The present disclosure relates to a method of speed control, and more particularly to a method of speed control based on self-learning model of a load torque and a moment inertia.
The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.
The application of motors with inverters has been widely used in elevators, cranes, escalators, and other systems. In order to increase the operation performance of a drive system, the relevant mechanical parameters of the drive system are generally used to design a speed controller to meet the performance requirements during operation.
Taking an elevator as a load as an example, since the moment inertia of the motor is positively related to the weight of the load, the moment inertia of the motor will accordingly change when the weight of the load is different. Therefore, if the moment inertia of the motor can be estimated, the parameters of the controller of the motor can be adjusted according to the estimated value of the moment inertia, which helps to precisely control the speed of the motor to increase the control performance of the motor, such as the acceleration performance, transient response, load rejection capability, and so on.
An object of the present disclosure is to provide a method of speed control based on a self-learning model of a load torque and a moment inertia to solve the problems of the existing technology.
In order to achieve the above-mentioned object, the method of speed control based on a self-learning model of the load torque and the moment inertia applied to a controller of controlling a motor. The method includes steps of: (a) establishing a relationship between the load torque and the moment inertia by a self-learning manner, (b) correspondingly acquiring a value of the moment inertia according to a value of the load torque, and (c) adjusting parameters of the controller to control rotation of the motor according to the value of the moment inertia.
In one embodiment, the step (a) includes steps of: (a1) acquiring the value of the load torque under a zero speed control, (a2) acquiring the value of the moment inertia under an acceleration control, and (a3) establishing the relationship between the load torque and the moment inertia by repeatedly performing the step (a1) and the step (a2).
In one embodiment, the step (a2) includes a step of: (a21) calculating the value of the moment inertia by performing an integral operation.
In one embodiment, the relationship between the load torque and the moment inertia is a lookup table.
In one embodiment, the relationship between the load torque and the moment inertia is a curve-fitting relation.
In one embodiment, the method further includes a step of: (d) updating the relationship between the load torque and the moment inertia.
In one embodiment, when determining that there is a new value of the load torque, correspondingly acquiring a new value of the moment inertia and updating the relationship between the load torque and the moment inertia.
In one embodiment, a relationship between the load torque and the moment inertia is one to one.
In one embodiment, when a relationship between the load torque and the moment inertia is one to many, the plurality of moment inertia is calculated by an arithmetic average operation to acquire an average moment inertia, and a relationship between the load torque and the average moment inertia is one to one.
In one embodiment, in the step (a), acquiring a speed information of the motor through a speed control loop, and acquiring a torque information of the motor through a current control loop to self-learning establish the relationship between the load torque and the moment inertia.
Accordingly, the method of speed control based on the self-learning model of the load torque and the moment inertia can achieve the technical effects: (1) calculating the value of the corresponding values of the moment inertia by using an integral operation to solve the problem of needing to add a filter due to the high frequency noise caused by the differential operation in the prior art; (2) using the existing speed control loop and current control loop to directly acquire the information needed for parameter estimation, and therefore the parameter (moment inertia) estimation process does not affect the operation of the closed loop and the drive control of the motor; (3) when the value of the moment of inertia is acquired by parameter estimation, the parameters of the controller can be adjusted according to the value of the moment inertia to control the operation of the motor, thereby precisely controlling the speed of the motor to increase the control performance of the motor, such as the acceleration performance, transient response, load rejection capability, and so on.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the present disclosure as claimed. Other advantages and features of the present disclosure will be apparent from the following description, drawings, and claims.
The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawing as follows:
Reference will now be made to the drawing figures to describe the present disclosure in detail. It will be understood that the drawing figures and exemplified embodiments of present disclosure are not limited to the details thereof.
Please refer to
Please refer to
A motor mechanical motion equation may be expressed as the relational formula (1):
In the relational formula (1), Jm, is the moment inertia, ωm is a mechanical angular velocity (and a mechanical angular acceleration is
is a motor output torque, TL is the load torque, and Bm is a viscous friction coefficient.
The relational formula (1) is further represented as:
Jmdωm=(Te−TL−Bmωm)dt (2)
The relational formula (2) is further integrated to be represented as:
Jmωm=∫(Te−TL−Bmωm)dt (3)
Therefore, the relation formula (3) is further represented as an estimation equation of moment inertia:
For an elevator system, due to Jm, >>Bm, the estimation equation of moment inertia can be simplified as:
Please refer to
As mentioned in the step (S111) above, the value of the load torque is acquired (estimated) under the zero speed control. In the first interval (I), i.e., the zero speed control (a motor speed curve C1 is zero shown in
is also zero. Therefore, the value of the load torque TL can be acquired (estimated) to be equal to the motor output torque Te (=iq*Kt) according to the relational formula (1). Therefore, in the first interval (I), i.e., a zero-speed control interval, the value of the load torque TL can be acquired (estimated), which is corresponding to the step (S111) in
Afterward, as mentioned in the step (S112) above, the value of the moment inertia is acquired (estimated) under the acceleration control. In the second interval (II), i.e., the acceleration speed control (the motor speed curve C1 gradually rises shown in
Therefore, the relationship between the load torque and the moment inertia can be built by repeatedly performing the step (S111) and the step (S112).
