The field to which the disclosure generally relates includes methods of operating a fuel cell.
Fuel cell stacks may be used in vehicles wherein the stack is exposed to temperatures near or below 0° C. A fuel cell stack operated at temperatures near or below 0° C. produces water that may freeze. The ice may fill all of the cathode electrode void volume resulting in oxygen starvation wherein the stack will not be able to produce any power.
One embodiment of the invention includes a method comprising: operating a fuel cell stack comprising starting a fuel cell stack having a temperature below 0° C. and drawing a load on the fuel cell ranging from 75 percent of the maximum to the maximum load that the fuel cell stack is capable of responding to, wherein the maximum load is limited by fuel cell system constraints. The power provided can be greater than that requested by the operator to drive primary and auxiliary devices thereby heating the fuel cell stack as quickly as possible to a temperature above 0° C.
Another embodiment of the invention includes controlling the operation of a fuel cell stack in a vehicle including measuring the stack temperature when a customer requests shut-down of the fuel cell system and if the stack temperature is above a predetermined purge temperature for purging the stack, then shutting down the fuel cell stack, and if the stack temperature is below the predetermined purge temperature then continuing to operate the fuel cell stack and to draw a load from the stack so that the stack heats up until the stack temperature is above the predetermined purge temperature and thereafter shutting down the fuel cell stack.
Other exemplary embodiments of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Exemplary embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
One embodiment of the invention includes operating a fuel cell stack including bringing the stack temperature to above 0° C. during start-up, before the cathode electrode is filled with ice. This may require a total charge of Qtotal equals 8-15 C/cm2. Based on the following thermal balance:
T
stack(t)
−T
stack(initial)
=Q
total·(1.4V−Ecell)/(m·CP)
Where Tstack(t) represents the temperature of the stack at any given time during start-up, Tstack(initial) represents the temperature of the stack at the beginning of the start-up, Qtotal represents the total charge passing through the stack, Ecell represents the average cell voltage, and mCp represents the stack thermal mass. The maximum temperature rise of the fuel cell stack for an allowable total charge depends upon the stack thermal mass and the cell voltage during start-up. Therefore, to maximize start-up reliability, the fastest possible temperature rise should occur according to one embodiment of the invention. This can be accomplished by applying the maximum load, limited by the fuel cell system constraints as described in detail later. Excess energy produced by the fuel cell stack not needed for the primary load device, such as the electrical traction system (ETS), may be used to drive auxiliary devices such as air compressor, cabin heater, coolant heater, fuel cell stack heater etc. or may be stored in a storage device such as a battery. The heat generated by the reaction in the fuel cell may be used to heat up the fuel cell stack so that ice formed in the fuel cell is melted. The heating occurs at the most freeze-sensitive spot, that is, the cathode electrode.
A fuel such as hydrogen may be supplied to the anode side of the fuel cell and an oxidant such as oxygen in the form of air may be supplied to the cathode side of the fuel cell. Water is produced at the cathode catalyst electrode in a manner known to those skilled in the art.
Since the total amount of ice which can be stored in the electrode only amounts to Qtotal equals 8-15 C/cm2, multiple freeze-starts are only possible if the temperature during starts exceeds 0° C. in order to prevent ice accumulation in the electrodes. Thus, successful multiple freeze-starts require the stack to exceed a temperature of 0° C. during each start-up. This can be accomplished by minimizing the cell voltage during each start-up, and storing excess energy produced until the stack temperature is greater than 0° C.
