1. Field of the Invention
The invention relates to a method for stepless capacity control of a reciprocating piston compressor whereby an unloader arranged on at least one automatic suction valve of the compressor keeps open at least one sealing element of the suction valve throughout a thereby controllable portion of the working cycle of the compressor through a switchable control valve having an unloading piston (draw piston) biased by gas pressure. The invention relates further to a corresponding reciprocating piston compressor with stepless capacity control having an unloader attached on at least one automatic suction valve of the compressor whereby the unloader keeps open at least one sealing element of the suction valve throughout a thereby controllable portion of the working cycle of the compressor by means of an unloading piston biased by gas pressure via a switchable control valve.
2. The Prior Art
Compressors known to have also reverse flow controls with stepless capacity control of the described type are known in the art. See in this regard U.S. Pat. No. 2,296,304 A, U.S. Pat. No. 2,626,100 A or U.S. Pat. No. 5,378,117 A, for example. In all known methods and devices of the aforementioned type, there is already set or adjusted the engagement force of the unloader influencing the sealing element of the suction valve via an unloading cylinder biased by gas pressure or the pressure biasing the unloading piston therein. Up to now, this pressure has always been essentially constant or has been adjusted by a pressure regulator or also by pulsating switching control valves.
This type of capacity control takes advantage of the fact that the engaging flow force, which exists during the compression stroke at the sealing element of the suction valve that is kept open by the unloader—and which is thus termed as reverse flow force—increases at first with the progressing crank angle during the compression stroke, passes a maximum that corresponds to the piston velocity, and advances at the end of the compression stroke toward zero when reaching the upper dead center of the piston. Through an adjustment of the unloading force biasing the unloading piston by means of a prorated amount of gas pressure in the unloading cylinder, there can be determined the crank angle at which the unloading force is overcome by the reverse flow force (together with the possible spring action of the sealing element) whereby the arrangement consisting of the open sealing element and the unloader is accelerated in movement in the closing direction of the suction valve. The crank angle for closing of the suction valve can be adjusted in this manner in a continuous (infinite variable) manner between the lower dead center and the crank angle corresponding to the maximum of the reverse flow force (and the corresponding delivery amount of the compressor can be adjusted thereby.)
It is a direct disadvantage in the described method or the corresponding disclosed devices in that the closing crank angles, existing after the arrival of the maximum reverse flow force, can naturally not be realized, which results in a limited range of control that lies approximately between 40 to 100 percent of the maximal possible delivery amount. Especially in the production of PET (polyethylene) bottles, there are nevertheless a great number of air compressors employed, for example, which experience a highly fluctuating air requirement of 10 to 100 percent and which must maintain a very constant end pressure at the same time.
It is an additional disadvantage that the required gas pressure necessary for the adjustment of a specific delivery amount and directly influencing the gas pressure in the unloading cylinder depends on many parameters, such as gas density, operational pressure, speed of the compressor and the like, which results in additional complicated and failure-susceptible control methods or control mechanisms.
Another known method for capacity control in compressors is the intermittent operation of the compressor (on/off control) whereby the suction valves are alternately kept open by means of unloader actuation or whereby they are permitted to open and close automatically. This control by unloader actuation can be basically used for adjustment of an average delivery amount between 10 percent and 100 percent but it causes various additional disadvantages: The compressor runs alternately at full power or idle. While running idle, the unfavorable degree of effectiveness and the high phase shift of the three-phase A.C. motor employed to drive compressors lead to high energy consumption or large amounts of reactive current (idle current). The sealing elements of the rod packing are not being scavenged by gas leakage during idle operation and are thereby not cooled, or the heat developing at the open suction valves by the lack of ventilation is not dissipated via the delivery medium. The thereby developing increase in heat and the deformation of the sealing element as a result of temperature changes promotes the wear of ring components and packing components.
Aside from the problems with rings and packing, this type of control is also responsible for damages to the valves. The reciprocal movement of the unloader over conventional diaphragm cylinders or other cylinders is possible only within several compression cycles based on the large volumes, the clearance volume, the small cross section of the inlet lines, the great length of the lines, the small cross section of the switch and the long switch-over times of the control valves. The sealing element of the suction valve, normally a valve plate, impacts the unloader prongs several times during the reciprocal movement. This can accelerate or initiate the breaking of valve plates.
