The present invention relates generally to wall forming systems. More specifically, the present invention relates to a tie system for forming walls and the like.
Many residential and light commercial structures are built on concrete foundation walls which are formed by pouring concrete into a system of forms that have been erected on a previously poured concrete footing. After the concrete has cured sufficiently, the forms are stripped from the concrete and in most cases soil is back filled on the exterior side of the concrete wall. Typically, the base of each foundation wall is supported on a concrete footing, which is wider than the thickness of the wall itself. Ideally, the centerline of the wall is aligned with the centerline of the footing. The footing spreads the load of the structure over a greater area and prevents uneven loading of the foundation wall.
As set forth, once the footing is in place and hardened, a system of forms are constructed over the footing. Such system of forms have typically been constructed using expensive and reusable forms. These forms are typically made of metal and are, thus, very heavy and extremely labor-intensive to assemble and remove after pouring the concrete. Further, due to the significant investment of reusable metal forms, concrete laborers will typically pass the cost on to others for their services. As a result, various other concrete form systems for cement walls have been proposed as alternatives to the heavy metal forms.
One recent development in this field is the use of expanded polystyrene panels, known as insulated concrete forms. These newer form systems utilize pairs of horizontally extending foam panels which are connected in parallel with a series of rigid plastic ties. Complete wall form systems are typically created by vertically stacking these horizontally extending paired foam panels into larger arrays. Concrete is then poured between the panels of the completed foam wall form system. The thickness of the poured concrete walls can be adjusted by the selection and utilization of form ties of appropriate size. Subsequent to concrete hardening these foam panels are left in place to serve as insulation.
Although such insulated concrete forms are lighter than the conventional metal form systems, the forms are bulky and, therefore, the cost for shipping such forms can be expensive. Further, due to the bulky and cumbersome nature of these forms, they are highly susceptible to the inherent risk of damage during transportation and even during installation. Another problem with the insulated concrete forms is the requirement for numerous different types of parts to fit the variations of the footprint of both residential and commercial construction. Due to these numerous different parts and sizes, the insulated concrete forms are high in cost to manufacture and therefore, such high cost is past on to the consumers and builders. Furthermore, the numerous different types of parts in the insulated concrete forms are complicated to construct and require skilled laborers who understand the complexities for such construction. In addition, another inherent problem with the insulated concrete forms is the difficulty to match such forms to the predetermined required lengths along the footing usually evident at corners and ends, in which shortening the forms by cutting and then adhesively repairing the forms is required, often leaving the forms in a damaged state with reduced structural integrity. Such problem further increases the complexity and time required to build the forms in preparation to pour the concrete.
Another problem with prior art systems, particularly conventional metal forms, involves the installation of rebar, wire mesh, or other reinforcing members between the parallel panels that are to be embedded within the finished foundation wall. The techniques employed typically involve various means and methods for suspending rebar haphazardly between the panels with wire ties. Although such wire ties have been used for years, inaccurate placement of the rebar is common, often resulting in unsatisfactory reinforcement of the foundation walls. Further, such wire tying techniques are labor intensive, time consuming and a tedious process.
Further, often it is desired to have walls with a radius; however, conventional metal or steel forms are not made to provide a wall with a constant radius. Rather, the best the conventional metal or steel forms can implement is segmenting a wall with multiple flat faced portions at different orientations at the dimension of the form itself. There are specialized aluminum forms that are specifically made to form curved walls, but such specialized aluminum forms are extremely expensive and are limited by the fixed radial dimensions of the form itself.
Based on the foregoing, it would be advantageous to provide a concrete form system that is low in cost for builders and, thus, the home owner, minimizes the waste of form materials, provides a non-complicated system with less part types and that inherently can be adjusted to any required lengths for ends and corners or overall footprints required for the foundation walls. Further, it would be advantageous to provide a concrete form system that is less labor intensive, light weight and compact and, further, provides for ready and precise assembly of reinforcing rebar materials to be placed in concrete forms. Even further, it would be advantageous to provide a concrete form system that readily facilitates forming walls with a radius that is low in cost and is not limited by the dimension of the forms.
Embodiments of the present invention are directed to a tie system and method for supporting panel structures spaced over a footing to receive a hardenable building material. In accordance with one embodiment of the present invention, the tie system includes a first base portion, a second base portion and a wall tie. The first and second base portions each having a base extension and an upstanding portion, the base extension configured to extend horizontally over the footing and configured to be securable to the footing, and the upstanding portion of the first base portion and the second base portion each configured to extend vertically from the base extension. The wall tie includes a first elongated wall portion and a second elongated wall portion with a cross-member portion extending therebetween. The first elongated wall portion configured to vertically extend from and be connected to the upstanding portion of the first base portion and the second elongated wall portion configured to vertically extend from and be connected to the upstanding portion of the second base portion.
