The invention relates to Raman-active bioassays or other reaction mixture. Particularly, the invention is directed to a method of separating an unattached Raman-active tag from a bioassay or other reaction mixture.
Raman-active tags 100 are known to detect the presence of pathogenic organisms or other materials.
Thus, a need still remains for a method of separating unattached Raman-active tag 100 from bioassay or other reaction mixture.
The purpose and advantages of embodiments of the invention will be set forth and apparent from the description that follows, as well as will be learned by practice of the embodiments of the invention. Additional advantages will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings. An embodiment of the invention provides a method of separating a Raman-active tag unattached to a target from a Raman-active complex. The Raman-active complex comprises a Raman-active tag attached to a target. The method comprises providing a mixture comprising at least one Raman-active tag unattached to a target and at least one Raman-active complex; and passing the mixture through a porous membrane. Each Raman-active complex has a first size and the membrane has pores with an effective size smaller than the first size.
A second embodiment provides a method of separating a Raman-active tag unattached to a target from a Raman-active complex. The Raman-active complex comprises a Raman-active tag attached to a target. The method comprises providing a mixture comprising at least one Raman-active tag unattached to a target and at least one Raman-active complex; passing the mixture through a porous membrane; and applying a sufficient force to the porous membrane to separate at least one Raman-active complex from the membrane while the Raman-active tag unattached to a target remains on the membrane. Each Raman-active complex has a first size and the membrane has pores with an effective size smaller than the first size.
A third embodiment provides a method of separating a Raman-active tag unattached to a target from a Raman-active complex. The Raman-active complex comprises a Raman-active tag attached to a target. The method comprises providing a mixture comprising at least one Raman-active tag unattached to a target and at least one Raman-active complex; and passing the mixture through a porous membrane comprising pores, wherein the porous membrane is configured to collect at least one Raman-active complex. Each Raman-active complex has a first size.
The accompanying figures, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the method and system of the invention. Together with the description, the drawings serve to explain the principles of the invention.
Reference will now be made in detail to exemplary embodiments of the invention, which are illustrated in the accompanying figures and examples. Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing a particular embodiment of the invention and are not intended to limit the invention thereto.
Whenever a particular embodiment of the invention is said to comprise or consist of at least one element of a group and combinations thereof, it is understood that the embodiment may comprise or consist of any of the elements of the group, either individually or in combination with any of the other elements of that group. Furthermore, when any variable occurs more than one time in any constituent or in formula, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
With reference to
The method includes, at Step 505, providing a mixture comprising at least one Raman-active tag 100 and at least one Raman-active complex 200. In one embodiment, the Raman-active tag 100 is immuno-functionalized. Immuno-functionalized Raman-active tags 100 detect the presence of one or more targets 212 that are pathogenic organisms or other materials. Immuno-functionalized Raman-active tags 100 include Raman-active tags 100 attached to one or more target-binding moieties 112 that are antibodies. The target-binding moiety 112 is configured to allow the Raman-active tag 100 to attach to a target 212 to form a Raman-active complex 200. Attached means the target-binding moiety 112 is covalently or non-covalently connected to a target 212. Examples of target-binding moieties 112 include, but are not limited to, antibodies, aptamers, polypeptides, peptide nucleic acids, avidin, streptavidin, and derivatives of avidin and streptavidin. The Raman-active tag 100 may comprise one target-binding moiety 112 or a plurality of target-binding moieties 112, as in
Examples of targets 212 to which a target-binding moiety 112 may attach include, but are not limited to, organisms such as viruses, bacteria, yeast, spores, liposomes, and beads. Examples of beads include, but are not limited to, latex, polystyrene, silica and plastic. In one embodiment, a target 212 is attached to one Raman-active complex 200 as in
The Raman-active complex 200 has a first size. First size means any size larger than a target 212 alone. In one embodiment, the Raman-active tag 100 unattached to a target 212 has a second size smaller than the first size. In another embodiment, the first size is at least twice the second size. In yet another embodiment, the first size is at least five times the second size. In one embodiment, the first size is in a range from about 500 nm to about 1000 nm and the second size is in a range from about 10 nm to about 100 nm.
