Method of solubilizing itraconazole

Information

  • Patent Grant
  • 6100285
  • Patent Number
    6,100,285
  • Date Filed
    Tuesday, November 11, 1997
    27 years ago
  • Date Issued
    Tuesday, August 8, 2000
    24 years ago
Abstract
Solutions comprising itraconazole solubilized in a solvent comprising at least one volatile organic acid are provided. Methods for preparing microspheres containing imidazole derivatives are provided. Also provided is the use of imidazole derivatives containing microspheres for treating fungal infections. Oral dosage forms for oral administration are also provided.
Description

FIELD OF THE INVENTION
The present invention relates to the preparation of solutions containing imidazole derivatives and to the use of those solutions in the preparation of microspheres. The imidazole derivative containing microspheres are effective in treating fungal infections, particularly in mammals. The microspheres facilitate the oral administration of relatively large amounts of the imidazole derivative, with increased bioavailability.
BACKGROUND OF THE INVENTION
Many present systems for delivering active agents to targets are severely limited by biological, chemical, and physical barriers, which are imposed by the environment through which delivery occurs, the environment of the target itself, or the target itself. Delivery is also limited, in many instances, by the chemical nature of the active agent. For example, oral delivery is generally ineffective with active agents that are poorly water-soluble.
The imidazole derivative family of compounds is particularly effective against a broad range of fungal infections such as those caused by Trichophyton rubrum, Tricophyton mentagrophytes, Epidermophyton floccsum, and Candida albicans, but these compounds are either partially water soluble or insoluble in water. For example, the solubility of itraconazole in water is less than 0.00001 g/ml.
Partially because imidazole derivatives are typically insoluble in water, they are difficult to administer orally. Consequently although imidazole derivatives are frequently prescribed for the treatment of fungal infections, they have been available only in topical preparations or in oral formulations with limited bioavailability.
In recent years, fungal infections, such as those caused by Candida albicans in particular have become more prevalent and intractable due to their appearance in immunocompromised patients, such as those infected with Human Immunodeficiency Virus (HIV) or those suffering from Acquired Immunodeficiency Syndrome (AIDS).
For example, U.S. Pat. No. 3,717,655 discloses imidazole derivatives which have antifungal and antibacterial activity. These compounds are almost insoluble in aqueous solutions such as water and are very poorly soluble in polar solvents such as ethanol.
Das et al., U.S. Pat. No. 4,912,124, disclose a solvent system for imidazole derivatives that include mixtures of a polar solvent, a polyhydric alcohol that acts as a solubilizing agent, a nonionic or amphoteric surfactant, and a cosmetic humectant. Solutions containing at least 1 percent by weight of the imidazole derivatives can be formulated using this solvent system. However, these formulations are suitable for external topical use only.
Accordingly, there is a need for orally deliverable forms of imidazole derivative antifungal agents.
SUMMARY OF THE INVENTION
The present invention provides solutions comprising:
(a) at least about 2.5 parts by weight, based upon 100 parts by weight of solution, of a solute having the formula
wherein R, R.sup.1, and R.sup.2 are independently hydrogen or lower alkyl;
R.sup.3 is hydrogen, methyl or ethyl;
R.sup.4 is hydrogen or methyl
Ar is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or halothienyl;
Ar.sup.1 is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or cyanophenyl; and
n is 1 or 2; and
(b) a solubilizing effective amount of a solvent comprising at least one volatile organic acid solvent.
Imidazole derivative microspheres are also provided. These microspheres comprise:
(a) an imidazole derivative active agent having the formula ##STR1## wherein R, R.sup.1, and R.sup.2 are independently hydrogen or lower alkyl;
R.sup.3 is hydrogen, methyl or ethyl;
R.sup.4 is hydrogen or methyl
Ar is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or halothienyl;
Ar.sup.1 is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or cyanophenyl; and
n is 1 or 2; and
(b) a microsphere forming carrier selected from the group consisting of
(i) a proteinoid;
(ii) an acylated amino acid, poly amino acid, or a salt thereof;
(iii) an sulfonated amino acid, poly amino acid, or a salt thereof;
(iv) a protein or a salt thereof;
(v) an enteric coating material; or
(vi) any combination thereof.
Also contemplated by the present invention is a method for preparing these microspheres. The method comprises:
(A) nebulizing a solution comprising
(a) an imidazole active agent having the formula ##STR2## wherein R, R.sup.1, and R.sup.2 are independently hydrogen or lower alkyl;
R.sup.3 is hydrogen, methyl or ethyl;
R.sup.4 is hydrogen or methyl
Ar is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or halothienyl;
Ar.sup.1 is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or cyanophenyl; and
n is 1 or 2;
(b) an active agent and carrier solubilizing effective amount of a solvent comprising an aqueous solution of at least one volatile organic solvent; and wherein the volume:volume ratio of acid to water in said carrier solution is at least about 3:7, and
(c) microsphere forming a carrier selected from the group consisting of
(i) a proteinoid;
(ii) an acylated amino acid or poly amino acid or a salt thereof;
(iii) an sulfonated amino acid or poly amino acid or a salt thereof;
(iv) a protein or a salt thereof;
(v) an enteric coating material; or
(vi) any combination thereof; and
(B) decreasing said ratio to less than about 3:7, to yield said microspheres. Alternatively, the active agent and the carrier can be solubilized in separate solutions. The separate solutions can be nebulized together and the acid to water ratio then decreased as above.