Constant pressures in the pressure reservoir of compressors having conventional on/off controls are dependent on the reservoir volumes and may be realized only by frequent switching between idle operation and operation under full power (several times per minute.) Components of the piston cylinder and of the diaphragm cylinder are generally not suited for frequent switching and are subject to increased wear.
Methods and devices have been disclosed to avoid the described disadvantages whereby a unloading force is provided by hydraulic means acting upon the unloader against the reverse flow force of the gas to be compressed whereby said unloading force is suddenly reduced at a specific crank angle and whereby secure and rapid closing of the suction valve is initiated. Such devices, as disclosed in AT 403 835 B, for example, use systems for this purpose which are highly suitable based on the low compressibility of the employed actuation fluids, but which have the disadvantage that they are designed relatively complicated and that they need additionally an hydraulic assist energy that must be provided through additional aggregates.
It is the object of the present invention to improve the reverse flow control actuated by means of gas pressure of the aforementioned type in such a manner that the cited disadvantages do not occur, particularly to avoid in a simple way the above-mentioned limitations in the range of control as well as the negative influences of fluctuations in the necessary unloading gas pressure.
This object is achieved according to the present invention in a method of the aforementioned type in that the gas pressure biasing the unloading piston is always above the gas pressure required to overcome the maximum possible reverse flow force during the time in which the control valve is closed, and in that controllable partial discharge of the unloading cylinder is performed until the closing of the suction valve through a control valve that is designed for rapid switching in each phase of the working cycle. Through this measure, there can be freely chosen, essentially in total, the position of the closing crank angle within the working cycle of the compressor, on one hand—whereby the closing crank angles can also be realized that exist after reaching the maximum reverse flow force—and whereby essentially a range of control is possible for the capacity control of 0 to 100 percent of the maximum delivery amount. On the other hand, the gas pressure biasing the unloading piston is no longer directly responsible for the closing crank angle—as long as this pressure lies only for all operational conditions or cited parameters above the gas pressure required to overcome the maximum possible reverse flow force—as a result, the fluctuation of the cited parameters cannot have a substantial influence on the capacity control. The rapid-switching control valve causes in each phase of the working cycle and at a specific crank angle a partial discharge of the unloading cylinder whereby the gas pressure drops in the unloading cylinder. As soon as this gas pressure or the resulting unloading force drops below a threshold at which there exists an equilibrium between the reverse flow force and the possible spring action of the sealing element, the previously open suction valve closes whereby the normal compression or delivery capacity of the compressor starts with a correspondingly reduced delivery amount. As soon as the previously open suction valve closes in this manner, it is closed by the pressure building up in the working chamber of the compressor cylinder and it opens again only at the start of the next suction stroke. The unloading cylinder is again biased with the gas pressure required to overcome the maximal possible reverse flow force through closing of the control valve causing the described partial discharge before the next working cycle of the compressor so that there is guaranteed secure holding in the open position of the sealing element of the suction valve until the next discharge through the control valve.
As the gaseous actuation medium for unloader piston shows a relatively high compressibility, there must be maintained, of course, specific conditions in each phase of the working cycle to make possible and to guarantee the partial discharge of the unloading cylinder leading to the closing of the suction valve. It has now been shown that these conditions can be maintained in a very advantageous manner in a preferred embodiment of method and device according to the invention, in that there is a dependency in volume to be discharged consisting of the stroke volume of the unloading cylinder and the clearance volume between the control valve and the unloading piston, the cross section of the opening of the control valve, the gas used for actuation of the unloader whereby the theoretic discharge time of the entire volume to be discharged is maximal nearly equal or less then twice the duration of a working cycle of the compressor. It has been shown that a sufficiently accurate control quality of capacity control is provided thereby over the entire range of at least nearly 0 to 100 percent of the maximum delivery capacity since the partial discharge in the unloading cylinder necessary for the actual closing of the suction valve takes place still within a fraction of the working cycle of the compressor. An additional reduction in discharge time provides advantages if the discharging gas pressure acting upon the unloading piston lies greatly above the gas pressure required to overcome the maximal possible reverse flow force, which is, however, not necessary in itself. An extension of the cited discharge time without a substantial negative influence on the possible range of control would make necessary a decrease of the gas pressure acting upon the unloading piston to a value just over the gas pressure required to overcome the maximal possible reverse flow force, which then causes again problems with outside parameters in influencing this gas pressure and it causes continuous irregularities in control.