In one embodiment, the tie system includes one or more other wall ties each including the first and second elongated wall portions with the cross-member portion extending therebetween. The one or more other wall ties are configured to vertically stack and mate to each other to form a vertically extending tie stack such that the first and second elongated wall portions vertically extend from and attach to each other. In another embodiment, the tie system includes an intermediate adapter configured to be coupled between the wall tie and the one or more other wall ties.
In still another embodiment, the first elongated wall portion includes a first flat surface and the second elongated wall portion includes a second flat surface. The first flat surface faces directly opposite the second flat surface. With this arrangement, the first flat surface of each of the wall ties is configured to be secured to one or more first panel structures and the second flat surface of each of the wall ties is configured to be secured to one or more second panel structures.
In another embodiment, the cross-member portion of each wall tie within the tie stack is configured to be positioned generally in a common plane. The common plane is configured to be perpendicular to the footing and is configured to be perpendicular to the first flat surface and the second flat surface of each of the wall ties.
Further, in another embodiment, the tie system includes a finish tie having an elongated portion extending between a first end portion and a second end portion. Each of the first end portion and the second end portion defines a channel therein. Each channel of the finish tie is configured to be positioned over and maintained on the respective one or more first and second panel structures.
In another embodiment, the first base portion is separate and discrete from the second base portion and is configured to be interconnected by the wall tie. Further, in another embodiment, the first base portion and the second base portion are unitary and seamless relative to the wall tie. In still another embodiment, the base extension of at least one of the first base portion and the second base portion includes a bendable portion for securing a portion of the base extension over a side surface of the footing.
In accordance with another embodiment of the present invention, the tie system includes multiple base members and multiple wall ties. The multiple base members are configured to be positioned over and securable to a footing in a spaced apart arrangement. The multiple wall ties are configured to be coupled together to form multiple vertically extending wall tie stacks, wherein each wall tie stack is configured to be coupled to one or more of the multiple base members to form a tie stack. Each wall tie includes a first elongated wall portion and a second elongated wall portion with a cross-member portion extending therebetween. The first elongated wall portion includes a first flat surface and the second elongated wall portion including a second flat surface. The first flat surface faces directly opposite the second flat surface. With this arrangement, the first flat surface of each of the wall ties is configured to be secured to one or more first panel structures and the second flat surface of each of the wall ties is configured to be secured to one or more second panel structures.
In one embodiment, the cross-member portion of each wall tie within the tie stack is configured to extend generally in a common plane. The common plane is configured to be substantially perpendicular to the footing and configured to be substantially perpendicular to the first flat surface and the second flat surface of the wall ties.
In another embodiment, the tie system includes multiple finish ties. Each finish tie having an elongated portion extending between a first end portion and a second end portion, wherein each of the first end portion and the second end portion defines a channel therein. Each channel of the finish tie being configured to be positioned over and secured to the respective one or more first and second panel structures.
In still another embodiment, the multiple base members include a first base portion and a second base portion configured to be coupled to the wall tie stack. The first base portion and the second base portion each including a base extension and an upward extending portion. The upward extending portion is configured to be connected to a bottom one of the wall ties of the wall tie stack.
In one embodiment, the base members are configured to be alignable along a curved footing portion with a radius so that the vertically extending tie stacks correspond with the base members to facilitate the one or more first and second panel structures being secured to the tie stacks with a panel structure radius that corresponds with the radius of the curved footing portion of the footing.
In accordance with another embodiment of the present invention, a method of supporting panel structures spaced over a footing to receive a hardenable building material is provided. The method includes providing multiple base members and wall ties, each base member including an upstanding portion extending vertically from a horizontally extending base extension, each wall tie including a first elongated wall portion and a second elongated wall portion with a cross-member portion extending therebetween, the first and second elongated wall portions configured to extend vertically relative to the footing and the first and second elongated wall portions including a respective first flat surface and a second flat surface, the first flat surface and the second flat surface facing in directly opposite directions; securing the multiple base members to the footing in a spaced apart arrangement along the footing; attaching a first level of the wall ties to each of the base members by mating end portions of the first and second elongated wall portions of the wall tie to the upstanding portions of the base members; attaching one or more additional levels of wall ties to each of the previously attached wall ties by mating the end portions of the first and second elongated wall ties of other wall ties together to vertically build separate and discrete tie stacks; securing one or more first panel structures to the first flat surface of the first elongated wall ties of each of the tie stacks; and securing one or more second panel structures to the second flat surface of the second elongated wall ties of each of the tie stacks.