Methods for the oral administration of imidazole derivatives are also contemplated wherein the microsphere compositions above are orally administered to an animal in need of this treatment.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a scanning electron micrograph (SEM) taken at a magnification of 2,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1B is a SEM taken at a magnification of 15,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1C is a SEM taken a magnification of 20,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1D is a SEM taken at a magnification of 20,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1E is a SEM taken at a magnification of 20,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1F is a SEM taken at a magnification of 20,000.times. of microspheres containing itraconazole prepared according to the present invention.
FIG. 1G is a SEM taken at a magnification of 2,000.times. of microspheres containing itraconazole prepared according to the present invention, after being mechanically crushed.
FIG. 1H is a SEM taken at a magnification of 3,500.times. of microspheres containing itraconazole prepared according to the present invention, after being mechanically crushed.





DETAILED DESCRIPTION OF THE INVENTION
It has now been discovered that water insoluble or partially soluble imidazole derivatives can be solubilized in volatile organic acids. The resultant solutions can be used to prepare imidazole containing microspheres which are suitable for oral administration to animals.
Imidazole Derivatives
The active agents of the present invention are imidazole derivatives having the formula: ##STR3## wherein R, R.sup.1 and R.sup.2 are independently hydrogen or lower alkyl; R.sup.3 is hydrogen, methyl or ethyl;
R.sup.4 is hydrogen or methyl
Ar is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono (lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or halothienyl;
Ar.sup.1 is phenyl, monohalophenyl, dihalophenyl, trihalophenyl, mono(lower alkyl)phenyl, di(lower alkyl)phenyl, lower alkoxyphenyl, or cyanophenyl; and
n is 1 or 2.
A preferred imidazole derivative is itraconazole. Itraconazole is a synthetic triazole imidazole derivative 1:1:1:1 racemic mixture of four diastereomers (two enantiomeric pairs), each possessing three chiral centers (Physicians Desk Reference 48th Ed., pg. 1097, 1994).
Imidazole Derivative Solutions
The solutions prepared in accordance with the present invention allow for the solubilization of imidazole derivatives at concentrations suitable for processing into orally administrable forms having acceptable bioavailability.
In accordance with the present invention, imidazole derivatives are solubilized in volatile organic acid solvent(s). Preferred acid solvents for the imidazole derivatives are acetic acid and formic acid. Preferably, the solvent itself is an aqueous solution of the acid. Most preferably the volume:volume ratio of the acid to the total volume of the solvent is 3:7 or greater. It has been found that by using this solvent system up to a 50% solution of imidazole derivative can be prepared.
Dissolution is achieved by simple mixing, with heating if necessary. The more concentrated the acid in the solvent, the greater the amount of active agent that can be incorporated into the solution. If lower concentrations of acid are required for the end use of the solution, the active agent can first be dissolved in a more concentrated acid solution, and the resultant solution then slowly diluted further, preferably with water.
Preferably, the solution comprises from about 3 to about 40 percent by weight of solute and from about 60 to about 97 parts by weight of solvent based upon 100 parts by weight of solution.
The solvent itself, preferably comprises from about 30 to about 80 parts by volume of acid and from about 70 to about 20 parts by volume of water based upon 100 parts by volume of solvent. Most preferably, the solvent comprises from about 40 to about 50 parts by volume of acid and from about 60 to about 50 parts by volume of water based upon 100 parts by volume of solvent.
Microspheres
Microspheres are useful in the delivery of active agents because they protect an active agent cargo until it is delivered to a target. Microspheres are particularly useful in the oral delivery of biologically active agents such as, for example, pharmaceutically active agents.
Microspheres containing an active agent can be generally of the matrix form or the capsule form. In a hollow matrix spheroid form, the center of the sphere is hollow and the cargo or active agent is distributed throughout a carrier matrix. In a solid matrix form, the carrier matrix forms a continuum in which the cargo is distributed. In the microcapsule form, the encapsulated material or cargo can be either in solution or a solid, with the carrier forming a shell around the cargo.
The methods of the present invention are cost-effective for preparing microspheres which contain imidazole derivatives, are simple to perform, and are amenable to industrial scale-up for commercial production.
Carriers
Carriers suitable for use in the present invention are microsphere forming carriers. These carriers include, without limitation, proteinoids; acylated amino acids, poly amino acids or salts thereof; sulfonated amino acids, poly amino acids or salts thereof; proteins or salts thereof, enteric coating materials; or any combination thereof.
Amino acids are the basic materials used to prepare many of the carriers useful in the present invention. Amino acids include any carboxylic acid having at least one free amino group and include naturally occurring and synthetic amino acids. The preferred amino acids for use in the present invention are '-amino acids and, most preferably, are naturally occurring '-amino acids. Many amino acids and amino acid esters are readily available from a number of commercial sources such as Aldrich Chemical Co. (Milwaukee, Wis., USA); Sigma Chemical Co. (St. Louis, Mo., USA); and Fluka Chemical Corp. (Ronkonkoma, N.Y., USA).