It has been shown in case of a discharge time greater than approximately three-fold the duration of the working cycle that the control behavior of the system is determined essentially only by the average pressure existing in the unloading cylinder whereby the manner of functioning corresponds approximately to the disclosed pneumatic reverse flow control described in the beginning (together with its described disadvantages.) With the amount of the mentioned discharge time of between twice or three-fold the duration of the working cycle of the compressor there appears a complex control behavior that depends on the switch-over time of the control valve as well as on the gas pressure to influence the unloading cylinder. It is therefore very advantageous for the desired control behavior of the inventive method if the above described resulting theoretic discharge time of the entire volume to be discharged is less than twice the duration of one working cycle of the compressor. The theoretic discharge time T of the volume V to be discharged, the cross section of the opening of the control valve f and the sonic velocity c of the gas biasing the unloading piston are in following relationship:
with: K (kappa)
Since sufficiently rapid-switching control valves can be realized only for small cross sections of the opening (f), an additional embodiment of the inventive compressor is advantageous according to which the clearance volume between control valve and unloading piston is maximal nearly equal or smaller than twice the stroke volume of the unloading cylinder.
In an additional preferred embodiment of the compressor according to the invention, the guide of the unloader and/or the control valve form one structural unit together with the unloading cylinder and/or the piston, which makes designs possible in a very simple and compact manner which are provided with a minimal clearance volume of the aforementioned type.
In an additional embodiment of the invention, the control valve is designed as a solenoid-actuated 3/2-port directional control valve and is preferably switched in such a manner that it acts upon the unloading cylinder with gas pressure while being without electric power. In case of failure of the control electronics for the valve, the compressor operates in this way with an open suction valve whereby through the decrease of gas pressure biasing the unloading cylinder, the unloader is pulled back and the compressor can be brought thereby to full power. Thus, emergency operation without continuous control is also possible.
The unloading cylinder can thereby be directly integrated or formed in one piece in combination of control valve and unloader. The control valve is positioned in direct proximity of the unloading cylinder within the suction valve or the unloader guide and forms a 3/2-port directional control valve. The valve switches over as desired the gas supply or the discharge (blowoff) line to the unloading cylinder. Because of the very short switch-over times and the high switching speeds, there occurs no considerable gas loss during the switch-over process (the embodiment corresponds thereby to a 3/3-port directional control valve whereby the center switching position is rapidly passed and cannot be directly triggered either.) A very rapid response and engagement of the unloader can be realized after each working cycle through the embodiment having a very small clearance volume due to short lengths of the line between the unloading cylinder and the control valve combined with the rapid-switching solenoid.
According to an especially preferred additional embodiment of the invention, the control valve is biased at the inlet side with the compressed gas itself being under a corresponding pressure, whereby said control valve is preferably connected to a reservoir volume which is connected in turn to the working chamber of the compressor via a check valve. An outside supply of a separate gas to act upon the unloading cylinder is not needed but it requires an additional connection from the working chamber of the compressor to the control valve via the reservoir.
In an additional embodiment of the invention, the unloading piston can partially shut off the inlet and/or the discharge of the gas biasing the unloading cylinder whereby pneumatic end-position damping is realized for the unloading piston in a simple manner.
The invention will be explained in more detail in the following with the aid of accompanying drawings.
In all embodiments according to
The control valve 3 is inserted into a central bore 11 in the region of the unloading piston 4 whereby said control valve 3 consists essentially of a seat body 12, a switch element 13, and a solenoid 14 (illustrated only schematically.) The solenoid 14 is provided with screwed-on contacts 15 at its top side in the illustration whereby the contacts 15 serve for switchable electric power supply and they protrude upwards from the housing 16. The remaining connecting lines or associated electric trigger elements are not illustrated here.
The housing 16 is screwed onto the top side of the stationary unloading piston 4 and serves at the same time to fix the solenoid 14 or the complete control valve 3 in the unloading piston 4 and is provided with a connection aperture 18 outside of the housing wall 17 for the pressurized gas (preferably the process gas directly) and leading to the unloading cylinder 6 via the control valve 3 whereby the gas reaches the control valve 3 via a central bore 19 in the solenoid 14 and via the space receiving the spring 20 on the top side of the switching element 13.