In one embodiment, the method also includes the step of securing multiple finish ties to an upper end of the one or more first and second panel structures such that each finish tie includes an elongated structure having a first end portion and a second end portion with a channel defined therein, the channel sized to receive the upper end of the panel structures.
In another embodiment, the step of securing the one or more first and second panel structures includes bowing the one or more first and second panel structures against the respective first and second elongated wall ties in a curved orientation to follow a radius of the footing.
In another embodiment, the step of securing the base members includes orienting at least some of the base members along a curved footing portion with a radius so that the vertically extending tie stacks correspond with the base members to facilitate the one or more first and second panel structures being secured to the tie stacks with a panel structure radius that corresponds with the radius of the curved footing portion of the footing.
In still another embodiment, the method includes the step of laying rebar over the cross-member portion of wall ties of any one of the first level or the additional levels of the wall ties. Further, in another embodiment, the method includes the step of inserting a water stop into the footing and attaching the first level of wall ties over the water stop.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that theses drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Referring first to
Such a tie system 20 includes multiple base ties 30 and multiple wall ties 90. The base ties 30 are placed and secured, in a spaced apart arrangement, to a concrete footing 10. Each base tie 30 receives a stack of wall ties 90 configured to extend in a vertical arrangement to form a tie stack 160. Each of the wall ties 90, within a stack, are configured to be directly interconnected together and configured to extend vertically, one above another. After running a first course of wall ties 90, horizontal rebar 162 can be run along a cross-member 110 of the wall ties 90, after which, additional courses of wall ties 90 can be built upon each other, running horizontal rebar 162 as needed, until the tie stacks 160 are built to the desired height. Once the tie stacks 160 are complete, panel structures 150 can be placed along each side of the tie stacks 160 in a parallel fashion and secured thereto. In addition, a finish tie 170 is provided to be positioned over the panel structures 150. Concrete can then be poured between the parallel panel structures 150 and into the tie system 20. Once the concrete wall 17 has set, the panel structures 150 can then be removed and utilized for another tie system or for other purposes for the structure being built upon the concrete foundation. As readily understood by one of ordinary skill in the art, the tie system 20 of the present invention provides advantages of being low in material cost and is time efficient for forming concrete walls for both residential and commercial dwellings.
It should be noted that the tie system is described herein as a concrete wall forming system due to concrete typically being used in the art for foundation walls. However, the tie system of the present invention is not limited to concrete, but rather, the tie system can be employed with any hardenable liquid building material, including, but not limited to, typical concrete, various cement and/or concrete composites, (i.e., fiber reinforced cements, polymer composite cements), light-weight type cements or concrete, or any other suitable pourable and curable building material known in the art that will meet the structural integrity requirements for a given structure. Furthermore, as can be appreciated by one of ordinary skill in the art, the tie system of the present invention can be employed to form above ground level walls as well as foundation walls. In addition, it is intended that the term footing can mean any stable structure the base tie of the present invention can be mounted or secured to, such as, a concrete footing or even traditional concrete forms.
Now referring to
First referring to the base tie 30, such a base tie can include an upper side 32, a bottom side 33, a front side 34, a back side 35, a left side 36 and a right side 37, the upper side 32 configured to face upward and the bottom side 33 configured to be positioned, face down, against a top surface of a concrete footing 10 (
The recess 44 defined in the upper side 32 of the intermediate portion 40 can include various openings, including a center hole 46, extending through the upper side 32 to the bottom side 33 of the intermediate portion 40. The center hole 46 can be sized and configured to secure the base tie 30 to the concrete footing 10 (
Referring now to
In addition, each attachment portion 54 can include one or more protrusions 66 sized and configured to lock or attach to the wall tie 90. In one embodiment, the attachment portion 54 on the right side 37 can include a protrusion 66 on the inner surface of the first attachment portion 60 and a protrusion 66 on the outer surface of the second attachment portion 62. Likewise, on the left side 36 of the base tie 30, the first attachment portion 54 can include a protrusion 66 on the inner surface and a protrusion 66 on the second attachment portion 62 on the outer surface of the attachment portion 54. Such protrusions 66 on the attachment portion 54 are sized and configured to interconnect and removably lock with the wall tie 90, of which further explanation will be provided for the interconnection hereafter.
