4.6) Mar. 5, 2007, pp. 1-302. |
Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” (v3.5) Nov. 5, 2007, pp. 1-226. |
Xilinx, White Paper 370: (Virtex-6 and Spartan-6 FPGA Families) “Reducing Switching Power with Intelligent Clock Gating,” Frederic Rivoallon, May 3, 2010, pp. 1-5. |
Xilinx, White Paper 298: (Spartan-6 and Virtex-6 Devices) “Power Consumption at 40 and 50 nm,” Matt Klein, Apr. 13, 2009, pp. 1-21. |
Xu, H. et al., “Parallel QR Factorization on a Block Data Flow Architecture,” Conference Proceeding Article, Mar. 1, 1992, pp. 332-336. |
Ye, Z.A. et al., “A C-Compiler for a Processor With a Reconfigurable Functional Unit,” FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gate Arrays, Monterey, CA Feb. 9-11, 2000, pp. 95-100. |
Yeung, A. et al., “A data-driven architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, Proceedings VLSI Signal Processing Workshop, IEEE Press, pp. 225-234, Napa, Oct. 1992. |
Yeung, A. et al., “A reconfigurable data-driven multiprocessor architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, pp. 169-178, IEEE 1993. |
Zhang, et al., “Architectural Evaluation of Flexible Digital Signal Processing for Wireless Receivers, Signals, Systems and Computers,” 2000; Conference Record of the Thirty-Fourth Asilomar Conference, Bd. 1, Oct. 29, 2000, pp. 78-83. |
Zhang, et al., “A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing,” IEEE Journal of Solid-State Circuits, vol. 35, No. 11, Nov. 2000, pp. 1697-1704. |
Zhang et al., “Abstract: Low-Power Heterogeneous Reconfigurable Digital Signal Processors with Energy-Efficient Interconnect Network,” U.C. Berkeley (2004), pp. 1-120. |
Zima, H. et al., “Supercompilers for parallel and vector computers,” (Addison-Wesley 1991) Table of Contents, 5 pages. |
Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-2; PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 4 pages. |
Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-1; PACT XPP Technologies, AG. V. Xilinx, Inc., and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 9 pages. |
Defendant's Claim Construction Chart for P.R. 4-2 Constructions and Extrinsic Evidence for Terms Proposed by Defendants, PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-19. |
PACT's P.R. 4-1 List of Claim Terms for Construction, PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TWJ-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-7. |
Pact's P.R. 4-2 Preliminary Claim Constructions and Extrinsic Evidence, PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-16, and Exhibits re Extrinsic Evidence Parts in seven (7) separate additional PDF files (Parts 1-7). |
Microsoft Press Computer Dictionary, Third Edition, Redmond, WA, 1997, 3 pages. |
Microsoft Press Computer Dictionary, Second Edition, Redmond, WA, 1994, 3 pages. |
A Dictionary of Computing, Fourth Edition, Oxford University Press, 1997, 4 pages. |
Communications Standard Dictionary, Third Edition, Martin Weik (Ed.), Chapman & Hall, 1996, 3 pages. |
Dictionary of Communications Technology, Terms Definitions and Abbreviations, Second Edition, Gilbert Held (Ed.), John Wiley & Sons, England, 1995, 5 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 14 pages. |
The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 7 pages. |
Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 4 pages. |
Random House Personal Computer Dictionary, Second Edition, Philip E. Margolis (Ed.), Random House, New York, 1996, 5 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 36 pages. |
The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 8 pages. |
McGraw-Hill Electronics Dictionary, Sixth Edition, Neil Sclater et al. (Ed.), McGraw-Hill, 1997, 3 pages. |
Modern Dictionary of Electronics, Sixth Edition, Rudolf Graf (Ed.), Newnes (Butterwoth-Heinemann), 1997, 5 pages. |
The American Heritage Dictionary, Fourth Edition, Dell (Houghton-Mifflin), 2001, 5 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 23 pages. |
The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 8 pages. |
The American Heritage Dictionary, Third Edition, Dell Publishing (Bantam Doubleday Dell Publishing Group, Inc.), 1994, 4 pages. |