Representative, but not limiting, amino acids suitable for use in the present invention are generally of the formula ##STR4## wherein: R.sup.5 is hydrogen, C.sub.1 -C.sub.4 alkyl, or C.sub.2 -C.sub.4 alkenyl;
R.sup.6 is C.sub.1 -C.sub.24 alkyl, C.sub.2 -C.sub.24 alkenyl, C.sub.3 -C.sub.10 cycloalkyl, C.sub.3 -C.sub.10 cycloalkenyl, phenyl, naphthyl, (C.sub.1 -C.sub.10 alkyl) phenyl, (C.sub.2 -C.sub.10 alkenyl) phenyl, (C.sub.1 -C.sub.10 alkyl) naphthyl, (C.sub.2 -C.sub.10 alkenyl) naphthyl, phenyl (C.sub.1 -C.sub.10 alkyl), phenyl (C.sub.2 -C.sub.10 alkenyl), naphthyl (C.sub.1 -C.sub.10 alkyl), or naphthyl (C.sub.2 -C.sub.10 alkenyl);
R.sup.6 being optionally substituted with C.sub.1 -C.sub.4 alkyl, C.sub.2 -C.sub.4 alkenyl, C.sub.1 -C.sub.4 alkoxy, --OH, --SH, --CO.sub.2 R.sup.7, C.sub.3 -C.sub.10 cycloalkyl, C.sub.3 -C.sub.10 cycloalkenyl, heterocycle having 3-10 ring atoms wherein the hetero atom is one or more of N, O, S, or any combination thereof, aryl, (C.sub.1 -C.sub.10 alk)aryl, ar(C.sub.1 -C.sub.10 alkyl) or any combination thereof;
R.sup.6 being optionally interrupted by oxygen, nitrogen, sulfur, or any combination thereof; and
R.sup.7 is hydrogen, C.sub.1 -C.sub.4 alkyl, or C.sub.2 -C.sub.4 alkenyl.
The preferred naturally occurring amino acids for use in the present invention as amino acids or components of a peptide are alanine, arginine, asparagine, aspartic acid, citrulline cysteine, cystine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, hydroxyproline, .beta.-carboxyglutamic acid, .gamma.-carboxyglutamic acid, phenylglycine, or O-phosphoserine. The most preferred amino acids are arginine, leucine, lysine, phenylalanine, tyrosine, tryptophan, valine, and phenylglycine.
The preferred non-naturally occurring amino acids for use in the present invention are .beta.-alanine, .alpha.-amino butyric acid, .gamma.-amino butyric acid, .gamma.-(aminophenyl) butyric acid, .alpha.-amino isobutyric acid, .epsilon.-amino caproic acid, 7-amino heptanoic acid, .beta.-aspartic acid, aminobenzoic acid, aminophenyl acetic acid, aminophenyl butyric acid, .gamma.-glutamic acid, cysteine (ACM), .epsilon.-lysine, methionine sulfone, norleucine, norvaline, ornithine, d-ornithine, p-nitro-phenylalanine, hydroxy proline, 1,2,3,4,-tetrahydroisoquinoline-3-carboxylic acid, and thioproline.
Poly amino acids are either peptides or two or more amino acids linked by a bond formed by other groups which can be linked, e.g., an ester or an anhydride linkage. Special mention is made of non-naturally occurring poly amino acids and particularly non-naturally occurring hetero-poly amino acids, i.e. of mixed amino acids.
Peptides are two or more amino acids joined by a peptide bond. Peptides can vary in length from di-peptides with two amino acids to polypeptides with several hundred amino acids. See, Walker, Chambers Biological Dictionary, Cambridge, England: Chambers Cambridge, 1989, page 215. Special mention is made of non-naturally occurring peptides and particularly non-naturally occurring peptides of mixed amino acids. Special mention is also made of di-peptides tri-peptides, tetra-peptides, and penta-peptides, and particularly, the preferred peptides are di-peptides and tri-peptides. Peptides can be homo- or hetero-peptides and can include natural amino acids, synthetic amino acids, or any combination thereof.
Proteinoids
Proteinoids are artificial polymers of amino acids. Proteinoids preferably are prepared from mixtures of amino acids. Preferred proteinoids are condensation polymers, and most preferably, are thermal condensation polymers. These polymers may be directed or random polymers. Proteinoids can be linear, branched, or cyclical, and certain proteinoids can be units of other linear, branched, or cyclical proteinoids.
Special mention is made of diketopiperazines. Diketopiperazines are six member ring compounds. The ring includes two nitrogen atoms and is substituted at two carbons with two oxygen atoms. Preferably, the carbonyl groups are at the 2 and 5 ring positions. These rings can be optionally, and most often are, further substituted.