Each of the first end portion 50 and the second end portion 52 can also include a support wall 70. The support wall 70 can include an inner surface 72 and an outer surface 74, extending upward and between the front side 34 and back side 35 of the base tie 30. The support wall 70 can include additional supports 76 extending from the outer surface 74 of the support wall to provide additional structural integrity to the support wall. Such additional supports can extend, for example, from an intermediate height of the outer surface 74 of the support wall 70, angling downward toward a corresponding end of the first end portion 50 and the second end portion 52. Further, the additional supports 76 can define a portion of the front side 34 and back side 35 of each of the respective first and second end portions 50 and 52 of the base tie 30. As previously set forth, the upward extension of the both the support wall 70 and the attachment portion 54 define a channel 80 in each of the first end portion 50 and the second end portion 52. Such a channel 80 extends (laterally to the longitudinal length of the base tie 30) between the front side 34 and back side 35 of the base tie 30 at each of the first end portion 50 and the second end portion 52. Further, the channel 80 is sized and configured to receive and support a panel structure 150 (
Now with reference to the wall tie 90 of the tie system 20, the wall tie 90 includes an upper side 92, bottom side 93, a front side 94, a back side 95, a right side 96 and a left side 97. Further, such a wall tie 90 can include a first elongated wall portion 100 and a second elongated wall portion 102 with a cross-member 110 extending therebetween. The first elongated wall portion 100 includes an outer surface 104 and an inner surface 105, the outer surface 104 defining, at least in part, the right side 96 of the wall tie 90. Likewise, the second elongated wall portion 102 includes an outer surface 106 and an inner surface 107 with the outer surface 106 defining, at least in part, the left side 97 of the wall tie 90. The outer surfaces of the first and second elongated wall portions 100 and 102 can be substantially flat and sized and configured to be positioned against and secured to the panel structure 150, the panel structure also being positioned in the channel 80 of the base tie 30, as previously set forth.
Furthermore, the first and second elongated wall portions 100 and 102 include an intermediate wall portion 108 with an inner surface that can be raised. Such raised surface can be thicker than the remaining portions of both the first and second elongated wall portions 100 and 102. Further, such intermediate wall portion 108 is sized and configured to be secured to the panel structures with fasteners and is, therefore, configured to be thicker to increase the structural integrity for such attachment. In addition, the intermediate wall portion 108 for each of the first and second elongated wall portions 100 and 102 can include and define holes 109 extending between the front side 94 and back side 95 of the wall tie 90. Such holes 109 defined in each intermediate wall portion 108 of the wall tie 90 limits the amount of material necessary for the structural integrity of the wall tie while also adding structural thickness for being secured to the panel structures.
As previously set forth, the first and second elongated wall portions 100 and 102 are interconnected by a cross-member 110. The cross-member 110 can extend from respective inner surfaces of the first and second elongated wall portions 100 and 102 at one or more locations. In particular, the cross-member 110 can include upper beams 112, a mid beam 114 and a lower beam 116 with multiple struts 118 interconnecting such upper, mid and lower beams. The upper beams, mid beam and lower beam can extend from respective upper, mid and lower portions of the inner surface of the intermediate wall portion 108 of both the first and second elongated wall portions 100 and 102. According to this arrangement, the cross-member 110, including the multiple beams and struts, are sized and configured to provide the structural integrity necessary to withstand the concrete loads placed thereon.
Furthermore, the cross-member 110 can include multiple rebar holders. In particular, the cross-member 110 can include a center rebar holder 120 with a right rebar holder 122 and a left rebar holder 124 positioned above the center rebar holder 120. The center rebar holder 120 is defined at a juncture between the upper beams 112 of the cross-member 110 with a u-shaped configuration. The upper beams can include cross-member extensions 126, extending upward, to define each of the center, right and left rebar holders 120, 122 and 124 each having a u-shaped configuration. Of course, such rebar holders can include other configurations with means for maintaining rebar. With such an arrangement, rebar can be readily placed within one or more of the u-shaped configurations for substantially exact rebar placement and positioned in a time efficient manner. Each of the center rebar holder 120 and right and left rebar holders 122 and 124 can be configured with structure to attach and hold the rebar, with an interference type fit, in position or can be configured to allow the rebar to rest within the various u-shaped configurations.
