This invention relates to a method of, and apparatus for, supplying fluorine to a processing system.
A primary step in the fabrication of semiconductor devices is the formation of a thin film on a semiconductor substrate by chemical reaction of vapour precursors. One known technique for depositing a thin film on a substrate is chemical vapour deposition (CVD). In this technique, gases are supplied to a process chamber housing the substrate and react to form a thin film over the surface of the substrate. However, deposition is not restricted to the surface of the substrate, and this can result, for example, in the clogging of gas nozzles and the clouding of chamber windows. In addition, particulates may be formed, which can fall on the substrate and cause a defect in the deposited thin film, or interfere with the mechanical operation of the deposition system. As a result of this, the inside surface of the process chamber is regularly cleaned to remove the unwanted deposition material from the chamber.
One method of cleaning the chamber is to supply molecular fluorine (F2) to react with the unwanted deposition material. Fluorine is either supplied at a high purity (at least 99% fluorine) in single, high-pressure cylinder at 200 or 400 psig, or supplied diluted with nitrogen in the ratio of 20% F2 to 80% N2 in single, high-pressure cylinder at up to 2000 psig. At such high pressures, fluorine becomes very reactive and thus poses a serious safety hazard. While on-site fluorine generators are available for supplying high purity fluorine directly to the processing system, multiple generators are required to maintain fluorine output in the event of a failure of one of the generators, which significantly increases costs.
It is an aim of at least the preferred embodiments of the present invention to provide a low cost, relatively safe method of delivering high purity fluorine.
In a first aspect, the present invention provides a method of delivering high purity fluorine to a processing system, the method comprising the steps of generating high purity fluorine using a fluorine generator located proximate the processing system, transferring fluorine from the fluorine generator to a fixed storage tank, providing a transportable gas storage vessel containing high purity fluorine at a pressure below 35 psig, selectively transferring fluorine from the transportable gas storage vessel to the fixed storage tank, and delivering fluorine to the processing system from the fixed storage tank.
A transportable gas storage vessel is thus provided as a back up to the fluorine generator in the event that the fluorine generator fails or is otherwise unable to supply fluorine to the fixed storage tank. This can significantly reduce costs in comparison to providing a second fluorine generator as a back up. Following exhaustion of the storage vessel, the exhausted storage vessel can be readily replaced by a fresh storage vessel. Due to the relatively low pressure at which fluorine is stored in the transportable gas storage vessel (i.e. below 35 psig, preferably below 25 psig) in comparison to the pressure at which fluorine is traditionally stored in gas cylinders (up to 2000 psig), the fluorine reactivity is significantly reduced, thereby greatly improving the safety of the handling (transportation, replacement, etc.) of storage vessels. This can also enable the storage vessels to be safely stockpiled in readiness for future use.
The storage vessel may comprise any suitable transportable vessel for storing high purity fluorine at a relatively low pressure. For example, the transportable storage vessel may comprise a singe transportable bulk container, or plurality of gas cylinders, for example, between six and sixteen cylinders, containing high purity fluorine, the gas cylinders preferably being connected to a common manifold from which fluorine is transferred to the fixed storage tank. The amount of fluorine stored in such a storage vessel can therefore be much greater than that stored in a 20% F2/80% N2 gas cylinder, thereby reducing the frequency at which the fluorine source needs to be replaced and further improving safety. For example, while a 49 litre gas cylinder contains around 1.4 kg of F2 within a 20% F2/80% N2 gas mixture at 400 psig, a 735 litre transportable gas storage vessel, comprising fifteen 49 litre gas cylinders, can contain around 3.2 kg of F2 within a high purity F2 gas at 25 psig.
Fluorine may be stored in the fixed storage tank at a pressure in the range from 5 to 25 psig, preferably around 20 psig. A compressor may be provided for transferring fluorine from the transportable gas storage vessel to the fixed storage tank. The use of a compressor is particularly advantageous when the fluorine pressure required at the chamber of the processing system is greater than the fluorine pressure that could be provided from the storage vessel alone, either due to the pressure drop between the storage vessel and the chamber and/or the pressure at which fluorine is stored in the storage vessel. The use of a compressor can thus provide a necessary boost to the fluorine pressure between the storage vessel and the chamber.
The fixed storage tank preferably has a volume in the range from 500 to 1500 litres, preferably around 1000 litres. The purity of the fluorine is at least 99% fluorine, more preferably at least 99.5% fluorine,
Due to the presence of an on-site fluorine generator, an exhausted storage vessel may be re-filled with gas generated by the fluorine generator, rather than being returned to a remote site for re-filling and subsequent transport back to the processing system. This can provide rapid back up of the fluorine generator following exhaustion of the storage vessel, as well as providing further cost reductions and improved safety. Therefore, in a second aspect, the present invention provides a method of delivering high purity fluorine to a processing system, the method comprising the steps of generating high purity fluorine using a fluorine generator located proximate the processing system, transferring fluorine from the fluorine generator to a fixed storage tank, filling a transportable gas storage vessel with fluorine generated by the fluorine generator to a pressure below 35 psig, selectively transferring fluorine from the transportable gas storage vessel to the fixed storage tank, and delivering fluorine to the processing system from the fixed storage tank.