Diketopiperazine ring systems may be generated during thermal polymerization or condensation of amino acids or amino acid derivatives. (Gyore, J; Ecet M. Proceedings Fourth ICTA (Thermal Analysis), 1974, 2, 387-394 (1974)). These six membered ring systems were presumably generated by intra-molecular cyclization of the dimer prior to further chain growth or directly from a linear peptide (Reddy, A. V., Int. J. Peptide Protein Res., 40, 472-476 (1992); Mazurov, A. A. et al., Int. J. Peptide Protein Res., 42, 14-19 (1993)).
Diketopiperazines can also be formed by cyclodimerization of amino acid ester derivatives as described by Katchalski et al., J. Amer. Chem. Soc., 68, 879-880 (1946), by cyclization of dipeptide ester derivatives, or by thermal dehydration of amino acid derivatives and high boiling solvents as described by Kopple et al., J. Org. Chem., 33 (2), 862-864 (1968).
Diketopiperazines typically are formed from .alpha.-amino acids. Preferably, the .alpha.-amino acids of which the diketopiperazines are derived are glutamic acid, aspartic acid, tyrosine, phenylalanine, and optical isomers of any of the foregoing.
Modified Amino Acids and Poly Amino Acids
Modified amino acids, poly amino acids, or peptides are either acylated or sulfonated and include amino acid amides and sulfonamides.
Acylated Amino Acids and Poly Amino Acids
Although any acylated amino acids or poly amino acids are useful in the present invention, special mention is made of acylated amino acids having the formula
Ar.sup.2 --Y--(R.sup.8).sub.n --OH III
wherein Ar.sup.2 is a substituted or unsubstituted phenyl or naphthyl; ##STR5## R.sup.8 has the formula ##STR6## wherein: R.sup.9 is C.sub.1 to C.sub.24 alkyl, C.sub.1 to C.sub.24 alkenyl, phenyl, naphthyl, (C.sub.1 to C.sub.10 alkyl) phenyl, (C.sub.1 to C.sub.10 alkenyl) phenyl, (C.sub.1 to C.sub.10 alkyl) naphthyl, (C.sub.1 to C.sub.10 alkenyl) naphthyl, phenyl (C.sub.1 to C.sub.10 alkyl), phenyl (C.sub.1 to C.sub.10 alkenyl), naphthyl (C.sub.1 to C.sub.10 alkyl) and naphthyl (C.sub.1 to C.sub.10 alkenyl);
R.sup.9 is optionally substituted with C.sub.1 to C.sub.4 alkyl, C.sub.1 to C.sub.4 alkenyl, C.sub.1 to C.sub.4 alkoxy, --OH, --SH and --CO.sub.2 R.sup.11, cycloalkyl, cycloalkenyl, heterocyclic alkyl, alkaryl, heteroaryl, heteroalkaryl, or any combination thereof;
R.sup.11 is hydrogen, C.sub.1 to C.sub.4 alkyl or C.sub.1 to C.sub.4 alkenyl;
R.sup.9 is optionally interrupted by oxygen, nitrogen, sulfur or any combination thereof; and
R.sup.10 is hydrogen, C.sub.1 to C.sub.4 alkyl or C.sub.1 to C.sub.4 alkenyl.
Special mention is also made of those having the formula ##STR7## wherein: R.sup.12 is (i) C.sub.3 -C.sub.10 cycloalkyl, optionally substituted with C.sub.1 -C.sub.7 alkyl, C.sub.2 -C.sub.7 alkenyl, C.sub.1 -C.sub.7 alkoxy, hydroxy, phenyl, phenoxy or --CO.sub.2 R.sup.15, wherein R.sup.15 is hydrogen, C.sub.1 -C.sub.4 alkyl, or C.sub.2 -C.sub.4 alkenyl; or
(ii) C.sub.1 -C.sub.6 alkyl substituted with C.sub.3 -C.sub.10 cycloalkyl;
R.sup.13 is hydrogen, C.sub.1 -C.sub.4 alkyl, or C.sub.2 -C.sub.4 alkenyl;
R.sup.14 is C.sub.1 -C.sub.24 alkyl, C.sub.2 -C.sub.24 alkenyl, C.sub.3 -C.sub.10 cycloalkyl, C.sub.3 -C.sub.10 cycloalkenyl, phenyl, naphthyl, (C.sub.1 -C.sub.10 alkyl) phenyl, (C.sub.2 -C.sub.10 alkenyl) phenyl, (C.sub.1 -C.sub.10 alkyl) naphthyl, (C.sub.2 -C.sub.10 alkenyl) naphthyl, phenyl (C.sub.l -C.sub.10 alkyl), phenyl (C.sub.2 -C.sub.10 alkenyl), naphthyl (C.sub.1 -C.sub.10 alkyl) or naphthyl (C.sub.2 -C.sub.10 alkenyl);
R.sup.14 being optionally substituted with C.sub.1 -C.sub.4 alkyl, C.sub.2 -C.sub.4 alkenyl, C.sub.1 -C.sub.4 alkoxy, --OH, --SH, --CO.sub.2 R.sup.16, C.sub.3 -C.sub.10 cycloalkyl, C.sub.3 -C.sub.10 cycloalkenyl, heterocycle having 3-10 ring atoms wherein the hetero atom is one or more of N, O, S or any combination thereof, aryl, (C.sub.1 -C.sub.10 alk)aryl, ar(C.sub.1 -C.sub.10 alkyl), or any combination thereof;
R.sup.14 being optionally interrupted by oxygen, nitrogen, sulfur, or any combination thereof; and
R.sup.16 is hydrogen, C.sub.1 -C.sub.4 alkyl, or C.sub.2 -C.sub.4 alkenyl.