In addition, the center rebar holder 120 can be sized and configured to receive both ½″ diameter and ⅝″ diameter rebar, the ½″ diameter rebar held in a lower portion of the center rebar holder and the ⅝″ diameter rebar held in an upper portion with a ridge 121 defined therebetween. That is, the ridge 121 defines an upper edge of the lower portion sized for the ½″ diameter rebar and the ridge 121 defines a lower edge of the upper portion sized for the ⅝″ diameter rebar. Further, the center rebar holder 122 can include a rebar groove 123 defined at a bottom of the center rebar holder 122. Such rebar groove 123 is sized and configured to receive a raised seam on the periphery of rebar and, in this case, the ½″ diameter rebar. The right and left rebar holders 122 and 124 are sized and configured to receive ½″ diameter rebar therein each including a rebar groove defined therein.
According to an important aspect of the present invention, each of the first and second elongated wall portions 100 and 102 can include a lower attachment portion 130 and an upper attachment portion 140. The lower attachment portion 130 of the wall tie 90, located at a lower portion of each of the first and second elongated wall portions 100 and 102, can be sized and configured to attach and interconnect or interlock (in a removable manner) to the attachment portion 54 of a respective and corresponding first and second end portion 50 and 52 of the base tie 30. The upper attachment portion 140 of each of the first and second elongated wall portions 100 and 102 can be sized and configured to substantially mimic the attachment portion 54 of the base tie 30 so that additional wall ties 30 can be stacked vertically upon each other to, thereby, build the wall ties 30 to the approximate desired height for the concrete wall form.
With respect to
With reference now to
Based on the foregoing, the tie system of the present invention is advantageous in comparison to the prior art concrete form systems due to the tie system comprising primarily two components, the base tie and the wall tie. Such two components in the tie system inherently provides advantages of being compact for shipping purposes, minimizing the risk of damaging the components during shipping and even while building the concrete forms. Further, due to the compact and light nature of the tie system with primarily two different components, installing the tie system to build the concrete forms is less laborious than prior art concrete form systems with minimized complexity. Moreover, the tie system of the present invention includes greater cost and time efficiency in regard to manufacturing, shipping and assembling such tie system.
With respect to
The second length L2 in which the base ties 30 are spaced can vary upon parameters, namely (but not limited to), the thickness of the panel structure and the height of the concrete wall. The thickness of a panel structure that can be employed with the present invention can include, but is not limited to, 7/16″, ½″, 9/16″, ⅝″, 11/16″, ¾″, 1″, or 1⅛″ thickness. When using typical plywood, the preferred parameters are as follows: For a one to two foot concrete wall height utilizing a plywood thickness between 7/16″ to 1⅛″ thick, the spacing for the second length L2 is preferably a maximum of about twenty-four inches. If the wall height is 2½ feet, the spacing for the second length L2 is a maximum of about nineteen inches utilizing plywood at 7/16″ or ½″ thick and a maximum of about twenty-four inch spacing for plywood 9/16″ through 1⅛″ thick. Further, if the wall height is three feet, the spacing for the second length L2 is a maximum of about sixteen inches with a 7/16″ or ½″ thick plywood and a maximum of about twenty-four inch spacing for 9/16″ through 1⅛″ thick plywood. If the wall height is 3½ feet, the spacing for the second length L2 is a maximum of about twelve inches utilizing plywood at 7/16″ or ½″ thick, and a maximum of about a 19 inch spacing for plywood at 9/16″ or ⅝″ thick, and about a maximum of about twenty-four inch spacing using plywood at 11/16″ through 1⅛″ thick. For a wall height of four feet, the spacing for the second length L2 can be a maximum of about sixteen inches with 9/16″ or ⅝″ thick plywood and a maximum of about twenty-four inch spacing using 11/16″ through 1⅛″ thick plywood. Further, it should be noted that it is preferred to utilize typical plywood having a thickness greater than ½″ for a wall height of four feet. Again, as set forth, the above-indicated parameters relate to the panel structure being typical plywood. When using Form ply, it is preferred to utilize ½″ thick panels for any wall height up to ten feet. The preferred panel structures employed that are rated as Form ply are typically high density overlay (“HDO”) plywood or medium density overlay (“HDO”) plywood. Other suitable panel structures, as known to one of ordinary skill in the art, can also be employed with the tie system of the present invention.