Incidentally, in the third interval (III), between 7th second and 12th second as shown in
is zero. Therefore, the value of the viscous friction coefficient Bm can be acquired (estimated) by integrating the difference between the motor output torque Te and the load torque TL, and then dividing by the mechanical angular velocity ωm according to the relational formula (5). In particular, the curve C4 shown in
Therefore, after the step (S11) is performed, the relationship between the load torque and the moment inertia can be self-learning built. In one embodiment, the relationship between the load torque and the moment inertia may be a lookup table, and the lookup table is created (provided) by corresponding a value of load torque to at least one value of the moment inertia. Incidentally, during the creation of the relationship between the load torque and the moment inertia, there may be one value of load torque corresponding to more than two values of moment inertia. Therefore, the plural values of the moment inertia may be calculated by an arithmetic average operation to acquire an average moment inertia to correspond to the value of the load torque. The examples of the lookup table are shown in Table 1 and Table 2 below.
As shown in
As shown in
In another embodiment, the relationship between the load torque and the moment inertia is a curve-fitting relation as shown in
The sampled (acquired) values of discrete load torque TL (the abscissa of
The forms or data processing methods of the above-mentioned lookup table or curve-fitting relation may be planned and designed according to the hardware conditions, such as memory capacity, microprocessor operation speed, networking capability, or so on so that the data resolution of the lookup table or the complexity of the curve-fitting relation may be used for the optimal and most real-time estimation performance.
Based on the creation of the relationship between the load torque and the moment inertia, after the step (S11), correspondingly acquiring a value of the moment inertia according to the value of the load torque (S12). Since the relationship between the load torque and the moment inertia is created in the step (S11), the value of the moment inertia can be acquired according to the value of the load torque by the lookup table. Alternatively, by using the curve-fitting relation, the value of the load torque is substituted into the fitted mathematical function to calculate the corresponding value of the moment inertia. Finally, adjusting parameters of the controller to control rotation of the motor according to the value of the moment inertia (S13).
Please refer to
Moreover, if a determination result in the step (S200) is “YES”, that is, the inertia information of the load exists, determining whether the self-learning of the model is not completed (S300). If the self-learning of the model has been completed, that is, a determination result in the step (S300) is “NO”, correspondingly acquiring different values of the moment inertia Jm, according to different values of the load torque TL (the example, the number of passengers in the elevator) by the lookup table or the curve-fitting relation (S500). Moreover, adjusting parameters of the controller of the motor to control rotation of the motor according to the values of the moment inertia Jm, that is, performing the speed control of the motor (S510) to control rotation of the motor (S520), thereby precisely controlling the speed of the motor to increase the control performance of the motor. Therefore, through the performance of the steps (S500) to (S520), it may be regarded as a state where the relationship between the load torque and the moment inertia does not need to be updated, and different values of the corresponding moment inertia Jm, are acquired according to different values of the load torque TL so as to adjust parameters of the controller of the motor to control rotation of the motor.
If the self-learning of the model has not been completed, that is, the determination result in the step (S300) is “YES”, correspondingly acquiring different values of the moment inertia Jm according to different values of the load torque TL (the example, the number of passengers in the elevator) by the lookup table or the curve-fitting relation (S310). Moreover, adjusting parameters of the controller of the motor to control rotation of the motor according to the values of the moment inertia Jm, that is, performing the speed control of the motor (S320) to control rotation of the motor (S330), and continuously performing the estimation of the moment inertia and collecting data (S340). Therefore, through the performance of the steps (S310) to (S340), it may be regarded as the data (the information of the load torque) of the relationship between the load torque and the moment inertia still need to be collected and updated. Furthermore, if there is new information of the load torque TL (for example, there is a change in the weight of passengers in the elevator), a new load torque TL is correspondingly estimated so as to update/new the relationship between the load torque and the moment inertia. That is, if a determination result in the step (S400) is “YES” to update the relationship between the load torque and the moment inertia (S240) so that the relationship between the load torque and the moment inertia is more complete. On the contrary, if the relationship between the load torque and the moment inertia does not need to be updated, that is the determination result in the step (S400) is “NO”, finishing the estimation of the moment inertia (S250).
Please refer to
A current controller receives the current command and a current feedback of a sensed current measured by a current sensor of an inner-loop control loop to generate a voltage command. In particular, the sensed current is converted into the current feedback by a current converter, and the current converter can convert an a-b-c three-phase stationary coordinate to a d-q synchronous rotation coordinate. The voltage command is modulated and processed by a PWM modulator (pulse width modulator) to generate a gate signal to control an inverter to drive the motor.
In addition, the motor drive system further includes a parameter estimator. The parameter estimator is connected to an outer-loop control loop to receive a motor angular velocity ωm, and is connected to the inner-loop control loop to receive an estimated value of the motor output torque according to the product of an motor output current iq and a torque constant Kt. The parameter estimator estimates the value of the moment inertia Jm based on the received motor parameter information.
In particular, the information collection action required to self-learning establish or update the relationship between the load torque and the moment inertia does not affect the operation of the outer-loop control and the inner-loop control of the motor drive system and the drive control of the motor. In other words, the parameter estimator only acquires the information of the outer-loop control and the inner-loop control to estimate the value of the moment inertia Jm, and does not interfere with the operation of the outer-loop control and the inner-loop control and the drive control of the motor. Furthermore, when the parameter estimator acquires the value of the moment inertia Jm, the parameters of the controller may be adjusted according to the value of the moment inertia Jm, to control the operation of the motor, thereby precisely controlling the speed of the motor to increase the control performance of the motor, such as the acceleration performance, transient response, load rejection capability, and so on.
In summary, the present disclosure has the following features and advantages:
Although the present disclosure has been described with reference to the preferred embodiment thereof, it will be understood that the present disclosure is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the present disclosure as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202110613138.9 | Jun 2021 | CN | national |