According to
The electric power supply to the solenoid 14 is interrupted to engage the unloader 2 onto the sealing element 5 or to lift the same into the position illustrated in
The pressure of the actuating gas supplied through the connection aperture 18 and acting upon the unloading piston 4 or the unloading cylinder 6 lies always above the pressure necessary to overcome the maximal possible reverse flow force on the sealing element 5 so that a secure open position of the sealing element 5 of the suction valve 1 is possible over the complete working cycle of the compressor. The control valve 3 switches rapidly as a result of its design, actuation and trigger element and it makes possible thereby at each phase of the working cycle a controllable partial discharge from the unloading cylinder 6 up to the desired closing of the suction valve at a specific crank angle. It is essential thereby according to the inter-relationship presented in detail already in the beginning that there is a dependency of volume to be discharged, the cross section of the opening of the control valve 3, and the gas used for actuation of the unloader 2 whereby the theoretic discharge time of the entire volume to be discharged is maximal nearly equal or less then twice the duration of a working cycle of the compressor so that the periodic closing of the previously open suction valve can actually occur without neglecting the compressibility of the actuation gas. The volume to be discharged consists thereby of the actual working volume in the unloading cylinder 6 and of the clearance volumes defined essentially by the volume of the bores 21 and 22, which are therefore to be kept as small as possible.
While the control valve 3 in the embodiment of
While in the embodiment according to
In the embodiment according to
It is again of essence in the embodiment according to
In the following, the functioning of the inventive method for stepless capacity control of a reciprocating piston compressor is explained in more detail with the aid of the illustrations in
The solenoid 14 of the control valve 3 in
The control pressure drops should the solenoid 14 of the control valve 3 receive electric current again at point 37 whereby the gas captured in the unloading cylinder escapes. The force acting against the unloader 2 decreases thereby and drops below the total force acting in the closing direction of the suction valve 1 being a combination of the closing force of the valve springs 9 biasing the sealing element 5 and the restoring force of spring 7. The velocity of the unloader 2 increases at first, which can be observed from the increasingly steeper course of the movement curve starting at point 38. Since the cross sections of the bores are reduced at approaching the unloading cylinder 6 in its end position, according to one advantageous embodiment of the invention, the control pressure elevates again after passing a minimum and it reaches a maximum at 39. The movement of the unloader 2 is slowed down thereby. The unloader 2 reaches its end position at 40 with a highly reduced velocity, as illustrated in
Should the switching time of the control valve 3 be selected to be at a later time, e.g. at point 46, then the pull-back movement 41 of the unloader 2 is delayed. The valve plate is closed at a later time and a part of the gas suctioned-in by the working cylinder of the compressor is once again pushed back into the suction chamber and the amount of delivery is thereby reduced. Should the control valve 3 be actuated even later, for instance at 42, then the amount of delivery is reduced further since the pull-back movement of the unloader 2 is delayed as illustrated by the line drawing 43. The pull-back movement (line 45) is delayed in the selection of the switching time of the control valve 3 at point 44 to such a degree that no pushing out of gas can be achieved necessary for the compression at the pressure side at the time of closing of the suction valve 1—the same applies for the gas captured in the working chamber of the compressor (the amount of delivery is zero.)
In
The mentioned gradients become flat with the selection of the discharge time T being approximately three-fold the duration of the working cycle so that the movement of the unloader 2 does no longer follow the switching of the control valve 3. The movement of the unloader 2 is then only influenced essentially by the equilibrium of the flow forces acting upon the valve plate and the mean pressure developing in the working cylinder 6. Both values depend on a plurality of parameters. The control mechanism operates then according to the known principal of the pneumatic reverse flow control mentioned in the beginning with all its associated disadvantages.
In
Pressure lines 60 are connected to the connection apertures 18 above the cylinder 50 (see also
One is referred to
Number | Date | Country | Kind |
---|---|---|---|
A 1417/2002 | Sep 2002 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
1623489 | Naab | Apr 1927 | A |
2296304 | Wolfert | Sep 1942 | A |
2626100 | McIntyre | Jan 1953 | A |
2961148 | Courtney, Jr. | Nov 1960 | A |
2991924 | Ramsay | Jul 1961 | A |
5378117 | Bennitt | Jan 1995 | A |
5634492 | Steinrück et al. | Jun 1997 | A |
5833209 | Steinrück | Nov 1998 | A |
20040091365 | Spiegl et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
402090 | Jan 1997 | AT |
19723261 | Dec 1998 | DE |
10005388 | Sep 2001 | DE |
1400692 | Aug 2003 | EP |
2352780 | Feb 2001 | GB |
9503490 | Feb 1995 | WO |
9622466 | Jul 1996 | WO |
0175278 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040091365 A1 | May 2004 | US |