For accurate placement and alignment, the base tie 30 can include a notch 82 at the inside edge of each channel (See
With reference to
Once the horizontal rebar 162 is positioned along the first course of wall ties, additional wall ties can be added to each stack to the height necessary for running another length of horizontal rebar 162. In other words, depending on the required vertical spacing of the horizontal rebar, the appropriate number of wall ties 90 can be pre-assembled to achieve the desired vertical spacing of such horizontal rebar 162. For example, each wall tie 90 can represent about six inches of vertical height. If your intended rebar spacing between horizontal rebar is twenty-four inches apart, then pre-assemble four wall ties and attached such pre-assembled wall ties to each tie stack before running a second length of horizontal rebar 162. Once such rebar is positioned as desired, additional wall ties 90 can be stacked vertically for each tie stack to the desired height. It should be noted that tie stacks are complete within about five inches of the intended height of the concrete wall. For example, for an intended wall height of three feet, a total of five wall ties will make a complete tie stack 160 with the base tie 30 at the bottom (representing about one inch) providing about five inches below the intended wall height of three feet. As will be readily understood by one of ordinary skill in the art, the ability to internally build the tie stacks 160 with the horizontal rebar 162 prior to positioning the panel structures thereto, as set forth above, provides for quick and ready assembly of the tie system 20, and therefore provides advantages over the prior art in reducing complexity to, thereby, be more time and cost efficient.
Referring now to
With reference to
Like the base tie 30, the finish tie 170 can include a first end portion 175 and a second end portion 177 with the intermediate portion 174 extending therebetween. Each of the end portions can define channels 172 therein sized and configured to be positioned over and receive the panel structures 150. Further, channel slots 182 defined in each of the end portions can be employed to fasten the finish tie 170 to the panel structures 150. It should be noted that it is not required to fasten the finish tie 170 to the panel structures 150.
Once the panel structures 150 are positioned within the channels 80 of the base ties 30 and further, the channels 172 of the finish ties 170 are also positioned over the panel structures 150, fasteners 184, such as screws, can be inserted through the panel structures 150 and through the wall ties 90. Placement of such fasteners should correspond with the first and second elongated wall portions 100 and 102 of each wall tie 90 and, more specifically, the intermediate wall portion 108 (See
Referring to
With reference to
Referring now to
Referring now to
As shown, a top portion 19 of the hardened concrete wall 17 can include an exposed portion of the anchor bolts 180 ready to receive the bottom portion of the structure (not shown) to be built thereon. Also, once the panel structures are removed, the outer surface of the wall ties 90 will be exposed on the concrete wall 17 along with a portion of the end portions of the base tie 30. To cover this exposed portion of the wall tie 90, a self-adhesive tape 222 can be applied thereto, such as a mesh tape. The self-adhesive tape 222 can then receive a base coat product 224. The base coat product can be any suitable exterior insulation finishing system (“E.I.F.S.”) type product, such as, DRYVIT, PAREX, SYNERGY or FINESTONE products. This will provide a bridge over the exposed wall ties that provides a surface that can be plastered over or receive a water proofing product as typically employed on foundation walls.
Furthermore, in another aspect of the present invention, once the panel structures are removed from the hardened concrete wall 17, the exposed portion of the wall ties 90 can be used as anchoring points for other building materials. In particular, such exposed portion of the wall ties 90 in the concrete wall can be employed as a substrate to anchor a polymeric insulation building material thereto. The portion best suited to anchor into is the intermediate wall portion 108 being sized and configured thicker than other portions of the elongated wall portions (See
The clip member 250 can include a form attachment portion 252 and a tie attachment portion 254. The form attachment portion 252 is sized and configured to attach to a portion, such as a top surface 242, of the metal forms 240. The form attachment portion 252 can include a first extension portion 262, a wrap portion 264 and a free end 266. The first extension portion 262 can be configured to extend outward from the tie attachment portion 254 to the wrap portion 264. The wrap portion 264 can be sized and configured to wrap around an edge 244 at the top surface 242 of the metal form 240. The free end 266 extends from the wrap portion 264 and can include a tapered lip 268. At an underside of the first extension portion 262, there is defined a recess 269 or groove configured to receive the edge 244 of the metal form 240 in conjunction with the wrap portion 264. With this arrangement, the clip member 250 can be readily attached to the edge 244 of the metal form by pulling and sliding the tapered free end 266 under the edge 244 and into the wrap portion 264 until the recess 269 of the first extension portion 262 engages such edge 244.
