The subject matter disclosed herein relates to gas turbine systems, and more particularly to a method for starting and/or restarting operation of gas turbine systems.
Typically, gas turbine controls require a gas turbine system to complete a lengthy shutdown sequence prior to initiating a restart procedure. Often, this requires a fired deceleration to a specified low speed where fuel flow is stopped, combustors flame out, and the gas turbine system continues to decelerate to, or near, turning gear speed. Subsequently, the gas turbine system is restarted, which includes the completion for a purging cycle to remove combustibles from the system prior to re-lighting the system.
Efforts to improve on the time required for restart have included control features such as purge credit, faultless shutdown, higher speed light off, increased speed permissives for initiating restart, faster acceleration, and fast load, for example. Each of these features require the gas turbine system to complete a fired deceleration followed by an unfired deceleration, thereby leading to extended restart times and may reduce a power plant's efficiency.
According to one aspect of the invention, a method of startup control for a gas turbine system that is operating in a fired deceleration shutdown process mode is provided. The method includes determining whether the combustor flame is in a lit state. Also included is increasing a fuel flow to the gas turbine system if the combustor is determined to be in the lit state. Further included is initiating a starter system to the gas turbine system.
According to yet another aspect of the invention, a method of startup control for a gas turbine system includes maintaining a lit state of a combustor flame during a fired deceleration shutdown process of the gas turbine system. Also included is confirming that the combustor flame is in the lit state. Further included is initiating a startup procedure comprising engagement of a starter system.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Referring to
In operation, air flows into the compressor 12 and is compressed into a high pressure gas. The high pressure gas is supplied to the combustor 14 and mixed with a combustible fuel, such as natural gas, for example, in the combustor 14. The fuel and compressed air are passed into the combustor 14 and ignited to form a high temperature, high pressure combustion product or air stream that is used to drive the turbine 16. The turbine 16 includes a plurality of rotating assemblies or stages that are operationally connected to the compressor 12 through a compressor/turbine shaft or rotor 21.
Referring to
The method includes determining whether the combustor flame is in a lit state, represented as 26. Although indicated only as a single determination in the illustrated flow diagram (
Referring now to
In the event the turbine speed of the gas turbine system 10 is below a speed sufficient for restart without the starter system 20, the shutdown process 24 continues until an engagement speed of the starter system 20 is reached. The deceleration to the engagement speed of the starter system 20 is referred to as 33. The engagement speed refers to any speed where the starting system 20 can safely begin operation. This range may vary and for some applications, such a speed occurs at or below a turbine speed of approximately 35%. Although the engagement speed of the starter system 20 is described as being at or below 35%, it is contemplated that such a speed may be increased to allow the immediate restart, with employment of the starter system 20, at higher speeds, thereby decreasing the time required to decelerate to the engagement speed of the starter system 20. To facilitate restart of the gas turbine system 10, in conjunction with starting the starter system 20, represented as 34, the fuel flow is increased 36. Additionally, the starter system 20 may be started in a regenerative mode in situations where the gas turbine system 10 is at a speed below the speed that does not require the starting system 20. In such a situation, the starting system 20 is used in a regenerative mode to increase the deceleration rate of the turbine to a speed where the gas turbine system 10 can then initiate restart of the system. The rate of fuel flow varies at different operating speeds and conditions, but an illustrative fuel flow and increase may be increasing from 0.5 lbm/s to 1.0 lbm/s at an operating speed of 30%.
Advantageously, the method of startup control for the gas turbine system 10 provides the ability to halt a shutdown process and immediately transition to a restart procedure. Such a transition increases efficiency by improving availability, reducing down time and improving revenue service. The method enables an application associated with the gas turbine system 10, such as a power plant, to begin operating at a desired condition significantly faster than would otherwise be the case. The immediate restart when the combustor flame is in the lit state obviates the common requirement to complete the shutdown process that includes a fired deceleration, followed by a complete unfired deceleration. By removing the unfired deceleration process, which includes various procedures including, but not limited to, a purge cycle, for example, the overall system is saved valuable time and resources associated with the complete shutdown process.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.