The American Heritage Dictionary, Fourth Edition, Dell/Houghton Mifflin 2001, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 5 pages. |
Webster's New Collegiate Dictionary, Merriam Co., 1981, 4 pages. |
The Oxford American Dictionary and Language Guide, Oxford University Press, 1999, 5 pages. |
The Oxford Duden German Dictionary, Edited by the Dudenredaktion and the German Section of the Oxford University Press, W. Scholze-Stubenrecht et al. (Eds), Clarendon Press, Oxford, 1990, 7 pages. |
Oxford Dictionary of Computing, Oxford University Press, 2008, 4 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 7 pages. |
Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 5 pages. |
Garner's Modern American Usage, Bryan A. Garner (Ed.), Oxford University Press, 2003, 3 pages. |
The New Fowler's Modern English Usage, R.W. Burchfield (Ed.), Oxford University Press, 2000, 3 pages. |
Wikipedia, the free encyclopedia, “Granularity,” at http://en.wikipedia.org/wiki/Granularity, Jun. 18, 2010, 4 pages. |
Wordsmyth, The Premier Educational Dictionary—Thesaurus, at http://www.wordsmyth.net, “communication,” Jun. 18, 2010, 1 page. |
Yahoo! Education, “affect,” at http://education.yahoo.com/reference/dictionary/entry/affect, Jun. 18, 2010, 2 pages. |
mPulse Living Language, “high-level,” at http://www.macmillandictionary.com/dictionary/american/high-level Jun. 18, 2010, 1 page. |
MSN Encarta, “regroup,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=regroup, Jun. 17, 2010, 2 pages. |
MSN Encarta, “synchronize,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=synchronize, Jun. 17, 2010, 2 pages. |
MSN Encarta, “pattern,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=pattern, Jun. 17, 2010, 2 pages. |
MSN Encarta, “dimension,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=dimension, Jun. 17, 2010, 2 pages. |
MSN Encarta, “communication,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=communication, Jun. 17, 2010, 2 pages. |
MSN Encarta, “arrangement,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=arrangement, Jun. 17, 2010, 2 pages. |
MSN Encarta, “vector,” at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=vector, Jul. 30, 2010, 2 pages. |
Dictionary.com, “address,” at http://dictionary.reference.com/browse/address, Jun. 18, 2010, 4 pages. |
P.R . 4-3 Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc et al., E.D. Texas, 2:07-cv00563-CE, Jul. 19, 2010, pp. 1-50. |
Order Granting Joint Motion for Leave to File An Amended Joint Claim Construction and Prehearing Statement and Joint Motion to File an Amended Joint Claim Construction and Prehearing Statement Pursuant to Local Patent Rule 4-3, and Exhibit A: P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, 72 pages. |
P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v.Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 3, 2010, pp. 1-65. |
Exhibit A—P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, pp. 1-66. |
PACT's Opening Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-55. |
Declaration of Harry L. (Nick) Tredennick in Support of PACT's Claim Constructions, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-87. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 16 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-3. |
Agreed and Disputed Terms, Exhibit 17 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-16. |
Oral Videotaped Deposition—Joseph McAlexander dated Oct. 12, 2010, vol. 1, Exhibit 18 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-17. |
Expert Report of Joe McAlexander Re Claim Construction dated Sep. 27, 2010, Exhibit 19 of Pact's Opening Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-112. |
Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999, Exhibit 20 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1- 37. |
Amendment from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 25 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., Ed. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Documents from File History U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 27 of PACT's Opening Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-36. |