Acylated amino acids may be prepared by reacting single amino acids, mixtures of two or more amino acids, or amino acid esters with an amine modifying agent which reacts with free amino moieties present in the amino acids to form amides.
Suitable, but non-limiting, examples of acylating agents useful in preparing acylated amino acids include
acid chloride acylating agents having the formula ##STR8## wherein: R.sup.17 an appropriate group for the modified amino acid being prepared, such as, but not limited to, alkyl, alkenyl, cycloalkyl, or aromatic, and particularly methyl, ethyl, cyclohexyl, cyclophenyl, phenyl, or benzyl, and X is a leaving group. Typical leaving groups include, but are not limited to, halogens such as chlorine, bromine and iodine.
Examples of the acylating agents include, but are not limited to, acyl halides including, but not limited to, acetyl chloride, propyl chloride, cyclohexanoyl chloride, cyclopentanoyl chloride, and cycloheptanoyl chloride, benzoyl chloride, hippuryl chloride and the like; and anhydrides, such as acetic anhydride, propyl anhydride, cyclohexanoic anhydride, benzoic anhydride, hippuric anhydride and the like. Preferred acylating agents include benzoyl chloride, hippuryl chloride, acetyl chloride, cyclohexanoyl chloride, cyclopentanoyl chloride, and cycloheptanoyl chloride.
The amine groups can also be modified by the reaction of a carboxylic acid with coupling agents such as the carbodiimide derivatives of amino acids, particularly hydrophilic amino acids such as phenylalanine, tryptophan, and tyrosine. Further examples include dicyclohexylcarbodiimide and the like.
If the amino acid is multifunctional, i.e. has more than one --OH, --NH.sub.2 or --SH group, then it may optionally be acylated at one or more functional groups to form, for example, an ester, amide, or thioester linkage.
In acylated poly amino acids, one or more of the amino acids may be modified (acylated). Modified poly amino acids may include one or more acylated amino acid(s). Although linear modified poly amino acids will generally include only one acylated amino acid, other poly amino acid configurations can include more than one acylated amino acid. Poly amino acids can be polymerized with the acylated amino acid(s) or can be acylated after polymerization.
Sulfonated Amino Acids and Poly Amino Acids
Sulfonated amino acids and poly amino acids are modified by sulfonating at least one free amine group with a sulfonating agent which reacts with at least one of the free amine groups present.
Special mention is made of compounds of the formula
Ar.sup.3 --Y--(R.sup.18).sub.n --OH V
wherein Ar.sup.3 is a substituted or unsubstituted phenyl or naphthyl;
Y is --SO.sub.2 --, R.sup.18 has the formula ##STR9## wherein: R.sup.19 is C.sub.1 to C.sub.24 alkyl, C.sub.1 to C.sub.24 alkenyl, phenyl, naphthyl, (C.sub.1 to C.sub.10 alkyl) phenyl, (C.sub.1 to C.sub.10 alkenyl) phenyl, (C.sub.1 to C.sub.10 alkyl) naphthyl, (C.sub.1 to C.sub.10 alkenyl) naphthyl, phenyl (C.sub.1 to C.sub.10 alkyl), phenyl (C.sub.1 to C.sub.10 alkenyl), naphthyl (C.sub.1 to C.sub.10 alkyl) and naphthyl (C.sub.1 to C.sub.10 alkenyl);
R.sup.19 is optionally substituted with C.sub.1 to C.sub.4 alkyl, C.sub.1 to C.sub.4 alkenyl, C.sub.1 to C.sub.4 alkoxy, --OH, --SH and --CO.sub.2 R.sup.21 or any combination thereof;
R.sup.21 is hydrogen, C.sub.1 to C.sub.4 alkyl or C.sub.1 to C.sub.4 alkenyl;
R.sup.19 is optionally interrupted by oxygen, nitrogen, sulfur or any combination thereof; and
R.sup.20 is hydrogen, C.sub.1 to C.sub.4 alkyl or C.sub.1 to C.sub.4 alkenyl.
Suitable, but non-limiting, examples of sulfonating agents useful in preparing sulfonated amino acids include sulfonating agents having the formula R.sup.22 --SO.sub.2 --X wherein R.sup.22 is an appropriate group for the modified amino acid being prepared such as, but not limited to, alkyl, alkenyl, cycloalkyl, or aromatics and X is a leaving group as described above. One example of a sulfonating agent is benzene sulfonyl chloride.
Modified poly amino acids and peptides may include one or more sulfonated amino acid(s). Although linear modified poly amino acids and peptides used generally include only one sulfonated amino acid, other poly amino acid and peptide configurations can include more than one sulfonated amino acid. Poly amino acids and peptides can be polymerized with the sulfonated amino acid(s) or can be sulfonated after polymerization.
