METHOD OF SUTURELESS INTRASCLERAL HAPTIC-HOOK LENS IMPLANTATION

Information

  • Patent Application
  • 20200337832
  • Publication Number
    20200337832
  • Date Filed
    April 26, 2019
    5 years ago
  • Date Published
    October 29, 2020
    4 years ago
Abstract
A method of sutureless intrascleral haptic-hook lens implantation which improves the fixation process of the lens haptics, allowing the lens haptics to be bent and folded back into the vitreous cavity to generate a better stability, avoiding the complication of intrascleral fixation haptic slippage, meanwhile forming a sclera lamellar groove between two adjacent scleral incisions to bury the lens haptics. The method may be adapted to patients in need of intraocular lens implantation without sufficient capsular support, such as aphakia, intraocular lens, lens dislocation, etc. This method enhances the stability and centrality of the lens, the surgical procedures are simple and easy to master, which reduces the operation time.
Description
TECHNICAL FIELD

The present invention pertains to the technical field of ophthalmic surgery, and specifically pertains to a method of sutureless intrascleral haptic-hook lens implantation


BACKGROUND

Over the development of intraocular lens suspension in recent years, a number of new technologies and methods have been derived, ranging from the traditional suture fixation to scleral fixation emerged in recent 2 years, with continuous progress and development. The scleral fixation has incomparable advantages compared to the suture fixation: no suture exposure, no suture fracture, small possibility of lens offset, simple operation and less time consuming, reduction of intra-operative iatrogenic injuries. There are many methods for intrascleral fixation, the main difference among which focus on different treatments to lens haptic. Agarwal and Oh et al. have proposed a method of covering lens haptics with scleral flaps, with the aid of biological glue. Takayama K et al. have proposed a method of embedding lens haptics into intrascleral tunnels other than below scleral flaps, which possesses a better stability. Ohta T et al. have invented a Y-shaped scleral incision for the lens haptic fixation, meanwhile the tightness of the incision has been enhanced.


However, there were also certain inadequacies in the intrascleral fixation: on the one hand, the operation was a little complicated, the length and depth of intrascleral tunnels were difficult to control, and there was the possibility of scleral flap fracture; on the other hand, there was a chance of intraocular lens haptic slippage, thus causing lens offset, even dislocation, etc.


SUMMARY

To overcome the defects in the prior art, the present invention provides a method of sutureless intrascleral haptic-hook lens implantation.


The technical solution employed in the present invention is: a method of sutureless intrascleral haptic-hook lens implantation, comprising the following steps:


(1) for subjects not undergoing vitreous surgery, conventional vitrectomy or anterior vitrectomy was conducted in advance, a lateral corneal incision 1 was made and a perfusion tube 100 was placed at the anterior chamber 401, two opposing conjunctival incisions 103 of 3.0 mm, symmetrical at 180°, were cut on the conjunctiva 102 outside the margin of cornea 101;


(2) two puncture openings 2 were made at 1.5-2.0 mm outside the margin of cornea 101 with a 26G pinhead, forming two puncture channels 201, the spacing distance between the two puncture openings 2 was 1 mm, the puncture openings 2 were parallel to the margin of cornea 101 and formed an angle of 30° with the surface of the sclera, the puncture directions of the two puncture openings 2 were opposite, making the puncture channels 201 profiled in a splayed pattern, and a lamellar sclera incision 202 was cut in the distance of 1 mm between the two puncture openings 2, forming a groove 3;


(3) the same operations as those in step (2) were conducted at the 180° symmetrical sides of the opposing corneas 101 at the two puncture openings 2 of step (2), forming two puncture openings 2 at the other side and the groove 3 between them, the puncture openings 2 at the two places and the grooves 3 between them were set symmetrically at 180°;


(4) a main corneal incision 4 of 3.0 mm was made over the cornea 101, through which the intraocular lens 403 was pushed into the anterior chamber 401, leaving one haptic 5 outside the main corneal incision 4, a 25G membrane forceps 402 went into the eye from the puncture opening 2 on one side, grasping one haptic 5 of the intraocular lens 403 and pulling it out of the eye through one puncture opening 2, similarly the other haptic 5 of the intraocular lens 403 was grasped from the puncture opening 2 on the other side and pulled out of the eye through the puncture opening 2 on this side;


(5) the haptic 5 fixed outside the eye was bent and then folded back into the vitreous cavity 501 through the adjacent puncture opening 2, just leaving the haptic 5 of the intraocular lens 403 exposed outside the sclera embedded in the groove 3 formed by the lamellar sclera incision 202 between two adjacent puncture openings 2, the haptic 5 was adjusted to make the intraocular lens 403 to be centered;


(6) the perfusion tube 100 was removed, the main corneal incision 4 was watertight, the conjunctival incisions 103 were sewed with absorbable suture to complete the implantation and fixation of the intraocular lens 403.