Amendment from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 39 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-9. |
Amendment from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 40 of PACTS's Opening Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-55. |
Declaration of Aaron Taggart in Support of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief (Exhibit A), PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-5. |
Oral Videotaped Deposition Joseph McAlexander (Oct. 12, 2010), Exhibit 1 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Expert Report of Joe McAlexander re Claim Construction, Exhibit 2 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Various Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999, Exhibit 6 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-181. |
Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 7 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-28. |
Amendment, Response from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 15 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al, . E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137. |
Application from File History of U.S. Appl. No. 08/544,435, filed Nov. 17, 1995, Exhibit 20 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-102. |
Documents from File History of U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 24 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-13. |
Documents from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 25 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-14. |
Amendment from File History of U.S. Appl. No. 11/246,617, filed Oct. 7, 2005, Exhibit 26 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9. |
Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, Exhibit 27 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-38. |
Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, specifically, German priority application specification [English translation provided], Exhibit 33 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief; PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., Ed. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, 54 pages [including English translation]. |
Documents from File History of U.S. Appl. No. 09/335,974, filed Jun. 18, 1999, Exhibit 28 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx; Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-32. |
Documents from File History of U.S. Patent Reexamination Control No. 90/010,450 (filed Mar. 27, 2009), Exhibit 30 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-71. |
Documents from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 32 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-23. |
PACT's Claim Construction Reply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 7, 2011, pp. 1-20. |
Defendants Xilinx, Inc. and Avnet, Inc.'s Claim Construction Surreply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 18, 2011, 142 pages. |
Markman Hearing Minutes and Attorney Sign-In Sheet, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Feb. 22, 2011, 3 pages; and court transcript, 245 pages. |
Memorandum Opinion and Order, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jun. 17, 2011, pp. 1-71. |
Atmel Corporation, Atmel 5-K- 50K Gates Coprocessor FPGA and FreeRAM, (www.atmel.com), Apr. 2002 , pp. 1-68. |
Glaskowsky, Peter N., “PACT Debuts Extreme Processor; Reconfigurable ALU Array Is Very Powerful—and Very Complex,” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Oct. 9, 2000 (www.MPRonline.com), 6 pages. |
Glaskowsky, Peter N., “Analysis' Choice Nominees Named; Our Picks for 2002's Most Important Products and Technologies,” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Dec. 9, 2002 (www.MPRonline.com), 4 pages. |
Lattice Semiconductor Corporation, “ispLSI 2000E, 2000VE and 2000 VL Family Architectural Description,” Oct. 2001, pp. 1-88. |