Proteins
Proteins are naturally occurring (i.e. not artificial) polymers of amino acids.
Enteric Coating Materials
Enteric coating materials known to those skilled in the art such as, for example, cellulose acetate trimellitate (CAT) and cellulose acetate phthalate (CAP), are suitable for use in the preservation as well.
Formation
These carriers, and particularly proteinoids, acylated amino acids or poly amino acids, sulfonated amino acids or poly amino acids, and proteins are often insoluble or relatively insoluble in neutral or mildly acidic solutions but are also soluble, as are the imidazole derivatives useful in the present invention, in aqueous acid solutions wherein the volume to volume ratio of acid to water is greater than about 3:7. Suitable aqueous acid solvents are as above, i.e. volatile organic acids, such as for example, aqueous acetic acid, aqueous formic acid, and the like. These acids will volatilize upon nebulization or can be diluted in the aqueous solution, thereby decreasing the concentration of the acid and reversing the solubility of the carrier even in the absence of a precipitator. For example, see U.S. patent application No. 08/475,882, filed on Jun. 7, 1995, now, U.S. Pat. No. 5,667,806, (attorney's docket no. 1946/09202) entitled "SPRAY DRYING METHOD AND APPARATUS".
Microsphere formation occurs when the concentration of the acid in the carrier/active agent solution is decreased. As this solution is nebulized, the acid evaporates, decreasing the concentration of the acid in solution to less than 30% by volume. The carrier, then, will self assemble to form microspheres containing any optional active agent. The cargo must be stable in the concentrated acid for the time and conditions necessary to carry out the operation. Alternately, the carrier solution can be diluted, such as with water, whereby the acid concentration is decreased and the carrier precipitates to form microspheres. Preferably, the microspheres are prepared by spray drying.
The microspheres can be pH adapted by using base or acid soluble coatings including, but not limited to, proteinoid coatings, enteric coatings, acylated amino acid coatings, and the like.
Any of the solutions above may optionally contain additives such as stabilizing additives. The presence of such additives promotes the stability and dispersability of the active agent in solution. The stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (w/v), preferably about 0.5% (w/v). Suitable, but non-limiting examples of stabilizing additives include buffer salts, gum acacia, gelatin, methyl cellulose, polyethylene glycol, and polylysine.
The amount of active agent that may be incorporated in the microsphere is dependent upon a number of factors which include the concentration of active agent in the solution as well as the affinity of the active agent for the carrier. The concentration of the active agent in the final formulation also will vary depending on the required amounts for any particular end use. When necessary, the exact concentration can be determined by, for example, reverse phase HPLC analysis.
The microspheres and, therefore, the solutions described above may also include one or more enzyme inhibitors. Such enzyme inhibitors include, but are not limited to, compounds such as actinonin or epiactinonin and derivatives thereof.
The microspheres are particularly useful for administering itraconazole derivatives to any animals, including but not limited to, birds and mammals, such as primates and particularly humans; and insects. These microsphere systems are particularly advantageous for delivering these active agents as the active agent would otherwise be destroyed or rendered less effective by conditions encountered before the microsphere reaches the active agent target zone (i.e., the area in which the active agent of the delivery composition are to be released) and within the body of the animal to which they are administered. Furthermore, these microspheres can deliver relatively high amounts of the imidazole derivative and retain a high bioavailability.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following examples illustrate the present invention without limitation.
EXAMPLE 1
Solubilization of Itraconazole
Acetic acid solutions were prepared in water to 10%, 20%, 50% and 75% concentrations (expressed as volume glacial acetic acid/total volume of solution .times.100). 100 mg itraconazole solute were then mixed independently with 1 ml of each solution and visually monitored for dissolution. If necessary, additional 1 ml aliquots of each acetic acid solution were added until the itraconazole solute was dissolved.
Results are illustrated in Table 1 below. The solubilized material did not precipitate readily.
TABLE 1______________________________________SOLUBILITYConcentration Amount of Solventof Acid 1 ml 1 ml 2 ml 2 ml 3 ml 3 ml 4 ml 4 mlin Solvent Cold Hot Cold Hot Cold Hot Cold Hot______________________________________10% Acetic Ins. Ins. Ins. Ins. Ins. Ins. -- Ins.Acid v:v20% Acetic Ins. Ins. Ins. Ins. Ins. Part -- --Acid v:v Sol.50% Acetic Ins. Ins. Ins. Sol. Ins. -- -- --Acid v:v75% Acetic Sol. -- -- -- -- -- -- --Acid v:v______________________________________
EXAMPLE 2
Solubilization of Itraconazole
100 mg of itraconazole solute were dissolved in 1 ml glacial acetic acid solvent and aqueous acetic acid solvent at various concentrations. Results are illustrated in Table 2 below.