Now with reference to the tie attachment portion 254 of the clip member 250, such tie attachment portion 254 can be sized and configured to attach to a clip hole 53 in an end portion 51 of the base tie 30. The tie attachment portion 254 can include a second extension portion 270 with a clipping portion 274 extending upward therefrom and a lower portion 272. The second extension portion 270 is sized and configured to be disposed between a top surface 242 of the metal forms 240 and below the base tie 30. The clipping portion 274 can be sized and configured to extend through the clip hole 53 defined in the end portion 51 of the base tie 30. The lower portion 272 below the second extension portion 270 can be disposed within a hole 246 defined in the top surface 242 of the metal forms 240. The clipping portion 274 can include two upward extending portions 276 each with a tapered free end 278 and a back-stop 279. As such, once the clip member 250 is properly positioned and attached to the metal forms 240, the base tie 30 can be aligned such that the clipping portion 274 is inserted through the clip hole 53 in the base tie 30. As such insertion takes place, the tapered free ends 278 of the upward extending portion 276 squeeze or move together until the clipping portion 274 is fully inserted. The back-stop portion 279 of each upward extending portion 276 maintains the base tie 30 in proper position. Another clip member 250 should also be employed, as previously set forth, for the opposite side of the base tie 30 and each base tie 30 along the length of the metal forms 240. In this manner, the clip member 250 can be utilized with the tie system 20 to achieve greater concrete wall heights than that which is available for a given metal form 240. It should be noted that the base tie, in this aspect of the present invention, is positioned over the concrete footing (not shown) and, more specifically, is positioned over and above the concrete footing while being secured to the metal forms 240.
Furthermore, the tie system of the present invention can also be employed over a top portion of traditional wood forms, similar to that depicted in the previous embodiment. However, according to another embodiment, the base tie 30 can be positioned over (and above) the footing and fastened to the top surface of traditional wood forms via a base securing hole 83 defined in each of the channels 80 of the first end portion 50 and the second end portion 52 of the base tie 30, as depicted in
With respect to
Similar to the previous embodiments, the tie system 320 may include base members 322 and wall ties 322 interconnected together to form multiple tie stacks 326 that are spaced apart and secured to and along the footing 304. The tie stacks 326 can be built in levels to readily facilitate laying or positioning rebar 329 over appropriate levels within the tie stacks 326. With multiple tie stacks 326 secured to the footing 304, panel structures 328 can be secured to the tie stacks 326 and finish ties 330 may be secured to an upper end 332 of the panel structures 328. The panel structures 328, in the case of the curved footing, may be positioned and secured to the tie stacks 326 by bending or bowing the panel structures 328 as they are secured to the tie stacks 326. The panel structures 328 employed with the curved footing may be bendable plywood, masonite or plastic panels that will provide sufficient strength to act as a temporary form, but also may readily how or bend, as known to one of ordinary skill in the art. At this stage, the hardenable building material, such as concrete or any other hardenable building material, can be poured between the panel structures 328. Once the hardenable building material has cured sufficiently, the panel structures 328 and finish ties 330 can be removed, leaving the newly formed concrete wall 302.
Referring now to
The first base portion 334 and the second base portion 336 may be separate and discrete components from each other. That is, the first base portion 334 and the second base portion 336 may be discrete structures in the unassembled form, but may be configured to be interconnected once the wall tie 324 is attached to the first and second base portions 334, 336. Each of the first base portion 334 and the second base portion 336 may include a base extension 340 and one or more upstanding attachment portions 342 and a support wall 344. The base extension 340 may be configured to be secured to a footing and configured to extend horizontally against the footing with the upstanding attachment portions 342 and support wall 344 extending vertically from and relative to the footing and base extension 340. Such first and second base portions 334, 336 may be secured to the footing via concrete fasteners at the multiple holes 346 extending through the base extension 340.
The upstanding attachment portions 342 of the first and second base portions 334, 336 may be configured to connect or mate with the respective end portions of the wall tie 324, similar to previous embodiments. The support wall 344 may extend upward to the height of the upstanding attachment portion 342 or to a height beyond the upstanding attachment portion 342. The upstanding attachment portion 342 and the support wall 344 may define a channel 348 therebetween, the channel 348 sized and configured to receive a bottom end of the panel structures 328 (
The wall tie 324 may be similar to the wall ties described in earlier embodiments, though, in part, interconnect differently. For example, in this embodiment, the wall tie 324 may be interconnected to the first and second base portions 334, 336 in an inverted manner such that two end portions 350 of the wall tie 324 mate with the respective upstanding attachment portions 342 of the first and second base portions 334, 336. As in the previous embodiments, the wall tie 324 may include a first elongated wall portion 352 and a second elongated wall portion 354 with a cross-member portion 356 extending therebetween. The end portions 350, of both an upper end and lower end of the wall tie 324, of each of the first and second elongated wall portions 352, 354 may be sized and configured to mate or interconnect with at least one of the first and second base portions 334, 336, another wall tie 324 and the intermediate adapter 338. In this embodiment, the wall tie 324 may be inverted such that the corresponding end portions 350 of the first and second elongated wall portions 352, 354 mate and attach with the attachment portions 342 of the first and second base portions 334, 336.