Olukotun, K. et al., “Rationale, Design and Performance of the Hydra Multiprocessor,” Computer Systems Laboratory, Stanford University, CA, Nov. 1994, pp. 1-19. |
PACT Corporate Backgrounder, PACT company release, Oct. 2008, 4 pages. |
Page, Ian., “Reconfigurable processor architectures,” Oxford University Computing Laboratory, Oxford UK, Elsevier Science B.V., Microprocessors an Microsystems 20 (1996) pp. 185-196. |
Singh, Hartej et al., “Morpho-Sys: A Reconfigurable Architecture for Multimedia Applications,” Univ. of California, Irvine, CA and Federal University of Rio de Janiero, Brazil, at http://www.eng.uci.edu/morphosys/docs/sbcci98.html, Jun. 18, 2010, 10 pages. |
Theodoridis, G. et al., “Chapter 2—A Survey of Coarse-Grain Reconfigurable Architectures and Cad Tools, Basic Definitions, Critical Design Issues and Existing Coarse-grain Reconfigurable Systems,” from S. Vassiliadis, and D. Soudris (eds.) Fine- and Coarse-Grained Reconfigurable Computing, Springer 2007, pp. 89-149. |
Weinhardt, Markus et al., “Using Function Folding to Improve Silicon Efficiency of Reconfigurable Arithmetic Arrays,” PACT XPP Technologies AG, Munich, Germany, IEEE 2004, pp. 239-245. |
Xilinx, XC6200 Field Programmable Gate Arrays, Advance Product Specification, Jun. 1, 1996 (Version 1.0), pp. 4-255 through 4-286. |
Xilinx, Virtex-II Platform FPGA User Guide, UG002 (V2.1) Mar. 28, 2007, pp. 1-502 [Parts 1-3]. |
Xilinx, XC4000E and SC4000X Serial Field Programmable Gate Arrays, Product Specification (Version 1.6), May 14, 1999, pp. 1-107. |
ARM Limited, “ARM Architecture Reference Manual,” Dec. 6, 2000, pp. A106-6-A10-7. |
Coelho, F., “Compiling dynamic mappings with array copies,” Jul. 1997, 12 pages, http://delivery.acm.org/10.1145/270000/263786/p168-coelho.pdf. |
Janssen et al., “A Specification Invariant Technique for Regularity Improvement between Flow-Graph Clusters,” Mar. 1996, 6 pages, http://delivery.acm.org/10.1145/790000/787534/74230138.pdf. |
Microsoft Press Computer Dictionary, Second Edition, 1994, Microsoft Press, ISBN 1-55615-597-2, p. 10. |
Newton, Harry, “Newton's Telecom Dictionary,” Ninteenth Edition, 2003, CMP Books, p. 40. |
Rehmouni et al., “Formulation and evaluation of scheduling techniques for control flow graphs,” Dec. 1995, 6 pages, http://delivery.acm.org/10.1145/230000/224352/p386-rahmouni.pdf. |
Sinha et al., “System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow,” May 1999, 10 pages, http://delivery.acm.org/10.1145/310000/203675/p432-sinha.pdf. |
Stallings, William, “Data & Computer Communications,” Sixth Edition, Jun. 2000, Prentice-Hall, Inc., ISBN 0-084370-9, pp. 195-196. |
Bondalapati et al., “Reconfigurable Meshes: Theory and Practice,” Dept. of Electrical Engineering-Systems, Univ. of Southern California, Apr. 1997, Reconfigurable Architectures Workshop, International Parallel Processing Symposium, 15 pages. |
Cherbaka, Mark F., “Verification and Configuration of a Run-time Reconfigurable Custom Computing Integrated Circuit for DSP Applications,” Thesis: Virginia Polytechnic Institute and State University, Jul. 8, 1996, 106 pages. |
Cong at al., “Structural Gate Decomposition for Depth-Optimal Technology Mapping in LUT-Based FPGA Designs,” Univ. of California, ACM Transactions on Design Automation of Electronic Systems, vol. 5, No. 2, Apr. 2000, pp. 193-225. |
FOLDOC, The Free On-Line Dictionary of Computing, “handshaking,” online Jan. 13, 1995, retrieved from Internet Jan. 23, 2011 at http://foldoc.org/handshake. |
Li et al., “Hardware-Software Co-Design of Embedded Reconfigurable Architectures,” Los Angeles, CA, 2000, ACM, pp. 507-512. |
Marshall at al., “A Reconfigurable Arithmetic Array for Multimedia Applications,” FPGA '99 Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, 10 pages. |
Melvin, Stephen at al., “Hardware Support for Large Atomic Units in Dynamically Scheduled Machines,” Computer Science Division, University of California, Berkeley, IEEE (1988), pp. 60-63. |
Pistorius et al., “Generation of Very Large Circuits to Benchmark the Partitioning of FPGAs,” Monterey, CA, 1999, ACM, pp. 67-73. |