TABLE 2______________________________________ITRACONAZOLE SOLUTE% Acetic Acid (v:v) Dissolved Itraconazole %______________________________________100 >33 (dissolves freely on addition)75 >10 (dissolves freely on addition)40 5 (diss.conc.acid, then dilute)20 2.5 (diss.conc.acid, then dilute)______________________________________
EXAMPLE 3
Preparation of Itraconazole-containing Microspheres One-solution Method
60 grams of itraconazole solute (Janssen Pharmaceutica) were added to 1.43 liters of glacial acetic acid solvent, and the mixture was stirred to dissolve the solute. 1.43 liters of water were then added using a pump at a flow rate of 25 ml/min. Slight clouding of the solution was observed, but cleared upon further stirring. 166 grams of proteinoid (Glu-Asp-Tyr-Phe-Orn) were added and dissolved with further stirring. The final solution was filtered through folded tissue paper.
Using peristaltic pumps, the solution was fed through a Virtis SDO4 spray drying apparatus under the conditions of Table 3 below.
TABLE 3______________________________________SPRAY DRYING CONDITIONSSolution flow rate 7-8 ml/min______________________________________Inlet temperature 175.degree. C.Outlet temperature 116.degree. C.Blower speed fullCompressor pressure full______________________________________
Stable proteinoid microspheres containing itraconazole were formed. Analysis of typical microspheres using RP-HPLC demonstrated that they contained 14-21% itraconazole by weight.
Scanning electron microscopy in FIGS. 1A-1H illustrates that the microspheres were smooth and spherical and had diameters ranging from 0.1 .mu.m to about 5 .mu.m. When mechanically crushed only the larger spheres shattered, while the smaller spheres remained intact. Crushing revealed a solid internal structure. See, FIGS. 1G and 1H.
All patents, applications, publications, and test methods mentioned herein are hereby incorporated by reference in their entirety.
Many variations of the present invention will suggest themselves to those skilled in the art in light of the above-detailed description in which obvious variations are within the full intended scope of the appended claims.
Claims
  • 1. A solution comprising:
  • (a) at least about 2.5 parts by weight, based upon 100 parts by weight of solution, of a solute comprising itraconazole; and
  • (b) a solubilizing effective amount of a solvent comprising at least one volatile organic acid.
  • 2. A solution is defined in claim 1, wherein said solution comprises from about 3 to about 40 percent by weight of solute and from about 60 to about 97 parts by weight of solvent based upon 100 parts by weight of solution.
  • 3. A solution as defined in claim 1, wherein said solvent comprises an aqueous solution of said acid.
  • 4. A solution as defined in claim 3, wherein said solvent comprises aqueous acetic acid.
  • 5. A solution is defined as in claim 3, wherein said solvent comprises aqueous formic acid.
  • 6. A solution as defined in claim 3, wherein said solvent comprises from about 30 to about 80 parts by volume of acid and from about 70 to about 20 parts by volume of water, based upon 100 parts by volume of solvent.
  • 7. A solution as defined in claim 6, wherein said solvent comprises from about 40 to about 50 parts by volume weight of acid and from about 60 to about 50 parts by volume of water, based upon 100 parts by volume of solvent.
  • 8. A solution is defined in claim 3, wherein the volume:volume ratio of acid to water in said solvent is at least about 3:7.
Parent Case Info

This is a division of application U.S. Ser. No. 08/475,887, filed Jun. 7, 1995, now, U.S. Pat. No. 5,750,147.

US Referenced Citations (157)
Number Name Date Kind
RE24899 Green Nov 1960
2671451 Bolger Mar 1954
2828206 Rosenberg Mar 1958
2862918 Meyer et al. Dec 1958
2868740 Luce Jan 1959
2971916 Schleicher et al. Feb 1961
3016308 Macaulay Jan 1962
3052655 Fox et al. Sep 1962
3057344 Abella et al. Oct 1962
3076790 Fox et al. Feb 1963
3170802 Fukushima Feb 1965
3190837 Brynko et al. Jun 1965
3474777 Figge et al. Oct 1969
3491093 Pachter et al. Jan 1970
3565559 Sato Feb 1971
3567650 Bakan Mar 1971
3574832 Engel et al. Apr 1971
3576758 Emrick Apr 1971