Next, Step 515 comprises passing the mixture through a porous membrane 400. Examples of the porous membrane 400 include, but are not limited to, cellulose acetate, glass fiber, vinyl, poly vinylidene fluoride, and nitrocellulose.
In one embodiment of the Step 515 of passing the mixture through the porous membrane 400, the porous membrane 400 has pores 412 with a maximum pore size smaller than the first size. In yet another embodiment, the pores 412 of the porous membrane 400 have a maximum pore size larger than the second size. In another embodiment, the pores 412 have a maximum pore size of about two to about five times smaller than the first size. In another embodiment, the pores 412 have a maximum pore size in a range from about 0.1 μm to about 5 μm.
In another embodiment of the Step 515 of passing the mixture through the porous membrane 400, the porous membrane is configured to collect at least one Raman-active complex 200.
The method may further optionally comprise the Step 525 of applying a sufficient force to the porous membrane 400 to separate at least one Raman-active complex 200 from the porous membrane 400 while the Raman-active tag 100 unattached to a target 212 remains on the porous membrane 400. In one embodiment, applying a sufficient force to the porous membrane 400 comprising vortexing the porous membrane 400 in a buffer, or otherwise washing or rinsing the porous membrane 400 such as to remove the Raman-active complexes 200.
The method may also further comprise taking a Raman spectrum of the Raman-active complex 200 collected on the porous membrane 400. The Raman spectrum may be taken directly on the porous membrane 400 without removing the Raman-active complex 200 from the porous membrane 400 or from the mixture collected on the porous membrane 400 after being removed from the porous membrane 400.
The following examples serve to illustrate the features and advantages of the invention and are not intended to limit the invention thereto.
A sample of target microorganisms 212, which includes but is not restricted to bacteria, spores, and viruses, was added to a sample container such as an eppindorf tube. The sample was then pelleted by centrifugation and resuspended in a buffer solution. The sample was then again pelleted by centrifugation and resuspended in a buffer solution. Immuno-functionalized Raman-active tags 100 were added to the target microorganisms 212 and mixed to form a mixture. The mixture was then incubated on ice to form Raman-active complexes 200. A buffer solution was then added to the mixture and any unattached Raman-active tags 100 were separated from the Raman active complex 200 using a porous membrane 400 (also referred as filter). After filtration, the filter 400 was placed into a tube-containing buffer and placed on a vortex mixer at top speed to dislodge the Raman-active complex 200 from the filter 400. The liquid comprising the Raman active complex 200 and any unattached target microorganisms 212 was then transferred to a tube and pelleted by centrifugation. After removal of the supernatant fluid, the sample is re-suspended in a small volume of buffer and spotted onto a sample holder for Raman analysis.
Examples 1 and 2 below demonstrate that it is possible to use immuno-functionalized Raman-active tags 100 to detect the presence of a specific target organism 212. In these experiments, a Raman signal was only detected when the appropriate target organism 212 and Raman-active tags 100 immuno-functionalized for that specific target organism 212 to detect the presence of that specific target organism 212 were both present.
Example 1 demonstrates that it is possible to use immuno-functionalized Raman-active tags 100 to detect the presence of Bacillus spores. The Raman-active tags 100 were specifically immuno-functionalized to detect the presence of Bacillus spores by attachment of anti-bacillus antibodies (target-binding moieties 112). A Raman signal was only detected when the Bacillus spores and Raman-active tags 100 comprising the anti-bacillus antibody (target-binding moieties 112) in combination was present.
Example 2 demonstrates that it is possible to use immuno-functionalized Raman-active tags 100 to detect the presence of E. coli cells. The Raman-active tags 100 were specifically immuno-functionalized to detect the presence of E. coli cells by attachment of anti-E. coli antibodies (target-binding moieties 112). A Raman signal was only detected when E. coli and Raman-active tags 100 comprising the anti-E. coli antibodies (target-binding moieties 112) in combination was present
While the invention has been described in detail in connection with only a limited number of aspects, it should be readily understood that the invention is not limited to such disclosed aspects. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.