The two pairs of puncture openings 2 set symmetrically opposing at 180° were set at the positions of 4 o'clock and 10 o'clock on the clock dial respectively.


The conjunctival incisions 103 set symmetrically opposing at 180° were set at the positions of 4 o'clock and 10 o'clock on the clock dial respectively.


The intraocular lens 403 was a 3-pieces posterior chamber intraocular lens, the haptic 5 of which employed polyvinylidene fluoride (PVDF) as the support, the haptic 5 was in a C shape, which formed an angle of 5° with the lens body.


The closed conjunctival incisions 103 in step (6) were sewed or closed by electrocoagulation.


The puncture openings 2 in step (2) formed an angle of 30° with the surface of the sclera, making the puncture channels 201 profiled in a splayed pattern.


The present invention has the following benefits: the present invention provides a method of sutureless intrascleral haptic-hook lens implantation, which improves the fixation process of the lens haptics, allowing the lens haptics to be bent and folded back into the vitreous cavity to generate a better stability, avoiding the complication of intrascleral fixation haptic slippage, meanwhile forming a sclera lamellar groove between two adjacent scleral incisions to bury the lens haptics, which method may be adapted to patients in need of intraocular lens implantation while without sufficient capsular support, such as aphakia, lens or intraocular lens dislocation, etc. This method enhances the stability and centrality of the lens, the surgical procedures are simple and easy to master, which reduces the operation time. In the cases implemented currently, we have not found the complications such as incision leakage, retinal detachment, endophthalmitis, tilt or dislocation of the intraocular lens, vitreous hemorrhage, and the like, and the postoperative visual acuities of patients have been significantly improved.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is the graphical representation of surgical procedures of the present invention.



FIG. 2 is the graphical representation of surgical procedures of the present invention.



FIG. 3 is the graphical representation of surgical procedures of the present invention.



FIG. 4 is the graphical representation of surgical procedures of the present invention.



FIG. 5 is the graphical representation of surgical procedures of the present invention.



FIG. 6 is the graphical representation of surgical procedures of the present invention.


Wherein, 1—lateral corneal incision, 2—puncture opening, 3—groove, 4—main corneal incision, 5—haptic, 100—perfusion tube, 101—cornea, 102—conjuctiva, 103—conjunctival incision, 201—puncture channel, 202—lamellar sclera incision, 401—anterior chamber, 402—membrane forcep, 403—intraocular lens, 501—vitreous cavity.



FIG. 7 is the anterior segment photographs 6 months after the surgery of the present invention; wherein FIG. 7A is the image of the slit lamp microscopy showing the scleral wounds; FIG. 7B is the UBM image showing the centration of the lens; FIG. 7C is the UBM image showing the intraocular lens haptic in the sclera.





DETAILED DESCRIPTION

The present invention now will be further illustrated in combination with FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, and FIG. 7.


After anesthetization, for patients not undergoing vitreous surgery, conventional vitrectomy or anterior vitrectomy was conducted in advance, a lateral corneal incision was made at the position of 2 o'clock and a perfusion tube 100 was placed at the anterior chamber 401, two conjunctival incisions 103 of 3.0 mm were cut on the conjunctiva 102 outside the margin of cornea 101, at the positions of 4 o'clock and 10 o'clock respectively; two puncture openings 2 were made at the position of 4 o'clock, in a distance of 1.5-2.0 mm outside the margin of cornea 101 with a 26G pinhead, forming two puncture channels 201, the spacing distance between the two puncture openings 2 was 1 mm, the puncture openings 2 were parallel to the margin of cornea 101 and formed an angle of 30° with the surface of the sclera, the puncture directions of the two puncture openings 2 were opposite, making the puncture channels 201 profiled in a splayed pattern, and a lamellar sclera incision 202 was cut in the distance of 1 mm between the two puncture openings 2, forming a groove 3; and then the same processes were conducted at the symmetrical position of 10 o'clock, as shown in FIG. 1.