3687926 Arima et al. Aug 1972
3725113 Chang Apr 1973
3748277 Wagner Jul 1973
3794561 Matsukawa et al. Feb 1974
3795739 Birkmayer et al. Mar 1974
3816404 Kablaoui et al. Jun 1974
3822348 Higashi et al. Jul 1974
3849550 Teitelbaum Nov 1974
3933873 Love et al. Jan 1976
3937668 Zolle Feb 1976
3939253 Bodor et al. Feb 1976
3956172 Saeki et al. May 1976
3962416 Katzen Jun 1976
3976773 Curran Aug 1976
4035507 Bodor et al. Jul 1977
4048268 Ludwig Sep 1977
4061466 Sjoholm et al. Dec 1977
4117801 Dannelly et al. Oct 1978
4147767 Yapel Apr 1979
4183849 Hansen Jan 1980
4199561 Roth et al. Apr 1980
4217370 Rawlings et al. Aug 1980
4238506 Stach et al. Dec 1980
4239635 Rieder Dec 1980
4239754 Sache et al. Dec 1980
4272506 Schwarzberg Jun 1981
4289759 Heavner et al. Sep 1981
4345588 Widder et al. Aug 1982
4348384 Horikoshi et al. Sep 1982
4351337 Sidman Sep 1982
4352883 Lim Oct 1982
4357259 Senyei et al. Nov 1982
4388304 Nyeki et al. Jun 1983
4393192 Curatolo et al. Jul 1983
4402856 Schnoring et al. Sep 1983
4402968 Martin Sep 1983
4405598 Brown Sep 1983
4442090 Kakeya et al. Apr 1984
4446138 Pack May 1984
4450150 Sidman May 1984
4457907 Porter Jul 1984
4460563 Calanchi Jul 1984
4462839 McGinley et al. Jul 1984
4462991 Higuchi et al. Jul 1984
4473620 Wu et al. Sep 1984
4483807 Asano Nov 1984
4492684 Goosen et al. Jan 1985
4518433 McGinley et al. May 1985
4590265 Bogan et al. May 1986
4608278 Frank Aug 1986
4613500 Suzuki et al. Sep 1986
4647455 De Bold Mar 1987
4666641 Fickat et al. May 1987
4671954 Goldberg Jun 1987
4673566 Goosen et al. Jun 1987
4683092 Tsang Jul 1987
4690786 Ninomiya et al. Sep 1987
4692284 Braden Sep 1987
4692433 Hostetler et al. Sep 1987
4703042 Bodor Oct 1987
4708952 Salatinjants Nov 1987
4745161 Saudek et al. May 1988
4753804 Iaccheri et al. Jun 1988
4757007 Satoh Jul 1988
4757024 Roper Jul 1988
4757066 Shiokari et al. Jul 1988
4766012 Valenti Aug 1988
4774320 Tagliabue et al. Sep 1988
4789734 Pierschbacher Dec 1988
4835312 Itoh et al. May 1989
4837381 Steber et al. Jun 1989
4844904 Hamaguchi et al. Jul 1989
4865614 Ploog et al. Sep 1989
4873087 Morishita et al. Oct 1989
4878942 Motegi et al. Nov 1989
4886663 Houghten Dec 1989
4895725 Kantor et al. Jan 1990
4897444 Brynes et al. Jan 1990
4900730 Miyauchi Feb 1990
4908233 Takizawa et al. Mar 1990
4919939 Baker Apr 1990
4925673 Steiner May 1990
4927928 Shroot et al. May 1990
4963364 Fox et al. Oct 1990
4976968 Steiner Dec 1990
4983402 Steiner Jan 1991
4996292 Fox et al. Feb 1991
5019400 Gombotz et al. May 1991
5023374 Simon Jun 1991
5039481 Pacifici et al. Aug 1991
5041291 Bader et al. Aug 1991
5055300 Gupta Oct 1991
5066487 Morelle et al. Nov 1991
5067961 Kelman et al. Nov 1991
5069936 Yen Dec 1991
5077278 Hafner et al. Dec 1991
5100669 Hyon et al. Mar 1992
5100918 Sunshine et al. Mar 1992
5122367 Ron et al. Jun 1992
5126147 Silvestri et al. Jun 1992
5137892 Chu et al. Aug 1992
5186947 Goettsche et al. Feb 1993
5204099 Barbier et al. Apr 1993
5206384 Shibahara et al. Apr 1993
5216124 Hansen, Jr. et al. Jun 1993
5244653 Berke et al. Sep 1993
5250236 Gasco Oct 1993
5271923 Goldberg et al. Dec 1993
5271961 Mathiowitz et al. Dec 1993
5278148 Branca et al. Jan 1994
5310535 Kruper, Jr. et al. May 1994
5328992 Peter et al. Jul 1994
5352461 Feldstein et al. Oct 1994
5384133 Boyes et al. Jan 1995
5389377 Chagnon et al. Feb 1995
5389379 Dirix et al. Feb 1995
5401516 Milstein et al. Mar 1995
5418010 Janda et al. May 1995
5439686 Desai et al. Aug 1995
5443841 Milstein et al. Aug 1995
5447728 Milstein et al. Sep 1995
5451410 Milstein et al. Sep 1995
5474997 Gray et al. Dec 1995
5530137 Owiti et al. Jun 1996
5536813 Charpenel et al. Jul 1996
5540939 Milstein et al. Jul 1996
5541155 Leone-Bay et al. Jul 1996
5578323 Milstein et al. Nov 1996
5601846 Milstein et al. Feb 1997
5629020 Leone-Bay et al. May 1997
5643957 Leone-Bay et al. Jul 1997
5650386 Leone-Bay et al. Jul 1997
5665700 Cho et al. Sep 1997
5667806 Kantor Sep 1997
5693338 Milstein Dec 1997
5705529 Matyus et al. Jan 1998
5709861 Santiago et al. Jan 1998
5714167 Milstein et al. Feb 1998
5750147 Kantor May 1998
Foreign Referenced Citations (1)
Number Date Country
1077942 Aug 1976 CAX
Divisions (1)
Number Date Country
Parent 475887 Jun 1995