In one embodiment of the invention, the fuel cell is controlled, for example, by a microcontroller, so that during each sub 0° C. start-up, maximum load is drawn to heat up the stack as quickly as possible. The maximum load drawn from the stack will be limited by the fuel cell system constrains. The higher the load drawn, the lower the stack voltage, thus more waste heat can be generated to heat the stack up and thaw any ice accumulated in the electrode. When the stack is heated to a temperature above 0° C., liquid water can be purged out of the stack more efficiently after shut-down. Although drawing a higher load on the fuel cell results in the creation of more product water, at higher loads the stack heats up faster than the rate of the water generation as demonstrated in
In one embodiment of the invention, energy produced by the fuel cell stack during start-up may be used to drive supplemental heating devices including, but not limited to, electrical heaters directly or indirectly heating the fuel cell stack. In an alternative embodiment, the fuel cell system does not include supplemental heating devices. Stack heating is accomplished solely by internal heat generation. This heat generation, which results from ohmic and electrochemical losses, can be significant if the stack is loaded with a high current. Typically there is a high and low current load which will provide a specific power as illustrated in
There is a minimum limit for both individual cell voltage and the average cell voltage of the stack. The minimum cell voltage (V cell) is limited to zero, while the average cell voltage (V avg) of the stack must be greater than zero in order to satisfy the system voltage and power requirements. Cells typically do not perform uniformly during a freeze start and therefore the minimum cell and average voltage can differ. A typical range for these parameters may be as follows: V cell>0; V avg>0.3V.
The maximum current density is limited by the system's design which will have limitations on current and flow. Because of large differences in system designs, the range in maximum current density can vary from 0.6 to 2.0 A/cm2. However, for automotive applications, the maximum current density typically is below 1.6 A/cm2.
The maximum power that can be drawn will also depend upon the system design and also influenced by the system auxiliary power requirements including compressors, heaters and pumps, operated during the start and the size of the energy storage device, such as a battery. For hybrid and non-hybrid automotive systems, the start and idle power can range from 20-40 kW.
To achieve a successful freeze-start, a sufficient amount of accumulated water must be removed from the stack after shut-down. The accumulated water will depend upon the stack design, system operation conditions and time of operation. As a result, the amount of accumulated water can vary greatly. Typically, a cathode air purge is used to remove this accumulated water and the purge time will depend upon air flow and stack temperature. Purge time decreases as the air flow rate and temperature increases. Because the allocated energy for purge is limited, the necessary purge time is of great importance. For example, as illustrated in
Referring now to
During some short trip scenarios, the driver might idle and then shut down the vehicle in a couple of minutes. During such a short period of time, as a small amount of power might be required for the Electrical Traction System (ETS) and auxiliaries, in the winter time, the temperature of the stack might not reach above 0° C. using the waste heat of the chemical reaction. Thus the product water will accumulate in the cathode electrode void volume in the form of ice. Purging the stack after shut down is unlikely to remove the accumulated ice in the electrode, because the water carrying capacity of the air is extremely low at subzero conditions. After a couple of such a short trip scenarios, as the accumulated ice plugs the entire void in the cathode electrode, the stack will not be able to generate any power, which is very undesirable for customers since it prevents vehicle operation. This effect will worsen as the start-up temperature is lowered (e.g., −40 C). According to one embodiment of the invention, this problem is solved by a method of heating the fuel cell stack to above 0° C. before shutting the stack down so that the voids in the cathode electrode of the fuel cell stack are not completely plugged with ice and so that oxygen may diffuse to the catalyst surface of the cathode electrode.
Referring now to
One embodiment of the invention includes a method comprising storing excess electricity produced by the fuel cell in a storage device. Another embodiment of the invention includes a method comprising using excess electricity produced by the fuel cell, not needed to drive primary and auxiliary devices requested by an operator, to drive an air compressor at a speed greater than that required to deliver excess air to the fuel cell stack in response to the load drawn on the fuel cell stack. Excess air to the fuel cell stack is desirable to maximize the carryout of ice and liquid water during start-up. Another embodiment of the invention includes a method wherein the fuel cell stack includes an electrical heating element to heat the fuel cell stack. Another embodiment of the invention includes a method wherein a fuel cell liquid coolant system is connected to the fuel cell stack to flow coolant there through, and an electric heating element is provided in the coolant system and further comprising heating the heating element to heat the coolant in the coolant system and flowing the coolant through the fuel cell stack to heat the fuel cell stack.
The above description of embodiments of the invention is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.