Extended reality (XR) environments, i.e., environments created by immersive technologies that merge physical and virtual worlds, such as augmented reality (AR), virtual reality (VR), and mixed reality (MR) and the like, have grown more realistic and immersive as VR headsets, augmented reality devices and applications, processor speeds, data storage and data transfer technologies have continued to improve. However, unlike conventional physical reality, electronic XR environments present more opportunities for persons to collaborate and share information, including in work and education fields, in ways that are not possible in the physical constraints of the real-world.
U.S. Pat. No. 11,631,228 incorporated herein by reference in its entirety, describes using information boards in XR environments. The present invention provides improved methods for creating and using information boards in various embodiments.
Embodiments of the invention provide an improved method and system for users in XR environments, including VR environments such as in the Oculus/Meta Quest platform by Oculus VR (Irvine, CA) (parent company Meta), to use information boards in advantageous arrangements not similarly possible and/or practical in real world environments.
It will be appreciated that the systems and methods, including related displays, user interfaces, controls and functionalities, disclosed herein may be similarly implemented on other XR platforms with other XR SDKs and software development tools known to XR developers.
For clarity of explanation, in some instances, the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
Any of the steps, operations, functions, or processes described herein may be performed or implemented by a combination of hardware and software services or services, alone or in combination with other devices. In some embodiments, a service can be software that resides in memory of a client device and/or one or more servers of a content management system and perform one or more functions when a processor executes the software associated with the service. In some embodiments, a service is a program or a collection of programs that carry out a specific function. In some embodiments, a service can be considered a server. The memory can be a non-transitory computer-readable medium.
In some embodiments, the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer-readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general-purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The executable computer instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, solid-state memory devices, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include servers, laptops, smartphones, small form factor personal computers, personal digital assistants, and so on. The functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
In various embodiments, methods and systems of the invention are preferably implemented through development tools for the Oculus/Meta Quest platform (Oculus Platform SDK) by Oculus VR (Irvine, Calif.) (parent company Meta). It will be appreciated that the systems and methods, including related displays, user interfaces, controls and functionalities, disclosed herein may be similarly implemented on other VR or extended reality (XR) platforms with other VR SDKs and software development tools known to VR developers.
XR device 220 comprises one or more network interfaces 110 (e.g., wired, wireless, PLC, etc.), at least one processor 120, and a memory 140 interconnected by a system bus 150, as well as a power supply 160 (e.g., battery, plug-in adapter, solar power, etc.). XR device 220 can further include a display 228 for display of the XR learning environment, where display 228 can include a virtual reality display of a VR headset. Further, XR device 220 can include input device(s) 221, which can include audio input devices and orientation/inertial measurement devices. For tracking of body parts, such as hands, faces, arms and legs, held physical objects, and the like, input devices include cameras (such as integrated with an XR headset device or external cameras) and/or wearable movement tracking electronic devices, such as electronic gloves, electronic straps and bands, and other electronic wearables. XR devices of the invention may connect to one or more computing systems via wired (e.g., high speed Ethernet connection) or wireless connections (e.g., high speed wireless connections), such that computer processing, particular processing requiring significant processing and power capabilities, can be carried out remotely from the display of the XR device 220 and need not be self-contained on the XR device 220.
Network interface(s) 110 include the mechanical, electrical, and signaling circuitry for communicating data over the communication links coupled to a communication network. Network interfaces 110 are configured to transmit and/or receive data using a variety of different communication protocols. As illustrated, the box representing network interfaces 110 is shown for simplicity, and it is appreciated that such interfaces may represent different types of network connections such as wireless and wired (physical) connections. Network interfaces 110 are shown separately from power supply 160, however it is appreciated that the interfaces that support PLC protocols may communicate through power supply 160 and/or may be an integral component coupled to power supply 160.
Memory 140 includes a plurality of storage locations that are addressable by processor 120 and network interfaces 110 for storing software programs and data structures associated with the embodiments described herein. In some embodiments, XR device 220 may have limited memory or no memory (e.g., no memory for storage other than for programs/processes operating on the device and associated caches). Memory 140 can include instructions executable by the processor 120 that, when executed by the processor 120, cause the processor 120 to implement aspects of the system and the methods outlined herein.
Processor 120 comprises hardware elements or logic adapted to execute the software programs (e.g., instructions) and manipulate data structures 145. An operating system 142, portions of which are typically resident in memory 140 and executed by the processor, functionally organizes XR device 220 by, inter alia, invoking operations in support of software processes and/or services executing on the device. These software processes and/or services may include Extended Reality (XR) artificial intelligence processes/services 190, which can include methods and/or implementations of standalone processes and/or modules providing functionality described herein. While XR artificial intelligence (AI) processes/services 190 are illustrated in centralized memory 140, alternative embodiments provide for the processes/services to be operated as programmed software within the network interfaces 110, such as a component of a MAC layer, and/or as part of a distributed computing network environment.
In various embodiments AI processes/services 190 may create requested digital object images via image generating AI system, such as Dall-E or Dall-E 2 (see https://openai.co,/product/dall-e-2 incorporated herein by preference) or other similar image generation systems and other synthetic media. In other embodiments, an AI process/service 190 might retrieve a requested digital object image from one or more local databases, centralized databases, cloud-based databases such as Internet databases, or decentralized databases.
Referring to
XR devices 220 includes components as input devices 221, such as audio input devices 222, orientation measurement devices 224, image capture devices 226 and XR display devices 228, such as headset display devices.
It will be apparent to those skilled in the art that other processor and memory types, including various computer-readable media, may be used to store and execute program instructions pertaining to the techniques described herein. Also, while the description illustrates various processes, it is expressly contemplated that various processes may be embodied as modules or engines configured to operate in accordance with the techniques herein (e.g., according to the functionality of a similar process). In this context, the term module and engine may be interchangeable. In general, the term module or engine refers to model or an organization of interrelated software components/functions.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
It should be understood from the foregoing that, while embodiments have been illustrated and described, various modifications can be made thereto without departing from the spirit and scope of the invention as will be apparent to those skilled in the art. Such changes and modifications are within the scope and teachings of this invention as defined in the claims appended hereto.