METHOD OF SHOOT-THROUGH GENERATION FOR MODIFIED SINE WAVE Z-SOURCE, QUASI-Z-SOURCE AND TRANS-Z-SOURCE INVERTERS

Information

  • Patent Application
  • 20130329477
  • Publication Number
    20130329477
  • Date Filed
    February 28, 2012
    12 years ago
  • Date Published
    December 12, 2013
    11 years ago
Abstract
This invention belongs into the field of power electronics and semiconductor converter control and pertains to the method of shoot-through generation for modified sine wave Z-source, quasi-Z-source and trans-Z-source inverters. The inverter can be controlled using either the modified sine wave pulse-width modulation or phase-shift modulation method. There are three methods for shoot-through generation in the case of modified sine wave control: by overlapping active states, during the freewheeling state and during the zero state.
Description
TECHNICAL FIELD

This invention belongs in the field of power electronics and semiconductor converter control and pertains to the methods of shoot-through generation for modified sine wave Z-source, quasi-Z-source and trans-Z-source inverters.


BACKGROUND ART

Z-source, quasi-Z-source and trans-Z-source inverters are new DC/AC (voltage) converters in power electronics. These make it possible to both increase and decrease input voltage without additional switching elements. These converters consist of an LC circuit (of Z-source, quasi-Z-source or trans-Z-source-type) and a single-phase or multi-phase inverter (FIG. 1). The voltage is increased by a specific shoot-through state that is generated by turning on the switching elements of one bridge arm of the inverter simultaneously. In this case, the energy of the magnetic field is accumulated in the chokes of LC circuits without short-circuiting the capacitors during the shoot-through. The accumulated energy is used to increase the voltage of the DC-link during the traditional conductivity phase that follows the shoot-through. Such inverters are meant for various power electronics applications where flexible control and reliability of a device are especially important.


So far, Z-source, quasi-Z-source and trans-Z-source inverters have been controlled using sine wave modulation with shoot-through states, i.e. pulse-width modulation where the aim is to shape the voltage in a way that near-sine current is generated. Sine wave modulation with shoot-through states has mainly been used to control electric motors and link alternative and renewable energy sources to AC-power grids. The disadvantages of sine wave modulation are its rather complicated control algorithm and the fact that low-frequency sine signals cannot pass through a high-frequency pulse transformer in applications requiring galvanic insulation. To solve the problem, Z-source, source, and trans-Z-source inverters are controlled using two modified sine wave methods for shoot-through generation: pulse-width modulation (PWM) and phase-shift modulation (PSM). In both these methods a square impulse voltage that can easily pass an insulation transformer is generated to the output of the inverter. And the control algorithm is simpler and burdens the control system less. A shoot-through state is added to the modified sine wave signal and the relative duration of the shoot-through determines the voltage amplitude of the DC-link. Shoot-through states are distributed across the period in a way that the number of higher harmonics would be minimal in the output voltage of the inverter. To reduce the switching and conductivity losses, the number of shoot-through states per switching period is limited to two and the shoot-through current is distributed equally across the transistors of both arms of the inverter.


Patent US005784267A concerning a modified sine wave method is already known. An AC converter is controlled using a modified sine wave method without shoot-through states. The disadvantage of this method is that the voltage cannot be increased.


Also, a Z-source inverter described in US2009066271 is known. The Z-source inverter is used for generating a three-phase sine voltage. The voltage is increased by shoot-through states integrated into the control algorithm. The disadvantage of the described solution is that it applies only to sine wave modulation and does not determine the methods for shoot-through generation.


Furthermore, a current source inverter described in WO9421021 is also known. Some switching elements, a capacitor and two chokes are added to a three-phase current source inverter to achieve soft switching. The inverter operates using sine wave modulation. The disadvantage of the inverter is that it does not enable to generate freewheeling, zero or shoot-through states.


DISCLOSURE OF THE INVENTION

The switching period of a Z-source, quasi-Z-source and trans-Z-source inverter may consist of the following states: zero, freewheeling, active and shoot-through. The zero state is when the load is short circuited by switching on all upper or lower switching elements of the inverter simultaneously. The freewheeling state is achieved when all switching elements of an inverter are switched off simultaneously, and no current is generated in the output of the inverter. The active state occurs when only one switching element in each bridge arm of the inverter is turned on and current is generated in the output of the inverter. The shoot-through state occurs when top and bottom switching elements of a bridge arm or all switching elements of a bridge are switched on simultaneously.


There are three methods for shoot-through generation in the case of modified sine wave control: by overlapping active states, during the freewheeling state or during the zero state.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts the circuit diagram of a Z-source, quasi-Z-source or trans-Z-source inverter.



FIG. 2 depicts PWM control where shoot-through states are generated by overlapping conductivity.



FIG. 3 depicts PWM control where shoot-through states are generated during freewheeling states.



FIG. 4 depicts PWM control where shoot-through states are generated during zero states.



FIG. 5 depicts PSM control where shoot-through states are generated during zero states.






FIGS. 1-5 contain the following symbols:



1—input voltage source



2—Z-source, quasi-Z-source or trans-Z-source circuit



3—single-phase or multi-phase inverter



4—transformer, AC motor, AC load, etc.