The intermediate adapters 338 may be connected to the end portions 350, on the upper end, of the first and second elongated wall portions 352, 354 of the inverted wall tie 324. Such intermediate adapters 338 may be employed to facilitate an additional wall tie 324 to be interconnected thereto, attachable in a non-inverted or upright manner. In this manner, additional wall ties 324 may be attached and stacked in an upright non-inverted orientation to vertically build the tie stack 326 to the height desired.
As in the previous embodiments, each tie stack 326 may include multiple wall ties 324, with the inverted bottom wall tie 324 secured to one or more base members 322 or, more specifically, the first and second base portions 334, 336. Each tie stack 326 extends vertically relative to the footing, curved or linear, with the first and second elongated wall portions 352, 354 for each wall tie 324 including a first flat surface 358 and a second flat surface 360, the first flat surface 358 facing directly opposite the second flat surface 360. Further, the first flat surface 358 and the second flat surface 360 of respective first and second elongated wall portions 352, 354 extend longitudinally vertical and perpendicular relative to the base members 322. It should also be noted that the intermediate adapters 338, interconnected between the inverted wall tie 324 and another wall tie that is upstanding, also are configured to include a flat outward facing surface that may be flush and correspond with the first and second flat surfaces 358, 360 of the first and second elongated wall portions 352, 354. Such first and second flat surfaces 358, 360 of the tie stack 326 may be configured to be directly secured to the panel structures 328, as depicted in
With respect to
In another embodiment, the first base portion 334, as previously indicated, may hang over the edge 307 of the footing 304. The first base portion 334 may include a thinned portion 364. The thinned portion 364 may readily allow the over-hanging portion of the first base portion 334 to be bendable or moveable against a side wall 309 (or sloping surface) of the footing 304 and to be secured thereto, as shown by arrow 366. In this manner, the bottom end of the panel structures 328, as shown in
Referring now to
With respect to
With respect to
With reference to
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1224810 | Tenholder | May 1917 | A |
2490228 | Pontiere | Dec 1949 | A |
3722849 | Luyben | Mar 1973 | A |
3778020 | Burrows et al. | Dec 1973 | A |
4604843 | Ott et al. | Aug 1986 | A |
4669234 | Wilnau | Jun 1987 | A |
4924641 | Gibbar et al. | May 1990 | A |
4949515 | Krecke | Aug 1990 | A |
5038541 | Gibbar et al. | Aug 1991 | A |
5140794 | Miller | Aug 1992 | A |
5207931 | Porter | May 1993 | A |
5459971 | Sparkman | Oct 1995 | A |
5566518 | Martin et al. | Oct 1996 | A |
5570552 | Nehring | Nov 1996 | A |
5611182 | Spude | Mar 1997 | A |
5809726 | Spude | Sep 1998 | A |
5922236 | Zuhl | Jul 1999 | A |
5992114 | Zelinsky et al. | Nov 1999 | A |
6134861 | Spude | Oct 2000 | A |
6230462 | Beliveau | May 2001 | B1 |
6250033 | Zelinsky | Jun 2001 | B1 |
6293067 | Meendering | Sep 2001 | B1 |
6419205 | Meendering | Jul 2002 | B1 |
6474033 | Luchini et al. | Nov 2002 | B1 |
6739102 | Roy et al. | May 2004 | B2 |
6792729 | Beliveau | Sep 2004 | B2 |
7082732 | Titishov | Aug 2006 | B2 |
7284351 | Cooper et al. | Oct 2007 | B2 |
7775499 | Metcalf | Aug 2010 | B2 |
7827752 | Scherrer | Nov 2010 | B2 |
20020124508 | Dunn et al. | Sep 2002 | A1 |
20040045238 | Dunn et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20110131911 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12080573 | Apr 2008 | US |
Child | 12900373 | US |