Roterberg, Eric., et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching,” Proceedings of the 29th Annual International Symposium on Michoarchitecture, Paris, France, IEEE (1996), 12 pages. |
Translation of DE 101 39 170 by examiner in related case using Google Translate, 10 pages. |
Altera, “Implementing High-Speed Search Applications with Altera CAM,” Jul. 2001, Ver. 2.1, Application Note 119, 50 pages. |
Bolsens, Ivo (CTO Xilinx), “FPGA, a history of interconnect,” Xilinx slide presentation, posted on the internet Oct. 30, 2008 at http://www.docstoc.com/docs/2198008/FPGA-a-history-of-interconnect, 32 pages. |
Li, Zhiyuan, et al., “Configuration prefetching techniques for partial reconfigurable coprocessor with relocation and defragmentation,” International Symposium on Field Programmable Gate Arrays, Feb. 1, 2002, pp. 187-195. |
Agarwal, A., et al., “April: A Processor Architecture for Multiprocessing,” Laboratory for Computer Science, MIT, Cambridge, MA, IEEE 1990, pp. 104-114. |
Almasi and Gottlieb, Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989, 3 pages (Fig. 4.1). |
Advanced RISC Machines Ltd (ARM), “AMBA—Advanced Microcontroller Bus Architecture Specification,” (Document No. ARM IHI 0001C), Sep. 1995, 72 pages. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Additional XC3000 Data,” XAPP 024.000, 1994, pp. 8-11 through 8-20. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Adders, Subtracters and Accumulators in XC3000,” XAPP 022.000, 1994, pp. 8-98 through 8-104. |
Alfke, Peter, Xilinx Application Note, “Megabit FIFO in Two Chips: One LCA Device and One DRAM,” XAPP 030.000, 1994, pp. 8-148 through 8-150. |
Alfke, Peter, Xilinx Application Note, “Dynamic Reconfiguration,” XAPP 093, Nov. 10, 1997, pp. 13-45 through 13-46. |
Alfke, Peter; New, Bernie, Xilinx Application Note, “Implementing State Machines in LCA Devices,” XAPP 027.001, 1994, pp. 8-169 through 8-172. |
Algotronix, Ltd., CAL64K Preliminary Data Sheet, Apr. 1989, pp. 1-24. |
Algotronix, Ltd., CAL4096 Datasheet, 1992, pp. 1-53. |
Algotronix, Ltd., CHS2x4 User Manual, “CHA2x4 Custom Computer,” 1991, pp. 1-38. |
Allaire, Bill; Fischer, Bud, Xilinx Application Note, “Block Adaptive Filter,” XAPP 055, Aug. 15, 1996 (Version 1.0), pp. 1-10. |
Altera Application Note (73), “Implementing FIR Filters in Flex Devices,” Altera Corporation, Feb. 1998, ver. 1.01, pp. 1-23. |
Athanas, P. (Thesis), “An adaptive machine architecture and compiler for dynamic processor reconfiguration,” Brown University 1992, pp. 1-157. |
Berkeley Design Technology, Inc., Buyer's Guide to DSP Processors, 1995, Fremont, CA., pp. 673-698. |
Bittner, R. et al., “Colt: An Experiment in Wormhole Run-Time Reconfiguration,” Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, SPIE—International Society for Optical Engineering, vol. 2914/187, Nov. 1996, Boston, MA, pp. 187-194. |
Camilleri, Nick; Lockhard, Chris, Xilinx Application Note, “Improving XC4000 Design Performance,” XAPP 043.000, 1994, pp. 8-21 through 8-35. |
Cartier, Lois, Xilinx Application Note, “System Design with New XC4000EX I/O Features,” Feb. 21, 1996, pp. 1-8. |
Chen, D., (Thesis) “Programmable arithmetic devices for high speed digital signal processing,” U. California Berkeley 1992, pp. 1-175. |
Churcher, S., et al., “The XC6200 FastMap TM Processor Interface,” Xilinx, Inc., Aug. 1995, pp. 1-8. |
Cowie, Beth, Xilinx Application Note, “High Performance, Low Area, Interpolator Design for the XC6200,” XAPP 081, May 7, 1997 (Version 1.0), pp. 1-10. |
Duncan, Ann, Xilinx Application Note, “A32×16 Reconfigurable Correlator for the XC6200,” XAPP 084, Jul. 25, 1997 (Version 1.0), pp. 1-14. |
Ebeling, C., et al., “RaPiD—Reconfigurable Pipelined Datapath,” Dept. of Computer Science and Engineering, U. Washington, 1996, pp. 126-135. |
Epstein, D., “IBM Extends DSP Performance with Mfast—Powerful Chip Uses Mesh Architecture to Accelerate Graphics, Video,” 1995 MicroDesign Resources, vol. 9, No. 16, Dec. 4, 1995, pp. 231-236. |
Fawcett, B., “New SRAM-Based FPGA Architectures Address New Applications,” Xilinx, Inc. San Jose, CA, Nov. 1995, pp. 231-236. |