T1, T2, T3, T4—switching elements of the inverter


Uout—output voltage of the inverter


UP—positive reference voltage for shoot-through generation


UN—negative reference voltage for shoot-through generation


MODE FOR CARRYING OUT THE INVENTION

The principle of the invention is described on the basis of a single-phase inverter. The voltage from the input voltage source (1) is directed through the Z-source, quasi-Z-source or trans-Z-source circuit (2) into a single- or multi-phase inverter (3). The inverter (3) consists of switching elements T1, T2, T3 and T4 (the inverter may also be a multi-phase one). The inverter can be controlled using either the modified sine wave pulse-width modulation (PWM) or phase-shift modulation (PSM) method. A transformer, an AC motor, an AC load, etc., are connected to the output of the inverter (3). Zero states and shoot-through states are distributed across the period (T) in a way that the number of higher harmonics is minimal in the output voltage of the inverter. To reduce the switching and conductivity losses, the number of shoot-through states per switching period is limited to two and the shoot-through current is distributed equally across the transistors of both arms of the inverter.


In the case of PWM, the control signals have a constant period and phase shift. The output of the inverter is adjusted by changing the pulse width and the duration of a shoot-through. There are three methods one can choose from to generate shoot-through states: by overlapping active states, during the freewheeling state and during the zero state.


The method for shoot-through generation by overlapping active states is depicted in FIG. 2. FIGS. 2(a) and 2(b) depict control signals of a single-phase inverter; these are called conductivity states. The relative duration of an active state per period is DA=1. The duty cycle of the switching elements (T1/T4 and T2/T3) of each of the two diagonals is 0.5. To create a shoot-through state, the duty cycle of both switching element pairs is increased, resulting in overlapping active states, i.e. shoot-through. This results in a symmetric output voltage of the inverter (FIG. 2(e)), the amplitude of the voltage being UDC. The switching period of this control method consists of active and shoot-through states:










t
A

T

+


t
s

T


=



D
A

+

D
s


=
1


,




where tA and tS are durations of active and shoot-through states, respectively, and DA and DS are relative durations of active and shoot-through states, respectively. The formula indicates that by changing the duration of the active states of the switching elements, the duration of shoot-through states changes automatically.


The method for shoot-through generation during freewheeling states is depicted in FIG. 3. In this case, a shoot-through state is generated during a freewheeling state where all switching elements are switched off and the current passes through freewheeling diodes. The prerequisite is that the duration of freewheeling (tFRW) is longer than the maximum duration of the shoot-through. The switching period consists of three parts: an active state, a shoot-through state and a freewheeling state.










t
A

T

+


t
s

T

+


t
FRW

T


=



D
A

+

D
S

+

D
FRW


=
1


,




where tFRW is the duration of the freewheeling state and DFRW is the relative duration of the freewheeling state.


If the upper (T1/T3) or lower (T2/T4) switching elements of a full bridge are switched on simultaneously, the load is short-circuited and a zero state is generated (FIG. 4). In this case, a shoot-through state is generated during a zero state. The prerequisite is that the duration of the zero state (tZ) is longer than the maximum duration of the shoot-through state. The switching period consists of three parts: an active state, a shoot-through state and a zero state.










t
A

T

+


t
S

T

+


t
Z

T


=



D
A

+

D
S

+

D
Z


=
1


,




where tZ is the duration of the zero state and DZ is the relative duration of the zero state.


In the case of PSM, the pulse width is kept constant. The output of the inverter is adjusted by changing the mutual phase angle of the control signals and the duration of a shoot-through (FIG. 5). In the case of PSM, a shoot-through is generated during zero states. If the upper (T1/T3) or lower (T2/T4) switching elements of a full bridge are switched on simultaneously, the load is short-circuited and a zero state is generated. In this case, a shoot-through state is generated during a zero state. The prerequisite is that the duration of the zero state (tZ) is longer than the maximum duration of the shoot-through state. The switching period consists of three parts: an active state, a shoot-through state and a zero state. In contrast to the PWM method, where one group of switching elements (either the upper or lower one) constantly generates zero states, here, the upper and lower switching element groups take turns to generate a zero state. This ensures equal operating frequency of the switching elements. If the operating frequency of switching elements is equal, the switching losses are equal as well and the switching elements have an equal load.

Claims
  • 1. A method of modified sine wave control of an inverter, said method comprising: adding shoot-through states to at least one control signal, wherein said inverter is selected from the group of inverters consisting of single-phase or multi-phase Z-source, quasi-Z-source and trans-Z-source inverters.
  • 2. A method according to claim 1, wherein a switching frequency of the inverter is fixed and the pulse width is modulated.
  • 3. A method according to claim 2, wherein said shoot-through states are generated by overlapping active states.
  • 4. A method according to claim 2, wherein said shoot-through states are generated during freewheeling states.
  • 5. A method according to claim 2, wherein said shoot-through states are generated during zero states.
  • 6. A method according to claim 5, wherein said at least one control signal comprises the control signals of upper and lower transistors periodically interchanged to equalise switching losses.
  • 7. A method according to claim 1, wherein pulse widths and switching frequency of the inverter are fixed and the mutual phase angle of the control signals of switching elements is modulated.
  • 8. A method according to claim 7, wherein said shoot-through states are generated during zero states.
Priority Claims (1)
Number Date Country Kind
P201100013 Feb 2011 EE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EE12/00002 2/28/2012 WO 00 8/28/2013