Where the transportable gas storage vessels are both filled remotely and returned to the remote site for re-filling, it may, of course, be possible to deliver high purity fluorine from these storage vessels in the absence of an on-site fluorine generator. Such a second source of fluorine may be removed altogether, or may be replaced by another transportable gas storage vessel for providing a back up source of high purity fluorine. Thus, in a third aspect the present invention provides a method of delivering high purity fluorine to a processing system, the method comprising the steps of transporting to the processing system a transportable gas storage vessel containing high purity fluorine at a pressure below 35 psig, transferring fluorine from the transportable gas storage vessel to a fixed storage tank, and delivering fluorine to the processing system from the fixed storage tank.
Features described above in relation to method aspects of the invention are equally applicable to apparatus aspects, and vice versa. Therefore, in a fourth aspect the present invention provides apparatus for delivering high purity fluorine to a processing system, the apparatus comprising a fluorine generator located proximate the processing system for generating high purity fluorine, a fixed storage tank, means from transferring fluorine from the fluorine generator to the fixed storage tank, a transportable gas storage vessel containing high purity fluorine at a pressure below 35 psig, means for selectively transferring fluorine from the storage vessel to the fixed storage tank, and means for delivering fluorine to the processing system from the fixed storage tank.
Furthermore, in a fifth aspect the present invention provides apparatus for delivering high purity fluorine to a processing system, the apparatus comprising a transportable gas storage vessel containing high purity fluorine at a pressure below 35 psig, a fixed storage tank, means for transferring fluorine from the storage vessel to the fixed storage tank, and means for delivering fluorine to the processing system from the fixed storage tank.
Preferred features of the present invention will now be described with reference to the accompanying drawings, in which:
High purity fluorine, that is, a gas containing at least 99% fluorine, preferably at least 99.5% fluorine, is supplied to the chamber 10 from a on-site fluorine generator 12. Examples of a fluorine generator 12 suitable for use with the apparatus of
The fixed storage tank 14 has a volume of around 1000 litres, and typically stores gas at a pressure of around 20 psig in view of the compression of the gas conveyed between the fluorine generator 12 and the fixed storage tank 14.
As the fluorine generator 12 can deliver up to 16 kg of fluorine per day, in this second embodiment the fluorine generator 12 provides a primary source of fluorine to the fixed storage tank 14. In this embodiment, a transportable gas storage vessel 18 provides a secondary source of fluorine to the fixed storage tank 14. The storage vessel 18 is preferably in the form of a multi-cylinder pack (MCP) comprising a plurality of gas cylinders 20 connected to a common manifold 22 and each containing high purity fluorine, although any other suitable type of transportable gas storage vessel, such as a bulk transport vessel, may be used. The pressure of the fluorine within the MCP 18 is relatively low, preferably below 35 psig, most preferably below 25 psig. In the illustrated embodiment, the MCP 18 comprises fifteen, 49 litre gas cylinders, and each containing high purity fluorine at a pressure of around 25 psig. Other combinations of (i) the number of cylinders 20, (ii) the capacity of the cylinders 20, and (iii) the pressure of the fluorine within the cylinders 20 are, of course, possible.
The manifold 22 of the MCP 18 is connected to a second conduit system 24 for transferring fluorine from the MCP 18 to the fixed storage tank 14. For safety purposes, the MCP 18 is, during use, housed within a ventilated gas storage cabinet 26. A compressor 28 may be provided within the second conduit system 24 for selectively drawing fluorine from the MCP 18 as required and exhausting fluorine to the fixed storage tank 14 at a pressure roughly the same as that exhaust from the compressor provided within the first conduit system 16. As shown in
A third conduit system 30 is provided for conveying the high purity fluorine from the fixed storage tank 14 to the chamber 10. One or more valves (not shown) may be provided for selectively opening and closing the third conduit system 30 so that fluorine may be provided to the chamber 10 as required, for example, in between process runs, to clean the chamber 10.
The MCP 18 can thus provide a relatively cheap secondary fluorine source for selectively supplying fluorine to the fixed storage tank 14 in the event of failure of the fluorine generator 12. Sharing of the fixed storage tank 14 and third conduit system 30 between the primary and secondary fluorine sources also serves to reduce costs.
Furthermore, due to the relatively low pressure at which fluorine is stored—both within the MCP 18 and the fixed storage tank 14—the safety associated with the apparatus for supplying fluorine to the chamber 10 is much greater than that associated with systems where a high pressure fluorine source is used. Furthermore, as high purity fluorine is used throughout the apparatus, the rate at which the MCP 18 needs to be replaced with a fresh MCP 18′ is lower than when a cylinder containing 20% F2/80% N2 gas mixture, albeit at a higher pressure, is used to supply fluorine to the chamber 10.
In addition, whilst the MCPs 18 may be filled remotely from a source of high purity fluorine and transported to the processing system, due to the presence of an on-site fluorine generator 12, exhausted MCPs 18 can instead be filled with fluorine generated by the fluorine generator 12, for example by selectively closing the first conduit system 16 and conveying the generated fluorine to the exhausted MCP. By avoiding the transportation of exhausted MCPs back to the remote source for re-filling and subsequent transportation back to the processing system, further cost savings and improved safety can be provided.
As the MCPs 18 may be re-filled from a remote source of high purity fluorine and transported back to the processing system, a low cost version of the apparatus may be provided which does not include a fluorine generator 12 or associated conduit system 16. Such an apparatus is shown in
While the foregoing description and drawings represent the preferred embodiments of the present invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the true spirit and scope of the present invention.