Goslin, G; Newgard, B, Xilinx Application Note, “16-Tap, 8-Bit FIR Filter Applications Guide,” Nov. 21, 1994, pp. 1-5. |
Iwanczuk, Roman, Xilinx Application Note, “Using the XC4000 RAM Capability,” XAPP 031.000, 1994, pp. 8-127 through 8-138. |
Knapp, Steven, “Using Programmable Logic to Accelerate DSP Functions,” Xilinx, Inc., 1995, pp. 1-8. |
New, Bernie, Xilinx Application Note, “Accelerating Loadable Counters in SC4000,” XAPP 023.001, 1994, pp. 8-82 through 8-85. |
New, Bernie, Xilinx Application Note, “Boundary Scan Emulator for XC3000,” XAPP 007.001, 1994, pp. 8-53 through 8-59. |
New, Bernie, Xilinx Application Note, “Ultra-Fast Synchronous Counters,” XAPP 014.001, 1994, pp. 8-78 through 8-81. |
New, Bernie, Xilinx Application Note, “Using the Dedicated Carry Logic in XC4000,” XAPP 013.001, 1994, pp. 8-105 through 8-115. |
New, Bernie, Xilinx Application Note, “Complex Digital Waveform Generator,” XAPP 008.002, 1994, pp. 8-163 through 8-164. |
New, Bernie, Xilinx Application Note, “Bus-Structured Serial Input-Output Device,” XAPP 010.001, 1994, pp. 8-181 through 8-182. |
Ridgeway, David, Xilinx Application Note, “Designing Complex 2-Dimensional Convolution Filters,” XAPP 037.000, 1994, pp. 8-175. |
Rowson, J., et al., “Second-generation compliers optimizer semicustom circuits,” Electronic Design, Feb. 19, 1987, pp. 92-96. |
Schewel, J., “A Hardware/Software Co-Design System using Configurable Computing Technology,” Virtual Computer Corporation, Reseda, CA, IEEE 1998, pp. 620-625. |
Segers, Dennis, Xilinx Memorandum, “Mike—Product Description and MRD,” Jun. 8, 1994, pp. 1-29. |
Texas Instruments, “TMS320C8x System-Level Synopsis,” Sep. 1995, 75 pages. |
Texas Instruments, “TMS320C80 Digital Signal Processor,” Data Sheet, Digital Signal Processing Solutions 1997, 171 pages. |
Texas Instruments, “TMS320C80 (MVP) Parallel Processor,” User's Guide, Digital Signal Processing Products 1995, 73 pages. |
Trainor, D.W., et al., “Implementation of the 2D DCT Using A Xilinx XC6264 FPGA,” 1997, IEEE Workshop of Signal Processing Systems SiPS 97, pp. 541-550. |
Trimberger, S, (Ed.) et al., “Field-Programmable Gate Array Technology,” 1994, Kluwer Academic Press, pp. 1-258 (and the Title Page, Table of Contents, and Preface) [274 pages total]. |
Trimberger, S., “A Reprogrammable Gate Array and Applications,” IEEE 1993, Proceedings of the IEEE, vol. 81, No. 7, Jul. 1993, pp. 1030-1041. |
Trimberger, S., et al., “A Time-Multiplexed FPGA,” Xilinx, Inc., 1997 IEEE, pp. 22-28. |
Ujvari, Dan, Xilinx Application Note, “Digital Mixer in an XC7272,” XAPP 035.002, 1994, p. 1. |
Veendrick, H., et al., “A 1.5 GIPS video signal processor (VSP),” Philips Research Laboratories, The Netherlands, IEEE 1994 Custom Integrated Circuits Conference, pp. 95-98. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 To Microprocessors (TMS320C50 Example),” XAPP 064, Oct. 9, 1996 (Version 1.1), pp. 1-9. |
Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 To Microprocessors (MC68020 Example),” XAPP 063, Oct. 9, 1996 (Version 1.1), pp. 1-8. |
XCELL, Issue 18, Third Quarter 1995, “Introducing three new FPGA Families!”; “Introducing the XC6200 FPGA Architecture: The First FPGA Architecture Optimized for Coprocessing in Embedded System Applications,” 40 pages. |
Xilinx Application Note, Advanced Product Specification, “XC6200 Field Programmable Gate Arrays,” Jun. 1, 1996 (Version 1.0), pp. 4-253-4-286. |
Xilinx Application Note, “A Fast Constant Coefficient Multiplier for the XC6200,” XAPP 082, Aug. 24, 1997 (Version 1.0), pp. 1-5. |
Xilinx Technical Data, “XC5200 Logic Cell Array Family,” Preliminary (v1.0), Apr. 1995, pp. 1-43. |
Xilinx Data Book, “The Programmable Logic Data Book,” 1996, 909 pages. |
Xilinx, Series 6000 User's Guide, Jun. 26, 1997, 223 pages. |
Yeung, K., (Thesis) “A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing,” Electronics Research Laboratory, U. California Berkeley, Jul. 10, 1995, pp. 1-153. |
Yeung, L., et al., “A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP,” Dept. of EECS, U. California Berkeley, 1995 IEEE International Solid State Circuits Conference, pp. 108-110. |