A main corneal incision 4 of 3.0 mm was made over the cornea 101, through which the intraocular lens 403 was pushed into the anterior chamber 401, leaving one haptic 5 outside the main corneal incision 4, a 25G membrane forceps 402 went into the eye from the puncture opening 2 on one side, grasping one haptic 5 of the intraocular lens 403 and pulling it out of the eye through one puncture opening 2, similarly the other haptic 5 of the intraocular lens 403 was grasped from the puncture opening 2 on the other side at the position of 10 o'clock and pulled out of the eye through the puncture opening 2 on this side; as shown in FIG. 2.


The haptic 5 fixed outside the eye was bent and then folded back into the vitreous cavity 501 through the adjacent puncture opening 2, just leaving the haptic 5 of the intraocular lens 403 exposed outside the sclera embedded in the groove 3 formed by the lamellar sclera incision 202 between two adjacent puncture openings 2; as shown in FIG. 3.


The lens haptic 5 looks like a fishhook as shown in figures, with the tip in the vitreous cavity 501; as shown in FIG. 4.


The main corneal incision 4 was watertight, the conjunctival incisions 103 were sewed with absorbable suture to complete the implantation and fixation of the intraocular lens 403, as shown in FIG. 5.


The fact that the haptic 5 of the intraocular lens 403 could be bent smoothly and folded back into the vitreous cavity 501 was related to the use of Matrix AcrylicAurium 400 intraocular lens 403 in the operation, wherein the haptic 5 employed polyvinylidene fluoride (PVDF), which was in a revised C shape, and formed an angle of 5° with the lens body. Finally, the main corneal incision 4 was watertight, the conjunctival incisions 103 were sewed with 8-0 absorbable suture.


Our improved technique was conducted in 15 patients. This technique, in combination with vitrectomy, has removed the vitreous bodies of all patients partially or completely. The average preoperative BCVA is 0.82 logMAR units, and is 0.44 logMAR units in the follow-up visit after 6 months (Table 1). The follow-up visit after the patients come back shows good lens center and stable tactile fixation (FIG. 6). In the follow-up inspection after 6 months, there were no complications such as postoperative inflammation, hyphema, decentration, glaucoma, corneal edema, or wound leakage, etc. observed (Table 2). No eyes need the subsequent surgery.









TABLE 1







Baseline characteristics and postoperative data of the patients










Characteristics
Data







Number of eyes (Number of patients)
17 (15)



Age, years
56.4 ± 13.5



Male/female, n
7/8



Preoperative visual acuity
0.82 ± 0.89



Postoperative visual acuity at
0.44 ± 0.45



6 monthsa




Preoperative intraocular
18.0 ± 3.0 



pressure, mmHg




Postoperative intraocular
14.8 ± 7.2 



pressure at 1 week, mmHga




Postoperative intraocular
17.1 ± 2.9 



pressure at 6 months, mmHga







All values stands mean ± standard deviation



BCVA = best corrected visual acuity;



IOP = intraocular pressure.




a compared by Fisher exact test;




others compared by two-paired test.













TABLE 2







Clinical features and postoperative surgical outcome of each eyes

















Associated ocular
Type of
Preoperative
Postoperative




Gender/
Operated
conditions from
dislocation at
logMAR
logMAR BCVA
Postoperative


Cases
Age
Eye
previous surgery
presentation
BCVA
at 6 months
complications

















1
M/53
Right
PCR and sulcus-fixated
Out-of-the-bag
0.22
0.50
None





IOL


2
M/46
Right
PCR and sulcus-fixated
In-the-bag
1.30
1.30
None





IOL


3
M/24
Left
PCR and sulcus-fixated
Out-of-the-bag
0.22
0.22
None





IOL


4
M/48
Right
PCR and sulcus-fixated
Out-of-the-bag
0.05
0
None





IOL


5
M/48
Left
Marchesani Syndrome,
In-the-bag
0.10
0
None





subluxated crystalline





lens


6
M/75
Left
Trauma, aphakic
Absence of
2.60
1.30
None






capsular bag


7
M/58
Left
Trauma, aphakic
Absence of
0.10
0.22
None






capsular bag


8
F/53
Left
Trauma, luxated
Out-of-the-bag
0.40
0.52
None





crystalline lens


9
F/59
Right
PCR and sulcus-fixated
Out-of-the-bag
2.30
0.40
None





IOL


10
F/59
Left
PCR and sulcus-fixated
Out-of-the-bag
2.60
0.22
None





IOL


11
F/69
Right
PCR and sulcus-fixated
Out-of-the-bag
0.70
0.70
None





IOL


12
M/72
Left
Subluxated crystalline
In-the-bag
1.00
0.10
None





lens


13
F/35
Right
Subluxated crystalline
In-the-bag
0.40
0.40
None





lens


14
F/60
Right
Luxated crystalline
In-the-bag
0.10
0.15
None





lens


15
F/68
Right
Subluxated crystalline
In-the-bag
1.00
0.52
None





lens


16
F/60
Left
Subluxated crystalline
In-the-bag
0.00
0.00
None





lens


17
F/71
Right
Luxated crystalline
In-the-bag
0.80
1.30
None





lens





BCVA = best corrected visual acuity; PCR = posterior capsule rupture.