ZILOG Preliminary Product Specification, “Z86C95 CMOS Z8 Digital Signal Processor,” 1992, pp. 1-82. |
ZILOG Preliminary Product Specification, “Z89120 Z89920 (ROMless) 16-Bit Mixed Signal Processor,” 1992, pp. 1-82. |
Defendants' Invalidity Contentions in PACT XPP Technologies, AG v. Xilinx, Inc., et al., (E.D. Texas Dec. 28, 2007) (No. 2:07cv563)., including Exhibits A through K in separate PDF files. |
Ramanathan et al., “Reconfigurable Filter Coprocessor Architecture for DSP Applications,” Journal of VLSI Signal Processing, 2000, vol. 26, pp. 333-359. |
Shanley, Tom, Pentium Pro and Pentium II System Architecture, MindShare, Inc., Addition Wesley, 1998, Second Edition, pp. 11-17; Chapter 7; Chapter 10; pp. 209-211, and p. 394. |
Shoup, Richard, “Programmable Cellular Logic Arrays,” Dissertation, Computer Science Department, Carnegie-Mellon University, Mar. 1970, 193 pages |
Zucker, Daniel F., “A Comparison of Hardware Prefetching Techniques for Multimedia Benchmarks,” Technical Report: CSL-TR-95-683, Dec. 1995, 26 pages. |
Villasenor, John, et al., “Configurable Computing,” Scientific American, vol. 276, No. 6, Jun. 1997, pp. 66-71. |
Athanas, Peter, et al., “IEEE Symposium on FPGAs For Custom Computing Machines,” IEEE Computer Society Press, Apr. 19-21, 1995, pp. i-vii, 1-222. |
Bittner, Ray, A., Jr., “Wormhole Run-Time Reconfiguration: Conceptualization and VLSI Design of a High Performance Computing system,” Dissertation, Jan. 23, 1997, pp. i-xx, 1-415. |
Ade, et al., “Minimum Memory Buffers in DSP Applications,” Electronics Letter, vol. 30, No. 6, Mar. 17, 1994, pp. 469-471. |
Alippi, C., et al., Determining the Optimum Extended Instruction Set Architecture for Application Specific Reconfigurable VLIW CPUs, IEEE., 2001, pp. 50-56. |
Arabi et al., “PLD Integrates Dedicated High-speed Data Buffering, Complex State Machine, and Fast Decode Array,” conference record on WESCON '93, Sep. 28, 1993, pp. 432-436. |
Athanas P. “A Functional Reconfigurable Architecture and Compiler for Adoptive Computing,”, IEEE, pp. 49-55. |
Athanas, P. et al., “An Adaptive Hardware Machine Architecture and Compiler for Dynamic Processor Reconfiguration”, IEEE, Laboratory for Engineering Man/Machine Systems Division of Engineering, Box D, Brown Univeristy Providence, Phode Island, 1991, pp. 397-400. |
Baumgarte, et al., PACT XPP “A Self-reconfigurable Data Processing Architecture,” PACT Info. GmbH, Munchen Germany 2001. |
Becker, et al., “Parallezation in Co-compilation for Configurable Accerators—a Host/accelerator Partitioning Compilation Method,” proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, Feb. 10-13, 1998. |
Cadambi, et al., “Management Pipeline-reconfigurable FPGAs,” ACM, 1998, pp. 55-64. |
Callahan, T. et al. “The Garp Architecture and C Copiler,” Computer, Apr. 2000, pp. 62-69. |
Dutt, et al., “If Software is King for Systems-on-Silicon, What's New in Compiler,” IEEE, 1997, pp. 322-325. |
Kung, “Deadlock Avoidance for Systolic Communication”, 1988 Conference Proceedings of 15th Annual International Symposium on Computer Architecture, May 30, 1988, pp. 252-260. |
Siemers, “Rechenfabrik Ansaetze Fuer Extrem Parallele Prozessoren”, Verlag Heinze Heise GmbH., Hannover, DE No. 15, Jul. 16, 2001, pp. 170-179. |
Tenca, et al., “A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architechtures”, University of California, Los Angeles, 1998, pp. 216-225. |
Weinhardt, “Ubersetzingsmethoden fur strukturprogrammierbare rechner,” Dissertation for Doktors der Ingenieurwissenschaften der Universitat Karlsruhe: Jul. 1, 1997. |
Number | Date | Country | |
---|---|---|---|
Parent | 12109280 | Apr 2008 | US |
Child | 10379403 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09369653 | Aug 1999 | US |
Child | 10379403 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE98/00334 | Feb 1998 | US |
Child | 09369653 | US | |
Parent | 08946812 | Oct 1997 | US |
Child | PCT/DE98/00334 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10379403 | Mar 2003 | US |
Child | 12909150 | US | |
Parent | 10379403 | Mar 2003 | US |
Child | 12109280 | US |