The method of sutureless intrascleral haptic-hook lens implantation proposed in the present invention may be adapted to patients in need of intraocular lens 403 implantation while without sufficient capsular support, such as aphakia, intraocular lens 403 or lens dislocation, etc. This method enhances the stability and centrality of the lens, the surgical procedures are simple and easy to master, which reduces the operation time. In the cases implemented currently, we have not found the complications such as incision leakage, retinal detachment, endophthalmitis, tilt or dislocation of the intraocular lens 403, vitreous hemorrhage, and the like, and the postoperative visual acuities of patients have been significantly improved.


It should be understood to persons skilled in the relevant art that the present invention has been described following the above detailed description, while the inventive ideas of the present invention were not restricted to the present invention, and any variations employing the ideas of the present invention should be included in the protection scope of the claims.


The above descriptions were only the preferred embodiments of the present invention, the protection scope of which should not be limited by the above embodiments, and all technical schemes within the spirit of the present invention all belong to the protection scope of the present invention. It should be noted to persons of ordinary skills in the art that several improvements and modifications without departing from the principle of the present invention also should be deemed as the protection scope of the present invention.

Claims
  • 1. A method of sutureless intrascleral haptic-hook lens implantation in an eye, comprising the following steps: (1) placing a lateral corneal incision a perfusion tube at the anterior chamber, cutting two opposing conjunctival incisions of 3.0 mm, symmetrical at 180°, on the conjunctiva outside a margin of the cornea;(2) making two puncture openings at 1.5-2.0 mm outside the margin of the cornea, forming two puncture channels, the spacing distance between the two puncture openings being 1 mm, the puncture openings being parallel to the margin of the cornea, puncture directions of the two puncture openings being opposite, and cutting a lamellar sclera incision between the two puncture openings, thereby forming a groove;(3) repeating step (2) at the 180° symmetrical sides of the opposing corneas at the two puncture openings of step (2), forming two puncture openings at the other side and the groove between them, the puncture openings at the two places and the grooves between them being symmetrically at 180°;(4) making a main corneal incision of 3.0 mm over the cornea, through which pushing the intraocular lens through the main corneal incision and into the anterior chamber, leaving one haptic outside the main corneal incision, introducing a membrane forceps into the eye from the puncture opening on one side, grasping one haptic of the intraocular lens and pulling said haptic out of the eye through one puncture opening, grasping the other haptic of the intraocular lens from the puncture opening on the other side and pulling out of the eye through the puncture opening on this side;(5) bending the haptic fixed outside the eye and then folding the bent haptic back into the vitreous cavity through the adjacent puncture opening, just leaving the haptic of the intraocular lens exposed outside the sclera embedded in the groove formed by the lamellar sclera incision between two adjacent puncture openings, adjusting the haptic to cause the intraocular lens to be centered;(6) removing the perfusion tube and closing the conjunctival incisions to complete the implantation and fixation of the intraocular lens.
  • 2. The method of sutureless intrascleral haptic-hook lens implantation according to claim 1, wherein the two pairs of puncture openings set symmetrically opposing at 180° are set at the positions of 4 o'clock and 10 o'clock on the clock dial, respectively.
  • 3. The method of sutureless intrascleral haptic-hook lens implantation according to claim 1, wherein the conjunctival incisions set symmetrically opposing at 180° are set at the positions of 4 o'clock and 10 o'clock on the clock dial, respectively.
  • 4. The method of sutureless intrascleral haptic-hook lens implantation according to claim 1, wherein the intraocular lens is a 3-pieces posterior chamber intraocular lens, the haptic of which employed polyvinylidene fluoride (PVDF) provides support, and the haptic is in a C shape, forming an angle of 5° with the lens body.
  • 5. The method of sutureless intrascleral haptic-hook lens implantation according to claim 1, wherein the closed conjunctival incisions in step (6) is closed by electrocoagulation or sewing.
  • 6. The method of sutureless intrascleral haptic-hook lens implantation according to claim 1, wherein the puncture openings in step (2) form an angle of 30° with the surface of the sclera, the puncture channels being profiled in a splayed pattern.